1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_MAPS_H |
---|
20 | #define LEMON_MAPS_H |
---|
21 | |
---|
22 | #include <iterator> |
---|
23 | #include <functional> |
---|
24 | #include <vