| 1 | /* -*- C++ -*- |
|---|
| 2 | * |
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library |
|---|
| 4 | * |
|---|
| 5 | * Copyright (C) 2003-2008 |
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 8 | * |
|---|
| 9 | * Permission to use, modify and distribute this software is granted |
|---|
| 10 | * provided that this copyright notice appears in all copies. For |
|---|
| 11 | * precise terms see the accompanying LICENSE file. |
|---|
| 12 | * |
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 14 | * express or implied, and with no claim as to its suitability for any |
|---|
| 15 | * purpose. |
|---|
| 16 | * |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #ifndef LEMON_MAPS_H |
|---|
| 20 | #define LEMON_MAPS_H |
|---|
| 21 | |
|---|
| 22 | #include <iterator> |
|---|
| 23 | #include <functional> |
|---|
| 24 | #include <vector> |
|---|
| 25 | |
|---|
| 26 | #include <lemon/bits/utility.h> |
|---|
| 27 | #include <lemon/bits/traits.h> |
|---|
| 28 | |
|---|
| 29 | ///\file |
|---|
| 30 | ///\ingroup maps |
|---|
| 31 | ///\brief Miscellaneous property maps |
|---|
| 32 | |
|---|
| 33 | #include <map> |
|---|
| 34 | |
|---|
| 35 | namespace lemon { |
|---|
| 36 | |
|---|
| 37 | /// \addtogroup maps |
|---|
| 38 | /// @{ |
|---|
| 39 | |
|---|
| 40 | /// Base class of maps. |
|---|
| 41 | |
|---|
| 42 | /// Base class of maps. It provides the necessary type definitions |
|---|
| 43 | /// required by the map %concepts. |
|---|
| 44 | template<typename K, typename V> |
|---|
| 45 | class MapBase { |
|---|
| 46 | public: |
|---|
| 47 | /// \biref The key type of the map. |
|---|
| 48 | typedef K Key; |
|---|
| 49 | /// \brief The value type of the map. |
|---|
| 50 | /// (The type of objects associated with the keys). |
|---|
| 51 | typedef V Value; |
|---|
| 52 | }; |
|---|
| 53 | |
|---|
| 54 | |
|---|
| 55 | /// Null map. (a.k.a. DoNothingMap) |
|---|
| 56 | |
|---|
| 57 | /// This map can be used if you have to provide a map only for |
|---|
| 58 | /// its type definitions, or if you have to provide a writable map, |
|---|
| 59 | /// but data written to it is not required (i.e. it will be sent to |
|---|
| 60 | /// <tt>/dev/null</tt>). |
|---|
| 61 | /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|---|
| 62 | /// |
|---|
| 63 | /// \sa ConstMap |
|---|
| 64 | template<typename K, typename V> |
|---|
| 65 | class NullMap : public MapBase<K, V> { |
|---|
| 66 | public: |
|---|
| 67 | typedef MapBase<K, V> Parent; |
|---|
| 68 | typedef typename Parent::Key Key; |
|---|
| 69 | typedef typename Parent::Value Value; |
|---|
| 70 | |
|---|
| 71 | /// Gives back a default constructed element. |
|---|
| 72 | Value operator[](const Key&) const { return Value(); } |
|---|
| 73 | /// Absorbs the value. |
|---|
| 74 | void set(const Key&, const Value&) {} |
|---|
| 75 | }; |
|---|
| 76 | |
|---|
| 77 | /// Returns a \ref NullMap class |
|---|
| 78 | |
|---|
| 79 | /// This function just returns a \ref NullMap class. |
|---|
| 80 | /// \relates NullMap |
|---|
| 81 | template <typename K, typename V> |
|---|
| 82 | NullMap<K, V> nullMap() { |
|---|
| 83 | return NullMap<K, V>(); |
|---|
| 84 | } |
|---|
| 85 | |
|---|
| 86 | |
|---|
| 87 | /// Constant map. |
|---|
| 88 | |
|---|
| 89 | /// This is a \ref concepts::ReadMap "readable" map which assigns a |
|---|
| 90 | /// specified value to each key. |
|---|
| 91 | /// |
|---|
| 92 | /// In other aspects it is equivalent to \ref NullMap. |
|---|
| 93 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|---|
| 94 | /// concept, but it absorbs the data written to it. |
|---|
| 95 | /// |
|---|
| 96 | /// The simplest way of using this map is through the constMap() |
|---|
| 97 | /// function. |
|---|
| 98 | /// |
|---|
| 99 | /// \sa NullMap |
|---|
| 100 | /// \sa IdentityMap |
|---|
| 101 | template<typename K, typename V> |
|---|
| 102 | class ConstMap : public MapBase<K, V> { |
|---|
| 103 | private: |
|---|
| 104 | V _value; |
|---|
| 105 | public: |
|---|
| 106 | typedef MapBase<K, V> Parent; |
|---|
| 107 | typedef typename Parent::Key Key; |
|---|
| 108 | typedef typename Parent::Value Value; |
|---|
| 109 | |
|---|
| 110 | /// Default constructor |
|---|
| 111 | |
|---|
| 112 | /// Default constructor. |
|---|
| 113 | /// The value of the map will be default constructed. |
|---|
| 114 | ConstMap() {} |
|---|
| 115 | |
|---|
| 116 | /// Constructor with specified initial value |
|---|
| 117 | |
|---|
| 118 | /// Constructor with specified initial value. |
|---|
| 119 | /// \param v is the initial value of the map. |
|---|
| 120 | ConstMap(const Value &v) : _value(v) {} |
|---|
| 121 | |
|---|
| 122 | /// Gives back the specified value. |
|---|
| 123 | Value operator[](const Key&) const { return _value; } |
|---|
| 124 | |
|---|
| 125 | /// Absorbs the value. |
|---|
| 126 | void set(const Key&, const Value&) {} |
|---|
| 127 | |
|---|
| 128 | /// Sets the value that is assigned to each key. |
|---|
| 129 | void setAll(const Value &v) { |
|---|
| 130 | _value = v; |
|---|
| 131 | } |
|---|
| 132 | |
|---|
| 133 | template<typename V1> |
|---|
| 134 | ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
|---|
| 135 | }; |
|---|
| 136 | |
|---|
| 137 | /// Returns a \ref ConstMap class |
|---|
| 138 | |
|---|
| 139 | /// This function just returns a \ref ConstMap class. |
|---|
| 140 | /// \relates ConstMap |
|---|
| 141 | template<typename K, typename V> |
|---|
| 142 | inline ConstMap<K, V> constMap(const V &v) { |
|---|
| 143 | return ConstMap<K, V>(v); |
|---|
| 144 | } |
|---|
| 145 | |
|---|
| 146 | |
|---|
| 147 | template<typename T, T v> |
|---|
| 148 | struct Const {}; |
|---|
| 149 | |
|---|
| 150 | /// Constant map with inlined constant value. |
|---|
| 151 | |
|---|
| 152 | /// This is a \ref concepts::ReadMap "readable" map which assigns a |
|---|
| 153 | /// specified value to each key. |
|---|
| 154 | /// |
|---|
| 155 | /// In other aspects it is equivalent to \ref NullMap. |
|---|
| 156 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|---|
| 157 | /// concept, but it absorbs the data written to it. |
|---|
| 158 | /// |
|---|
| 159 | /// The simplest way of using this map is through the constMap() |
|---|
| 160 | /// function. |
|---|
| 161 | /// |
|---|
| 162 | /// \sa NullMap |
|---|
| 163 | /// \sa IdentityMap |
|---|
| 164 | template<typename K, typename V, V v> |
|---|
| 165 | class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
|---|
| 166 | public: |
|---|
| 167 | typedef MapBase<K, V> Parent; |
|---|
| 168 | typedef typename Parent::Key Key; |
|---|
| 169 | typedef typename Parent::Value Value; |
|---|
| 170 | |
|---|
| 171 | /// Constructor. |
|---|
| 172 | ConstMap() {} |
|---|
| 173 | |
|---|
| 174 | /// Gives back the specified value. |
|---|
| 175 | Value operator[](const Key&) const { return v; } |
|---|
| 176 | |
|---|
| 177 | /// Absorbs the value. |
|---|
| 178 | void set(const Key&, const Value&) {} |
|---|
| 179 | }; |
|---|
| 180 | |
|---|
| 181 | /// Returns a \ref ConstMap class with inlined constant value |
|---|
| 182 | |
|---|
| 183 | /// This function just returns a \ref ConstMap class with inlined |
|---|
| 184 | /// constant value. |
|---|
| 185 | /// \relates ConstMap |
|---|
| 186 | template<typename K, typename V, V v> |
|---|
| 187 | inline ConstMap<K, Const<V, v> > constMap() { |
|---|
| 188 | return ConstMap<K, Const<V, v> >(); |
|---|
| 189 | } |
|---|
| 190 | |
|---|
| 191 | |
|---|
| 192 | /// \brief Identity map. |
|---|
| 193 | /// |
|---|
| 194 | /// This map gives back the given key as value without any |
|---|
| 195 | /// modification. |
|---|
| 196 | /// |
|---|
| 197 | /// \sa ConstMap |
|---|
| 198 | template <typename T> |
|---|
| 199 | class IdentityMap : public MapBase<T, T> { |
|---|
| 200 | public: |
|---|
| 201 | typedef MapBase<T, T> Parent; |
|---|
| 202 | typedef typename Parent::Key Key; |
|---|
| 203 | typedef typename Parent::Value Value; |
|---|
| 204 | |
|---|
| 205 | /// Gives back the given value without any modification. |
|---|
| 206 | const T& operator[](const T& t) const { |
|---|
| 207 | return t; |
|---|
| 208 | } |
|---|
| 209 | }; |
|---|
| 210 | |
|---|
| 211 | /// Returns an \ref IdentityMap class |
|---|
| 212 | |
|---|
| 213 | /// This function just returns an \ref IdentityMap class. |
|---|
| 214 | /// \relates IdentityMap |
|---|
| 215 | template<typename T> |
|---|
| 216 | inline IdentityMap<T> identityMap() { |
|---|
| 217 | return IdentityMap<T>(); |
|---|
| 218 | } |
|---|
| 219 | |
|---|
| 220 | |
|---|
| 221 | /// \brief Map for storing values for integer keys from the range |
|---|
| 222 | /// <tt>[0..size-1]</tt>. |
|---|
| 223 | /// |
|---|
| 224 | /// This map is essentially a wrapper for \c std::vector. It assigns |
|---|
| 225 | /// values to integer keys from the range <tt>[0..size-1]</tt>. |
|---|
| 226 | /// It can be used with some data structures, for example |
|---|
| 227 | /// \ref UnionFind, \ref BinHeap, when the used items are small |
|---|
| 228 | /// integers. This map conforms the \ref concepts::ReferenceMap |
|---|
| 229 | /// "ReferenceMap" concept. |
|---|
| 230 | /// |
|---|
| 231 | /// The simplest way of using this map is through the rangeMap() |
|---|
| 232 | /// function. |
|---|
| 233 | template <typename V> |
|---|
| 234 | class RangeMap : public MapBase<int, V> { |
|---|
| 235 | template <typename V1> |
|---|
| 236 | friend class RangeMap; |
|---|
| 237 | private: |
|---|
| 238 | |
|---|
| 239 | typedef std::vector<V> Vector; |
|---|
| 240 | Vector _vector; |
|---|
| 241 | |
|---|
| 242 | public: |
|---|
| 243 | |
|---|
| 244 | typedef MapBase<int, V> Parent; |
|---|
| 245 | /// Key type |
|---|
| 246 | typedef typename Parent::Key Key; |
|---|
| 247 | /// Value type |
|---|
| 248 | typedef typename Parent::Value Value; |
|---|
| 249 | /// Reference type |
|---|
| 250 | typedef typename Vector::reference Reference; |
|---|
| 251 | /// Const reference type |
|---|
| 252 | typedef typename Vector::const_reference ConstReference; |
|---|
| 253 | |
|---|
| 254 | typedef True ReferenceMapTag; |
|---|
| 255 | |
|---|
| 256 | public: |
|---|
| 257 | |
|---|
| 258 | /// Constructor with specified default value. |
|---|
| 259 | RangeMap(int size = 0, const Value &value = Value()) |
|---|
| 260 | : _vector(size, value) {} |
|---|
| 261 | |
|---|
| 262 | /// Constructs the map from an appropriate \c std::vector. |
|---|
| 263 | template <typename V1> |
|---|
| 264 | RangeMap(const std::vector<V1>& vector) |
|---|
| 265 | : _vector(vector.begin(), vector.end()) {} |
|---|
| 266 | |
|---|
| 267 | /// Constructs the map from another \ref RangeMap. |
|---|
| 268 | template <typename V1> |
|---|
| 269 | RangeMap(const RangeMap<V1> &c) |
|---|
| 270 | : _vector(c._vector.begin(), c._vector.end()) {} |
|---|
| 271 | |
|---|
| 272 | /// Returns the size of the map. |
|---|
| 273 | int size() { |
|---|
| 274 | return _vector.size(); |
|---|
| 275 | } |
|---|
| 276 | |
|---|
| 277 | /// Resizes the map. |
|---|
| 278 | |
|---|
| 279 | /// Resizes the underlying \c std::vector container, so changes the |
|---|
| 280 | /// keyset of the map. |
|---|
| 281 | /// \param size The new size of the map. The new keyset will be the |
|---|
| 282 | /// range <tt>[0..size-1]</tt>. |
|---|
| 283 | /// \param value The default value to assign to the new keys. |
|---|
| 284 | void resize(int size, const Value &value = Value()) { |
|---|
| 285 | _vector.resize(size, value); |
|---|
| 286 | } |
|---|
| 287 | |
|---|
| 288 | private: |
|---|
| 289 | |
|---|
| 290 | RangeMap& operator=(const RangeMap&); |
|---|
| 291 | |
|---|
| 292 | public: |
|---|
| 293 | |
|---|
| 294 | ///\e |
|---|
| 295 | Reference operator[](const Key &k) { |
|---|
| 296 | return _vector[k]; |
|---|
| 297 | } |
|---|
| 298 | |
|---|
| 299 | ///\e |
|---|
| 300 | ConstReference operator[](const Key &k) const { |
|---|
| 301 | return _vector[k]; |
|---|
| 302 | } |
|---|
| 303 | |
|---|
| 304 | ///\e |
|---|
| 305 | void set(const Key &k, const Value &v) { |
|---|
| 306 | _vector[k] = v; |
|---|
| 307 | } |
|---|
| 308 | }; |
|---|
| 309 | |
|---|
| 310 | /// Returns a \ref RangeMap class |
|---|
| 311 | |
|---|
| 312 | /// This function just returns a \ref RangeMap class. |
|---|
| 313 | /// \relates RangeMap |
|---|
| 314 | template<typename V> |
|---|
| 315 | inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
|---|
| 316 | return RangeMap<V>(size, value); |
|---|
| 317 | } |
|---|
| 318 | |
|---|
| 319 | /// \brief Returns a \ref RangeMap class created from an appropriate |
|---|
| 320 | /// \c std::vector |
|---|
| 321 | |
|---|
| 322 | /// This function just returns a \ref RangeMap class created from an |
|---|
| 323 | /// appropriate \c std::vector. |
|---|
| 324 | /// \relates RangeMap |
|---|
| 325 | template<typename V> |
|---|
| 326 | inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
|---|
| 327 | return RangeMap<V>(vector); |
|---|
| 328 | } |
|---|
| 329 | |
|---|
| 330 | |
|---|
| 331 | /// Map type based on \c std::map |
|---|
| 332 | |
|---|
| 333 | /// This map is essentially a wrapper for \c std::map with addition |
|---|
| 334 | /// that you can specify a default value for the keys that are not |
|---|
| 335 | /// stored actually. This value can be different from the default |
|---|
| 336 | /// contructed value (i.e. \c %Value()). |
|---|
| 337 | /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|---|
| 338 | /// concept. |
|---|
| 339 | /// |
|---|
| 340 | /// This map is useful if a default value should be assigned to most of |
|---|
| 341 | /// the keys and different values should be assigned only to a few |
|---|
| 342 | /// keys (i.e. the map is "sparse"). |
|---|
| 343 | /// The name of this type also refers to this important usage. |
|---|
| 344 | /// |
|---|
| 345 | /// Apart form that this map can be used in many other cases since it |
|---|
| 346 | /// is based on \c std::map, which is a general associative container. |
|---|
| 347 | /// However keep in mind that it is usually not as efficient as other |
|---|
| 348 | /// maps. |
|---|
| 349 | /// |
|---|
| 350 | /// The simplest way of using this map is through the sparseMap() |
|---|
| 351 | /// function. |
|---|
| 352 | template <typename K, typename V, typename Compare = std::less<K> > |
|---|
| 353 | class SparseMap : public MapBase<K, V> { |
|---|
| 354 | template <typename K1, typename V1, typename C1> |
|---|
| 355 | friend class SparseMap; |
|---|
| 356 | public: |
|---|
| 357 | |
|---|
| 358 | typedef MapBase<K, V> Parent; |
|---|
| 359 | /// Key type |
|---|
| 360 | typedef typename Parent::Key Key; |
|---|
| 361 | /// Value type |
|---|
| 362 | typedef typename Parent::Value Value; |
|---|
| 363 | /// Reference type |
|---|
| 364 | typedef Value& Reference; |
|---|
| 365 | /// Const reference type |
|---|
| 366 | typedef const Value& ConstReference; |
|---|
| 367 | |
|---|
| 368 | typedef True ReferenceMapTag; |
|---|
| 369 | |
|---|
| 370 | private: |
|---|
| 371 | |
|---|
| 372 | typedef std::map<K, V, Compare> Map; |
|---|
| 373 | Map _map; |
|---|
| 374 | Value _value; |
|---|
| 375 | |
|---|
| 376 | public: |
|---|
| 377 | |
|---|
| 378 | /// \brief Constructor with specified default value. |
|---|
| 379 | SparseMap(const Value &value = Value()) : _value(value) {} |
|---|
| 380 | /// \brief Constructs the map from an appropriate \c std::map, and |
|---|
| 381 | /// explicitly specifies a default value. |
|---|
| 382 | template <typename V1, typename Comp1> |
|---|
| 383 | SparseMap(const std::map<Key, V1, Comp1> &map, |
|---|
| 384 | const Value &value = Value()) |
|---|
| 385 | : _map(map.begin(), map.end()), _value(value) {} |
|---|
| 386 | |
|---|
| 387 | /// \brief Constructs the map from another \ref SparseMap. |
|---|
| 388 | template<typename V1, typename Comp1> |
|---|
| 389 | SparseMap(const SparseMap<Key, V1, Comp1> &c) |
|---|
| 390 | : _map(c._map.begin(), c._map.end()), _value(c._value) {} |
|---|
| 391 | |
|---|
| 392 | private: |
|---|
| 393 | |
|---|
| 394 | SparseMap& operator=(const SparseMap&); |
|---|
| 395 | |
|---|
| 396 | public: |
|---|
| 397 | |
|---|
| 398 | ///\e |
|---|
| 399 | Reference operator[](const Key &k) { |
|---|
| 400 | typename Map::iterator it = _map.lower_bound(k); |
|---|
| 401 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
|---|
| 402 | return it->second; |
|---|
| 403 | else |
|---|
| 404 | return _map.insert(it, std::make_pair(k, _value))->second; |
|---|
| 405 | } |
|---|
| 406 | |
|---|
| 407 | ///\e |
|---|
| 408 | ConstReference operator[](const Key &k) const { |
|---|
| 409 | typename Map::const_iterator it = _map.find(k); |
|---|
| 410 | if (it != _map.end()) |
|---|
| 411 | return it->second; |
|---|
| 412 | else |
|---|
| 413 | return _value; |
|---|
| 414 | } |
|---|
| 415 | |
|---|
| 416 | ///\e |
|---|
| 417 | void set(const Key &k, const Value &v) { |
|---|
| 418 | typename Map::iterator it = _map.lower_bound(k); |
|---|
| 419 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
|---|
| 420 | it->second = v; |
|---|
| 421 | else |
|---|
| 422 | _map.insert(it, std::make_pair(k, v)); |
|---|
| 423 | } |
|---|
| 424 | |
|---|
| 425 | ///\e |
|---|
| 426 | void setAll(const Value &v) { |
|---|
| 427 | _value = v; |
|---|
| 428 | _map.clear(); |
|---|
| 429 | } |
|---|
| 430 | }; |
|---|
| 431 | |
|---|
| 432 | /// Returns a \ref SparseMap class |
|---|
| 433 | |
|---|
| 434 | /// This function just returns a \ref SparseMap class with specified |
|---|
| 435 | /// default value. |
|---|
| 436 | /// \relates SparseMap |
|---|
| 437 | template<typename K, typename V, typename Compare> |
|---|
| 438 | inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
|---|
| 439 | return SparseMap<K, V, Compare>(value); |
|---|
| 440 | } |
|---|
| 441 | |
|---|
| 442 | template<typename K, typename V> |
|---|
| 443 | inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
|---|
| 444 | return SparseMap<K, V, std::less<K> >(value); |
|---|
| 445 | } |
|---|
| 446 | |
|---|
| 447 | /// \brief Returns a \ref SparseMap class created from an appropriate |
|---|
| 448 | /// \c std::map |
|---|
| 449 | |
|---|
| 450 | /// This function just returns a \ref SparseMap class created from an |
|---|
| 451 | /// appropriate \c std::map. |
|---|
| 452 | /// \relates SparseMap |
|---|
| 453 | template<typename K, typename V, typename Compare> |
|---|
| 454 | inline SparseMap<K, V, Compare> |
|---|
| 455 | sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
|---|
| 456 | { |
|---|
| 457 | return SparseMap<K, V, Compare>(map, value); |
|---|
| 458 | } |
|---|
| 459 | |
|---|
| 460 | /// @} |
|---|
| 461 | |
|---|
| 462 | /// \addtogroup map_adaptors |
|---|
| 463 | /// @{ |
|---|
| 464 | |
|---|
| 465 | /// Composition of two maps |
|---|
| 466 | |
|---|
| 467 | /// This \ref concepts::ReadMap "read only map" returns the |
|---|
| 468 | /// composition of two given maps. That is to say, if \c m1 is of |
|---|
| 469 | /// type \c M1 and \c m2 is of \c M2, then for |
|---|
| 470 | /// \code |
|---|
| 471 | /// ComposeMap<M1, M2> cm(m1,m2); |
|---|
| 472 | /// \endcode |
|---|
| 473 | /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
|---|
| 474 | /// |
|---|
| 475 | /// The \c Key type of the map is inherited from \c M2 and the |
|---|
| 476 | /// \c Value type is from \c M1. |
|---|
| 477 | /// \c M2::Value must be convertible to \c M1::Key. |
|---|
| 478 | /// |
|---|
| 479 | /// The simplest way of using this map is through the composeMap() |
|---|
| 480 | /// function. |
|---|
| 481 | /// |
|---|
| 482 | /// \sa CombineMap |
|---|
| 483 | /// |
|---|
| 484 | /// \todo Check the requirements. |
|---|
| 485 | template <typename M1, typename M2> |
|---|
| 486 | class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
|---|
| 487 | const M1 &_m1; |
|---|
| 488 | const M2 &_m2; |
|---|
| 489 | public: |
|---|
| 490 | typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
|---|
| 491 | typedef typename Parent::Key Key; |
|---|
| 492 | typedef typename Parent::Value Value; |
|---|
| 493 | |
|---|
| 494 | /// Constructor |
|---|
| 495 | ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 496 | |
|---|
| 497 | /// \e |
|---|
| 498 | typename MapTraits<M1>::ConstReturnValue |
|---|
| 499 | operator[](const Key &k) const { return _m1[_m2[k]]; } |
|---|
| 500 | }; |
|---|
| 501 | |
|---|
| 502 | /// Returns a \ref ComposeMap class |
|---|
| 503 | |
|---|
| 504 | /// This function just returns a \ref ComposeMap class. |
|---|
| 505 | /// |
|---|
| 506 | /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
|---|
| 507 | /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
|---|
| 508 | /// will be equal to <tt>m1[m2[x]]</tt>. |
|---|
| 509 | /// |
|---|
| 510 | /// \relates ComposeMap |
|---|
| 511 | template <typename M1, typename M2> |
|---|
| 512 | inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
|---|
| 513 | return ComposeMap<M1, M2>(m1, m2); |
|---|
| 514 | } |
|---|
| 515 | |
|---|
| 516 | |
|---|
| 517 | /// Combination of two maps using an STL (binary) functor. |
|---|
| 518 | |
|---|
| 519 | /// This \ref concepts::ReadMap "read only map" takes two maps and a |
|---|
| 520 | /// binary functor and returns the combination of the two given maps |
|---|
| 521 | /// using the functor. |
|---|
| 522 | /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
|---|
| 523 | /// and \c f is of \c F, then for |
|---|
| 524 | /// \code |
|---|
| 525 | /// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
|---|
| 526 | /// \endcode |
|---|
| 527 | /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
|---|
| 528 | /// |
|---|
| 529 | /// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
|---|
| 530 | /// must be convertible to \c M2::Key) and the \c Value type is \c V. |
|---|
| 531 | /// \c M2::Value and \c M1::Value must be convertible to the |
|---|
| 532 | /// corresponding input parameter of \c F and the return type of \c F |
|---|
| 533 | /// must be convertible to \c V. |
|---|
| 534 | /// |
|---|
| 535 | /// The simplest way of using this map is through the combineMap() |
|---|
| 536 | /// function. |
|---|
| 537 | /// |
|---|
| 538 | /// \sa ComposeMap |
|---|
| 539 | /// |
|---|
| 540 | /// \todo Check the requirements. |
|---|
| 541 | template<typename M1, typename M2, typename F, |
|---|
| 542 | typename V = typename F::result_type> |
|---|
| 543 | class CombineMap : public MapBase<typename M1::Key, V> { |
|---|
| 544 | const M1 &_m1; |
|---|
| 545 | const M2 &_m2; |
|---|
| 546 | F _f; |
|---|
| 547 | public: |
|---|
| 548 | typedef MapBase<typename M1::Key, V> Parent; |
|---|
| 549 | typedef typename Parent::Key Key; |
|---|
| 550 | typedef typename Parent::Value Value; |
|---|
| 551 | |
|---|
| 552 | /// Constructor |
|---|
| 553 | CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
|---|
| 554 | : _m1(m1), _m2(m2), _f(f) {} |
|---|
| 555 | /// \e |
|---|
| 556 | Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
|---|
| 557 | }; |
|---|
| 558 | |
|---|
| 559 | /// Returns a \ref CombineMap class |
|---|
| 560 | |
|---|
| 561 | /// This function just returns a \ref CombineMap class. |
|---|
| 562 | /// |
|---|
| 563 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 564 | /// values, then |
|---|
| 565 | /// \code |
|---|
| 566 | /// combineMap(m1,m2,std::plus<double>()) |
|---|
| 567 | /// \endcode |
|---|
| 568 | /// is equivalent to |
|---|
| 569 | /// \code |
|---|
| 570 | /// addMap(m1,m2) |
|---|
| 571 | /// \endcode |
|---|
| 572 | /// |
|---|
| 573 | /// This function is specialized for adaptable binary function |
|---|
| 574 | /// classes and C++ functions. |
|---|
| 575 | /// |
|---|
| 576 | /// \relates CombineMap |
|---|
| 577 | template<typename M1, typename M2, typename F, typename V> |
|---|
| 578 | inline CombineMap<M1, M2, F, V> |
|---|
| 579 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
|---|
| 580 | return CombineMap<M1, M2, F, V>(m1,m2,f); |
|---|
| 581 | } |
|---|
| 582 | |
|---|
| 583 | template<typename M1, typename M2, typename F> |
|---|
| 584 | inline CombineMap<M1, M2, F, typename F::result_type> |
|---|
| 585 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
|---|
| 586 | return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
|---|
| 587 | } |
|---|
| 588 | |
|---|
| 589 | template<typename M1, typename M2, typename K1, typename K2, typename V> |
|---|
| 590 | inline CombineMap<M1, M2, V (*)(K1, K2), V> |
|---|
| 591 | combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
|---|
| 592 | return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
|---|
| 593 | } |
|---|
| 594 | |
|---|
| 595 | |
|---|
| 596 | /// Converts an STL style (unary) functor to a map |
|---|
| 597 | |
|---|
| 598 | /// This \ref concepts::ReadMap "read only map" returns the value |
|---|
| 599 | /// of a given functor. Actually, it just wraps the functor and |
|---|
| 600 | /// provides the \c Key and \c Value typedefs. |
|---|
| 601 | /// |
|---|
| 602 | /// Template parameters \c K and \c V will become its \c Key and |
|---|
| 603 | /// \c Value. In most cases they have to be given explicitly because |
|---|
| 604 | /// a functor typically does not provide \c argument_type and |
|---|
| 605 | /// \c result_type typedefs. |
|---|
| 606 | /// Parameter \c F is the type of the used functor. |
|---|
| 607 | /// |
|---|
| 608 | /// The simplest way of using this map is through the functorToMap() |
|---|
| 609 | /// function. |
|---|
| 610 | /// |
|---|
| 611 | /// \sa MapToFunctor |
|---|
| 612 | template<typename F, |
|---|
| 613 | typename K = typename F::argument_type, |
|---|
| 614 | typename V = typename F::result_type> |
|---|
| 615 | class FunctorToMap : public MapBase<K, V> { |
|---|
| 616 | const F &_f; |
|---|
| 617 | public: |
|---|
| 618 | typedef MapBase<K, V> Parent; |
|---|
| 619 | typedef typename Parent::Key Key; |
|---|
| 620 | typedef typename Parent::Value Value; |
|---|
| 621 | |
|---|
| 622 | /// Constructor |
|---|
| 623 | FunctorToMap(const F &f = F()) : _f(f) {} |
|---|
| 624 | /// \e |
|---|
| 625 | Value operator[](const Key &k) const { return _f(k); } |
|---|
| 626 | }; |
|---|
| 627 | |
|---|
| 628 | /// Returns a \ref FunctorToMap class |
|---|
| 629 | |
|---|
| 630 | /// This function just returns a \ref FunctorToMap class. |
|---|
| 631 | /// |
|---|
| 632 | /// This function is specialized for adaptable binary function |
|---|
| 633 | /// classes and C++ functions. |
|---|
| 634 | /// |
|---|
| 635 | /// \relates FunctorToMap |
|---|
| 636 | template<typename K, typename V, typename F> |
|---|
| 637 | inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
|---|
| 638 | return FunctorToMap<F, K, V>(f); |
|---|
| 639 | } |
|---|
| 640 | |
|---|
| 641 | template <typename F> |
|---|
| 642 | inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
|---|
| 643 | functorToMap(const F &f) |
|---|
| 644 | { |
|---|
| 645 | return FunctorToMap<F, typename F::argument_type, |
|---|
| 646 | typename F::result_type>(f); |
|---|
| 647 | } |
|---|
| 648 | |
|---|
| 649 | template <typename K, typename V> |
|---|
| 650 | inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
|---|
| 651 | return FunctorToMap<V (*)(K), K, V>(f); |
|---|
| 652 | } |
|---|
| 653 | |
|---|
| 654 | |
|---|
| 655 | /// Converts a map to an STL style (unary) functor |
|---|
| 656 | |
|---|
| 657 | /// This class converts a map to an STL style (unary) functor. |
|---|
| 658 | /// That is it provides an <tt>operator()</tt> to read its values. |
|---|
| 659 | /// |
|---|
| 660 | /// For the sake of convenience it also works as a usual |
|---|
| 661 | /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
|---|
| 662 | /// and the \c Key and \c Value typedefs also exist. |
|---|
| 663 | /// |
|---|
| 664 | /// The simplest way of using this map is through the mapToFunctor() |
|---|
| 665 | /// function. |
|---|
| 666 | /// |
|---|
| 667 | ///\sa FunctorToMap |
|---|
| 668 | template <typename M> |
|---|
| 669 | class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 670 | const M &_m; |
|---|
| 671 | public: |
|---|
| 672 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 673 | typedef typename Parent::Key Key; |
|---|
| 674 | typedef typename Parent::Value Value; |
|---|
| 675 | |
|---|
| 676 | typedef typename Parent::Key argument_type; |
|---|
| 677 | typedef typename Parent::Value result_type; |
|---|
| 678 | |
|---|
| 679 | /// Constructor |
|---|
| 680 | MapToFunctor(const M &m) : _m(m) {} |
|---|
| 681 | /// \e |
|---|
| 682 | Value operator()(const Key &k) const { return _m[k]; } |
|---|
| 683 | /// \e |
|---|
| 684 | Value operator[](const Key &k) const { return _m[k]; } |
|---|
| 685 | }; |
|---|
| 686 | |
|---|
| 687 | /// Returns a \ref MapToFunctor class |
|---|
| 688 | |
|---|
| 689 | /// This function just returns a \ref MapToFunctor class. |
|---|
| 690 | /// \relates MapToFunctor |
|---|
| 691 | template<typename M> |
|---|
| 692 | inline MapToFunctor<M> mapToFunctor(const M &m) { |
|---|
| 693 | return MapToFunctor<M>(m); |
|---|
| 694 | } |
|---|
| 695 | |
|---|
| 696 | |
|---|
| 697 | /// \brief Map adaptor to convert the \c Value type of a map to |
|---|
| 698 | /// another type using the default conversion. |
|---|
| 699 | |
|---|
| 700 | /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
|---|
| 701 | /// "readable map" to another type using the default conversion. |
|---|
| 702 | /// The \c Key type of it is inherited from \c M and the \c Value |
|---|
| 703 | /// type is \c V. |
|---|
| 704 | /// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|---|
| 705 | /// |
|---|
| 706 | /// The simplest way of using this map is through the convertMap() |
|---|
| 707 | /// function. |
|---|
| 708 | template <typename M, typename V> |
|---|
| 709 | class ConvertMap : public MapBase<typename M::Key, V> { |
|---|
| 710 | const M &_m; |
|---|
| 711 | public: |
|---|
| 712 | typedef MapBase<typename M::Key, V> Parent; |
|---|
| 713 | typedef typename Parent::Key Key; |
|---|
| 714 | typedef typename Parent::Value Value; |
|---|
| 715 | |
|---|
| 716 | /// Constructor |
|---|
| 717 | |
|---|
| 718 | /// Constructor. |
|---|
| 719 | /// \param m The underlying map. |
|---|
| 720 | ConvertMap(const M &m) : _m(m) {} |
|---|
| 721 | |
|---|
| 722 | /// \e |
|---|
| 723 | Value operator[](const Key &k) const { return _m[k]; } |
|---|
| 724 | }; |
|---|
| 725 | |
|---|
| 726 | /// Returns a \ref ConvertMap class |
|---|
| 727 | |
|---|
| 728 | /// This function just returns a \ref ConvertMap class. |
|---|
| 729 | /// \relates ConvertMap |
|---|
| 730 | template<typename V, typename M> |
|---|
| 731 | inline ConvertMap<M, V> convertMap(const M &map) { |
|---|
| 732 | return ConvertMap<M, V>(map); |
|---|
| 733 | } |
|---|
| 734 | |
|---|
| 735 | |
|---|
| 736 | /// Applies all map setting operations to two maps |
|---|
| 737 | |
|---|
| 738 | /// This map has two \ref concepts::WriteMap "writable map" parameters |
|---|
| 739 | /// and each write request will be passed to both of them. |
|---|
| 740 | /// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
|---|
| 741 | /// operations will return the corresponding values of \c M1. |
|---|
| 742 | /// |
|---|
| 743 | /// The \c Key and \c Value types are inherited from \c M1. |
|---|
| 744 | /// The \c Key and \c Value of \c M2 must be convertible from those |
|---|
| 745 | /// of \c M1. |
|---|
| 746 | /// |
|---|
| 747 | /// The simplest way of using this map is through the forkMap() |
|---|
| 748 | /// function. |
|---|
| 749 | template<typename M1, typename M2> |
|---|
| 750 | class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 751 | M1 &_m1; |
|---|
| 752 | M2 &_m2; |
|---|
| 753 | public: |
|---|
| 754 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 755 | typedef typename Parent::Key Key; |
|---|
| 756 | typedef typename Parent::Value Value; |
|---|
| 757 | |
|---|
| 758 | /// Constructor |
|---|
| 759 | ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 760 | /// Returns the value associated with the given key in the first map. |
|---|
| 761 | Value operator[](const Key &k) const { return _m1[k]; } |
|---|
| 762 | /// Sets the value associated with the given key in both maps. |
|---|
| 763 | void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
|---|
| 764 | }; |
|---|
| 765 | |
|---|
| 766 | /// Returns a \ref ForkMap class |
|---|
| 767 | |
|---|
| 768 | /// This function just returns a \ref ForkMap class. |
|---|
| 769 | /// \relates ForkMap |
|---|
| 770 | template <typename M1, typename M2> |
|---|
| 771 | inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
|---|
| 772 | return ForkMap<M1,M2>(m1,m2); |
|---|
| 773 | } |
|---|
| 774 | |
|---|
| 775 | |
|---|
| 776 | /// Sum of two maps |
|---|
| 777 | |
|---|
| 778 | /// This \ref concepts::ReadMap "read only map" returns the sum |
|---|
| 779 | /// of the values of the two given maps. |
|---|
| 780 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 781 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 782 | /// \c M1. |
|---|
| 783 | /// |
|---|
| 784 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 785 | /// \code |
|---|
| 786 | /// AddMap<M1,M2> am(m1,m2); |
|---|
| 787 | /// \endcode |
|---|
| 788 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
|---|
| 789 | /// |
|---|
| 790 | /// The simplest way of using this map is through the addMap() |
|---|
| 791 | /// function. |
|---|
| 792 | /// |
|---|
| 793 | /// \sa SubMap, MulMap, DivMap |
|---|
| 794 | /// \sa ShiftMap, ShiftWriteMap |
|---|
| 795 | template<typename M1, typename M2> |
|---|
| 796 | class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 797 | const M1 &_m1; |
|---|
| 798 | const M2 &_m2; |
|---|
| 799 | public: |
|---|
| 800 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 801 | typedef typename Parent::Key Key; |
|---|
| 802 | typedef typename Parent::Value Value; |
|---|
| 803 | |
|---|
| 804 | /// Constructor |
|---|
| 805 | AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 806 | /// \e |
|---|
| 807 | Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
|---|
| 808 | }; |
|---|
| 809 | |
|---|
| 810 | /// Returns an \ref AddMap class |
|---|
| 811 | |
|---|
| 812 | /// This function just returns an \ref AddMap class. |
|---|
| 813 | /// |
|---|
| 814 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 815 | /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
|---|
| 816 | /// <tt>m1[x]+m2[x]</tt>. |
|---|
| 817 | /// |
|---|
| 818 | /// \relates AddMap |
|---|
| 819 | template<typename M1, typename M2> |
|---|
| 820 | inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
|---|
| 821 | return AddMap<M1, M2>(m1,m2); |
|---|
| 822 | } |
|---|
| 823 | |
|---|
| 824 | |
|---|
| 825 | /// Difference of two maps |
|---|
| 826 | |
|---|
| 827 | /// This \ref concepts::ReadMap "read only map" returns the difference |
|---|
| 828 | /// of the values of the two given maps. |
|---|
| 829 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 830 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 831 | /// \c M1. |
|---|
| 832 | /// |
|---|
| 833 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 834 | /// \code |
|---|
| 835 | /// SubMap<M1,M2> sm(m1,m2); |
|---|
| 836 | /// \endcode |
|---|
| 837 | /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
|---|
| 838 | /// |
|---|
| 839 | /// The simplest way of using this map is through the subMap() |
|---|
| 840 | /// function. |
|---|
| 841 | /// |
|---|
| 842 | /// \sa AddMap, MulMap, DivMap |
|---|
| 843 | template<typename M1, typename M2> |
|---|
| 844 | class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 845 | const M1 &_m1; |
|---|
| 846 | const M2 &_m2; |
|---|
| 847 | public: |
|---|
| 848 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 849 | typedef typename Parent::Key Key; |
|---|
| 850 | typedef typename Parent::Value Value; |
|---|
| 851 | |
|---|
| 852 | /// Constructor |
|---|
| 853 | SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 854 | /// \e |
|---|
| 855 | Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
|---|
| 856 | }; |
|---|
| 857 | |
|---|
| 858 | /// Returns a \ref SubMap class |
|---|
| 859 | |
|---|
| 860 | /// This function just returns a \ref SubMap class. |
|---|
| 861 | /// |
|---|
| 862 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 863 | /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
|---|
| 864 | /// <tt>m1[x]-m2[x]</tt>. |
|---|
| 865 | /// |
|---|
| 866 | /// \relates SubMap |
|---|
| 867 | template<typename M1, typename M2> |
|---|
| 868 | inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
|---|
| 869 | return SubMap<M1, M2>(m1,m2); |
|---|
| 870 | } |
|---|
| 871 | |
|---|
| 872 | |
|---|
| 873 | /// Product of two maps |
|---|
| 874 | |
|---|
| 875 | /// This \ref concepts::ReadMap "read only map" returns the product |
|---|
| 876 | /// of the values of the two given maps. |
|---|
| 877 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 878 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 879 | /// \c M1. |
|---|
| 880 | /// |
|---|
| 881 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 882 | /// \code |
|---|
| 883 | /// MulMap<M1,M2> mm(m1,m2); |
|---|
| 884 | /// \endcode |
|---|
| 885 | /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
|---|
| 886 | /// |
|---|
| 887 | /// The simplest way of using this map is through the mulMap() |
|---|
| 888 | /// function. |
|---|
| 889 | /// |
|---|
| 890 | /// \sa AddMap, SubMap, DivMap |
|---|
| 891 | /// \sa ScaleMap, ScaleWriteMap |
|---|
| 892 | template<typename M1, typename M2> |
|---|
| 893 | class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 894 | const M1 &_m1; |
|---|
| 895 | const M2 &_m2; |
|---|
| 896 | public: |
|---|
| 897 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 898 | typedef typename Parent::Key Key; |
|---|
| 899 | typedef typename Parent::Value Value; |
|---|
| 900 | |
|---|
| 901 | /// Constructor |
|---|
| 902 | MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 903 | /// \e |
|---|
| 904 | Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
|---|
| 905 | }; |
|---|
| 906 | |
|---|
| 907 | /// Returns a \ref MulMap class |
|---|
| 908 | |
|---|
| 909 | /// This function just returns a \ref MulMap class. |
|---|
| 910 | /// |
|---|
| 911 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 912 | /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
|---|
| 913 | /// <tt>m1[x]*m2[x]</tt>. |
|---|
| 914 | /// |
|---|
| 915 | /// \relates MulMap |
|---|
| 916 | template<typename M1, typename M2> |
|---|
| 917 | inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
|---|
| 918 | return MulMap<M1, M2>(m1,m2); |
|---|
| 919 | } |
|---|
| 920 | |
|---|
| 921 | |
|---|
| 922 | /// Quotient of two maps |
|---|
| 923 | |
|---|
| 924 | /// This \ref concepts::ReadMap "read only map" returns the quotient |
|---|
| 925 | /// of the values of the two given maps. |
|---|
| 926 | /// Its \c Key and \c Value types are inherited from \c M1. |
|---|
| 927 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
|---|
| 928 | /// \c M1. |
|---|
| 929 | /// |
|---|
| 930 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|---|
| 931 | /// \code |
|---|
| 932 | /// DivMap<M1,M2> dm(m1,m2); |
|---|
| 933 | /// \endcode |
|---|
| 934 | /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
|---|
| 935 | /// |
|---|
| 936 | /// The simplest way of using this map is through the divMap() |
|---|
| 937 | /// function. |
|---|
| 938 | /// |
|---|
| 939 | /// \sa AddMap, SubMap, MulMap |
|---|
| 940 | template<typename M1, typename M2> |
|---|
| 941 | class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
|---|
| 942 | const M1 &_m1; |
|---|
| 943 | const M2 &_m2; |
|---|
| 944 | public: |
|---|
| 945 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|---|
| 946 | typedef typename Parent::Key Key; |
|---|
| 947 | typedef typename Parent::Value Value; |
|---|
| 948 | |
|---|
| 949 | /// Constructor |
|---|
| 950 | DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
|---|
| 951 | /// \e |
|---|
| 952 | Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
|---|
| 953 | }; |
|---|
| 954 | |
|---|
| 955 | /// Returns a \ref DivMap class |
|---|
| 956 | |
|---|
| 957 | /// This function just returns a \ref DivMap class. |
|---|
| 958 | /// |
|---|
| 959 | /// For example, if \c m1 and \c m2 are both maps with \c double |
|---|
| 960 | /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
|---|
| 961 | /// <tt>m1[x]/m2[x]</tt>. |
|---|
| 962 | /// |
|---|
| 963 | /// \relates DivMap |
|---|
| 964 | template<typename M1, typename M2> |
|---|
| 965 | inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
|---|
| 966 | return DivMap<M1, M2>(m1,m2); |
|---|
| 967 | } |
|---|
| 968 | |
|---|
| 969 | |
|---|
| 970 | /// Shifts a map with a constant. |
|---|
| 971 | |
|---|
| 972 | /// This \ref concepts::ReadMap "read only map" returns the sum of |
|---|
| 973 | /// the given map and a constant value (i.e. it shifts the map with |
|---|
| 974 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
|---|
| 975 | /// |
|---|
| 976 | /// Actually, |
|---|
| 977 | /// \code |
|---|
| 978 | /// ShiftMap<M> sh(m,v); |
|---|
| 979 | /// \endcode |
|---|
| 980 | /// is equivalent to |
|---|
| 981 | /// \code |
|---|
| 982 | /// ConstMap<M::Key, M::Value> cm(v); |
|---|
| 983 | /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
|---|
| 984 | /// \endcode |
|---|
| 985 | /// |
|---|
| 986 | /// The simplest way of using this map is through the shiftMap() |
|---|
| 987 | /// function. |
|---|
| 988 | /// |
|---|
| 989 | /// \sa ShiftWriteMap |
|---|
| 990 | template<typename M, typename C = typename M::Value> |
|---|
| 991 | class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 992 | const M &_m; |
|---|
| 993 | C _v; |
|---|
| 994 | public: |
|---|
| 995 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 996 | typedef typename Parent::Key Key; |
|---|
| 997 | typedef typename Parent::Value Value; |
|---|
| 998 | |
|---|
| 999 | /// Constructor |
|---|
| 1000 | |
|---|
| 1001 | /// Constructor. |
|---|
| 1002 | /// \param m The undelying map. |
|---|
| 1003 | /// \param v The constant value. |
|---|
| 1004 | ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1005 | /// \e |
|---|
| 1006 | Value operator[](const Key &k) const { return _m[k]+_v; } |
|---|
| 1007 | }; |
|---|
| 1008 | |
|---|
| 1009 | /// Shifts a map with a constant (read-write version). |
|---|
| 1010 | |
|---|
| 1011 | /// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
|---|
| 1012 | /// of the given map and a constant value (i.e. it shifts the map with |
|---|
| 1013 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
|---|
| 1014 | /// It makes also possible to write the map. |
|---|
| 1015 | /// |
|---|
| 1016 | /// The simplest way of using this map is through the shiftWriteMap() |
|---|
| 1017 | /// function. |
|---|
| 1018 | /// |
|---|
| 1019 | /// \sa ShiftMap |
|---|
| 1020 | template<typename M, typename C = typename M::Value> |
|---|
| 1021 | class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1022 | M &_m; |
|---|
| 1023 | C _v; |
|---|
| 1024 | public: |
|---|
| 1025 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1026 | typedef typename Parent::Key Key; |
|---|
| 1027 | typedef typename Parent::Value Value; |
|---|
| 1028 | |
|---|
| 1029 | /// Constructor |
|---|
| 1030 | |
|---|
| 1031 | /// Constructor. |
|---|
| 1032 | /// \param m The undelying map. |
|---|
| 1033 | /// \param v The constant value. |
|---|
| 1034 | ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1035 | /// \e |
|---|
| 1036 | Value operator[](const Key &k) const { return _m[k]+_v; } |
|---|
| 1037 | /// \e |
|---|
| 1038 | void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
|---|
| 1039 | }; |
|---|
| 1040 | |
|---|
| 1041 | /// Returns a \ref ShiftMap class |
|---|
| 1042 | |
|---|
| 1043 | /// This function just returns a \ref ShiftMap class. |
|---|
| 1044 | /// |
|---|
| 1045 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1046 | /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
|---|
| 1047 | /// <tt>m[x]+v</tt>. |
|---|
| 1048 | /// |
|---|
| 1049 | /// \relates ShiftMap |
|---|
| 1050 | template<typename M, typename C> |
|---|
| 1051 | inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
|---|
| 1052 | return ShiftMap<M, C>(m,v); |
|---|
| 1053 | } |
|---|
| 1054 | |
|---|
| 1055 | /// Returns a \ref ShiftWriteMap class |
|---|
| 1056 | |
|---|
| 1057 | /// This function just returns a \ref ShiftWriteMap class. |
|---|
| 1058 | /// |
|---|
| 1059 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1060 | /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
|---|
| 1061 | /// <tt>m[x]+v</tt>. |
|---|
| 1062 | /// Moreover it makes also possible to write the map. |
|---|
| 1063 | /// |
|---|
| 1064 | /// \relates ShiftWriteMap |
|---|
| 1065 | template<typename M, typename C> |
|---|
| 1066 | inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
|---|
| 1067 | return ShiftWriteMap<M, C>(m,v); |
|---|
| 1068 | } |
|---|
| 1069 | |
|---|
| 1070 | |
|---|
| 1071 | /// Scales a map with a constant. |
|---|
| 1072 | |
|---|
| 1073 | /// This \ref concepts::ReadMap "read only map" returns the value of |
|---|
| 1074 | /// the given map multiplied from the left side with a constant value. |
|---|
| 1075 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1076 | /// |
|---|
| 1077 | /// Actually, |
|---|
| 1078 | /// \code |
|---|
| 1079 | /// ScaleMap<M> sc(m,v); |
|---|
| 1080 | /// \endcode |
|---|
| 1081 | /// is equivalent to |
|---|
| 1082 | /// \code |
|---|
| 1083 | /// ConstMap<M::Key, M::Value> cm(v); |
|---|
| 1084 | /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
|---|
| 1085 | /// \endcode |
|---|
| 1086 | /// |
|---|
| 1087 | /// The simplest way of using this map is through the scaleMap() |
|---|
| 1088 | /// function. |
|---|
| 1089 | /// |
|---|
| 1090 | /// \sa ScaleWriteMap |
|---|
| 1091 | template<typename M, typename C = typename M::Value> |
|---|
| 1092 | class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1093 | const M &_m; |
|---|
| 1094 | C _v; |
|---|
| 1095 | public: |
|---|
| 1096 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1097 | typedef typename Parent::Key Key; |
|---|
| 1098 | typedef typename Parent::Value Value; |
|---|
| 1099 | |
|---|
| 1100 | /// Constructor |
|---|
| 1101 | |
|---|
| 1102 | /// Constructor. |
|---|
| 1103 | /// \param m The undelying map. |
|---|
| 1104 | /// \param v The constant value. |
|---|
| 1105 | ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1106 | /// \e |
|---|
| 1107 | Value operator[](const Key &k) const { return _v*_m[k]; } |
|---|
| 1108 | }; |
|---|
| 1109 | |
|---|
| 1110 | /// Scales a map with a constant (read-write version). |
|---|
| 1111 | |
|---|
| 1112 | /// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
|---|
| 1113 | /// the given map multiplied from the left side with a constant value. |
|---|
| 1114 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1115 | /// It can also be used as write map if the \c / operator is defined |
|---|
| 1116 | /// between \c Value and \c C and the given multiplier is not zero. |
|---|
| 1117 | /// |
|---|
| 1118 | /// The simplest way of using this map is through the scaleWriteMap() |
|---|
| 1119 | /// function. |
|---|
| 1120 | /// |
|---|
| 1121 | /// \sa ScaleMap |
|---|
| 1122 | template<typename M, typename C = typename M::Value> |
|---|
| 1123 | class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1124 | M &_m; |
|---|
| 1125 | C _v; |
|---|
| 1126 | public: |
|---|
| 1127 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1128 | typedef typename Parent::Key Key; |
|---|
| 1129 | typedef typename Parent::Value Value; |
|---|
| 1130 | |
|---|
| 1131 | /// Constructor |
|---|
| 1132 | |
|---|
| 1133 | /// Constructor. |
|---|
| 1134 | /// \param m The undelying map. |
|---|
| 1135 | /// \param v The constant value. |
|---|
| 1136 | ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
|---|
| 1137 | /// \e |
|---|
| 1138 | Value operator[](const Key &k) const { return _v*_m[k]; } |
|---|
| 1139 | /// \e |
|---|
| 1140 | void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
|---|
| 1141 | }; |
|---|
| 1142 | |
|---|
| 1143 | /// Returns a \ref ScaleMap class |
|---|
| 1144 | |
|---|
| 1145 | /// This function just returns a \ref ScaleMap class. |
|---|
| 1146 | /// |
|---|
| 1147 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1148 | /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
|---|
| 1149 | /// <tt>v*m[x]</tt>. |
|---|
| 1150 | /// |
|---|
| 1151 | /// \relates ScaleMap |
|---|
| 1152 | template<typename M, typename C> |
|---|
| 1153 | inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
|---|
| 1154 | return ScaleMap<M, C>(m,v); |
|---|
| 1155 | } |
|---|
| 1156 | |
|---|
| 1157 | /// Returns a \ref ScaleWriteMap class |
|---|
| 1158 | |
|---|
| 1159 | /// This function just returns a \ref ScaleWriteMap class. |
|---|
| 1160 | /// |
|---|
| 1161 | /// For example, if \c m is a map with \c double values and \c v is |
|---|
| 1162 | /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
|---|
| 1163 | /// <tt>v*m[x]</tt>. |
|---|
| 1164 | /// Moreover it makes also possible to write the map. |
|---|
| 1165 | /// |
|---|
| 1166 | /// \relates ScaleWriteMap |
|---|
| 1167 | template<typename M, typename C> |
|---|
| 1168 | inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
|---|
| 1169 | return ScaleWriteMap<M, C>(m,v); |
|---|
| 1170 | } |
|---|
| 1171 | |
|---|
| 1172 | |
|---|
| 1173 | /// Negative of a map |
|---|
| 1174 | |
|---|
| 1175 | /// This \ref concepts::ReadMap "read only map" returns the negative |
|---|
| 1176 | /// of the values of the given map (using the unary \c - operator). |
|---|
| 1177 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1178 | /// |
|---|
| 1179 | /// If M::Value is \c int, \c double etc., then |
|---|
| 1180 | /// \code |
|---|
| 1181 | /// NegMap<M> neg(m); |
|---|
| 1182 | /// \endcode |
|---|
| 1183 | /// is equivalent to |
|---|
| 1184 | /// \code |
|---|
| 1185 | /// ScaleMap<M> neg(m,-1); |
|---|
| 1186 | /// \endcode |
|---|
| 1187 | /// |
|---|
| 1188 | /// The simplest way of using this map is through the negMap() |
|---|
| 1189 | /// function. |
|---|
| 1190 | /// |
|---|
| 1191 | /// \sa NegWriteMap |
|---|
| 1192 | template<typename M> |
|---|
| 1193 | class NegMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1194 | const M& _m; |
|---|
| 1195 | public: |
|---|
| 1196 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1197 | typedef typename Parent::Key Key; |
|---|
| 1198 | typedef typename Parent::Value Value; |
|---|
| 1199 | |
|---|
| 1200 | /// Constructor |
|---|
| 1201 | NegMap(const M &m) : _m(m) {} |
|---|
| 1202 | /// \e |
|---|
| 1203 | Value operator[](const Key &k) const { return -_m[k]; } |
|---|
| 1204 | }; |
|---|
| 1205 | |
|---|
| 1206 | /// Negative of a map (read-write version) |
|---|
| 1207 | |
|---|
| 1208 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
|---|
| 1209 | /// negative of the values of the given map (using the unary \c - |
|---|
| 1210 | /// operator). |
|---|
| 1211 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1212 | /// It makes also possible to write the map. |
|---|
| 1213 | /// |
|---|
| 1214 | /// If M::Value is \c int, \c double etc., then |
|---|
| 1215 | /// \code |
|---|
| 1216 | /// NegWriteMap<M> neg(m); |
|---|
| 1217 | /// \endcode |
|---|
| 1218 | /// is equivalent to |
|---|
| 1219 | /// \code |
|---|
| 1220 | /// ScaleWriteMap<M> neg(m,-1); |
|---|
| 1221 | /// \endcode |
|---|
| 1222 | /// |
|---|
| 1223 | /// The simplest way of using this map is through the negWriteMap() |
|---|
| 1224 | /// function. |
|---|
| 1225 | /// |
|---|
| 1226 | /// \sa NegMap |
|---|
| 1227 | template<typename M> |
|---|
| 1228 | class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1229 | M &_m; |
|---|
| 1230 | public: |
|---|
| 1231 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1232 | typedef typename Parent::Key Key; |
|---|
| 1233 | typedef typename Parent::Value Value; |
|---|
| 1234 | |
|---|
| 1235 | /// Constructor |
|---|
| 1236 | NegWriteMap(M &m) : _m(m) {} |
|---|
| 1237 | /// \e |
|---|
| 1238 | Value operator[](const Key &k) const { return -_m[k]; } |
|---|
| 1239 | /// \e |
|---|
| 1240 | void set(const Key &k, const Value &v) { _m.set(k, -v); } |
|---|
| 1241 | }; |
|---|
| 1242 | |
|---|
| 1243 | /// Returns a \ref NegMap class |
|---|
| 1244 | |
|---|
| 1245 | /// This function just returns a \ref NegMap class. |
|---|
| 1246 | /// |
|---|
| 1247 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1248 | /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|---|
| 1249 | /// |
|---|
| 1250 | /// \relates NegMap |
|---|
| 1251 | template <typename M> |
|---|
| 1252 | inline NegMap<M> negMap(const M &m) { |
|---|
| 1253 | return NegMap<M>(m); |
|---|
| 1254 | } |
|---|
| 1255 | |
|---|
| 1256 | /// Returns a \ref NegWriteMap class |
|---|
| 1257 | |
|---|
| 1258 | /// This function just returns a \ref NegWriteMap class. |
|---|
| 1259 | /// |
|---|
| 1260 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1261 | /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|---|
| 1262 | /// Moreover it makes also possible to write the map. |
|---|
| 1263 | /// |
|---|
| 1264 | /// \relates NegWriteMap |
|---|
| 1265 | template <typename M> |
|---|
| 1266 | inline NegWriteMap<M> negWriteMap(M &m) { |
|---|
| 1267 | return NegWriteMap<M>(m); |
|---|
| 1268 | } |
|---|
| 1269 | |
|---|
| 1270 | |
|---|
| 1271 | /// Absolute value of a map |
|---|
| 1272 | |
|---|
| 1273 | /// This \ref concepts::ReadMap "read only map" returns the absolute |
|---|
| 1274 | /// value of the values of the given map. |
|---|
| 1275 | /// Its \c Key and \c Value are inherited from \c M. |
|---|
| 1276 | /// \c Value must be comparable to \c 0 and the unary \c - |
|---|
| 1277 | /// operator must be defined for it, of course. |
|---|
| 1278 | /// |
|---|
| 1279 | /// The simplest way of using this map is through the absMap() |
|---|
| 1280 | /// function. |
|---|
| 1281 | template<typename M> |
|---|
| 1282 | class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
|---|
| 1283 | const M &_m; |
|---|
| 1284 | public: |
|---|
| 1285 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
|---|
| 1286 | typedef typename Parent::Key Key; |
|---|
| 1287 | typedef typename Parent::Value Value; |
|---|
| 1288 | |
|---|
| 1289 | /// Constructor |
|---|
| 1290 | AbsMap(const M &m) : _m(m) {} |
|---|
| 1291 | /// \e |
|---|
| 1292 | Value operator[](const Key &k) const { |
|---|
| 1293 | Value tmp = _m[k]; |
|---|
| 1294 | return tmp >= 0 ? tmp : -tmp; |
|---|
| 1295 | } |
|---|
| 1296 | |
|---|
| 1297 | }; |
|---|
| 1298 | |
|---|
| 1299 | /// Returns an \ref AbsMap class |
|---|
| 1300 | |
|---|
| 1301 | /// This function just returns an \ref AbsMap class. |
|---|
| 1302 | /// |
|---|
| 1303 | /// For example, if \c m is a map with \c double values, then |
|---|
| 1304 | /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
|---|
| 1305 | /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
|---|
| 1306 | /// negative. |
|---|
| 1307 | /// |
|---|
| 1308 | /// \relates AbsMap |
|---|
| 1309 | template<typename M> |
|---|
| 1310 | inline AbsMap<M> absMap(const M &m) { |
|---|
| 1311 | return AbsMap<M>(m); |
|---|
| 1312 | } |
|---|
| 1313 | |
|---|
| 1314 | |
|---|
| 1315 | /// Logical 'not' of a map |
|---|
| 1316 | |
|---|
| 1317 | /// This \ref concepts::ReadMap "read only map" returns the logical |
|---|
| 1318 | /// negation of the values of the given map. |
|---|
| 1319 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|---|
| 1320 | /// |
|---|
| 1321 | /// The simplest way of using this map is through the notMap() |
|---|
| 1322 | /// function. |
|---|
| 1323 | /// |
|---|
| 1324 | /// \sa NotWriteMap |
|---|
| 1325 | template <typename M> |
|---|
| 1326 | class NotMap : public MapBase<typename M::Key, bool> { |
|---|
| 1327 | const M &_m; |
|---|
| 1328 | public: |
|---|
| 1329 | typedef MapBase<typename M::Key, bool> Parent; |
|---|
| 1330 | typedef typename Parent::Key Key; |
|---|
| 1331 | typedef typename Parent::Value Value; |
|---|
| 1332 | |
|---|
| 1333 | /// Constructor |
|---|
| 1334 | NotMap(const M &m) : _m(m) {} |
|---|
| 1335 | /// \e |
|---|
| 1336 | Value operator[](const Key &k) const { return !_m[k]; } |
|---|
| 1337 | }; |
|---|
| 1338 | |
|---|
| 1339 | /// Logical 'not' of a map (read-write version) |
|---|
| 1340 | |
|---|
| 1341 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
|---|
| 1342 | /// logical negation of the values of the given map. |
|---|
| 1343 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|---|
| 1344 | /// It makes also possible to write the map. When a value is set, |
|---|
| 1345 | /// the opposite value is set to the original map. |
|---|
| 1346 | /// |
|---|
| 1347 | /// The simplest way of using this map is through the notWriteMap() |
|---|
| 1348 | /// function. |
|---|
| 1349 | /// |
|---|
| 1350 | /// \sa NotMap |
|---|
| 1351 | template <typename M> |
|---|
| 1352 | class NotWriteMap : public MapBase<typename M::Key, bool> { |
|---|
| 1353 | M &_m; |
|---|
| 1354 | public: |
|---|
| 1355 | typedef MapBase<typename M::Key, bool> Parent; |
|---|
| 1356 | typedef typename Parent::Key Key; |
|---|
| 1357 | typedef typename Parent::Value Value; |
|---|
| 1358 | |
|---|
| 1359 | /// Constructor |
|---|
| 1360 | NotWriteMap(M &m) : _m(m) {} |
|---|
| 1361 | /// \e |
|---|
| 1362 | Value operator[](const Key &k) const { return !_m[k]; } |
|---|
| 1363 | /// \e |
|---|
| 1364 | void set(const Key &k, bool v) { _m.set(k, !v); } |
|---|
| 1365 | }; |
|---|
| 1366 | |
|---|
| 1367 | /// Returns a \ref NotMap class |
|---|
| 1368 | |
|---|
| 1369 | /// This function just returns a \ref NotMap class. |
|---|
| 1370 | /// |
|---|
| 1371 | /// For example, if \c m is a map with \c bool values, then |
|---|
| 1372 | /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|---|
| 1373 | /// |
|---|
| 1374 | /// \relates NotMap |
|---|
| 1375 | template <typename M> |
|---|
| 1376 | inline NotMap<M> notMap(const M &m) { |
|---|
| 1377 | return NotMap<M>(m); |
|---|
| 1378 | } |
|---|
| 1379 | |
|---|
| 1380 | /// Returns a \ref NotWriteMap class |
|---|
| 1381 | |
|---|
| 1382 | /// This function just returns a \ref NotWriteMap class. |
|---|
| 1383 | /// |
|---|
| 1384 | /// For example, if \c m is a map with \c bool values, then |
|---|
| 1385 | /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|---|
| 1386 | /// Moreover it makes also possible to write the map. |
|---|
| 1387 | /// |
|---|
| 1388 | /// \relates NotWriteMap |
|---|
| 1389 | template <typename M> |
|---|
| 1390 | inline NotWriteMap<M> notWriteMap(M &m) { |
|---|
| 1391 | return NotWriteMap<M>(m); |
|---|
| 1392 | } |
|---|
| 1393 | |
|---|
| 1394 | /// @} |
|---|
| 1395 | } |
|---|
| 1396 | |
|---|
| 1397 | #endif // LEMON_MAPS_H |
|---|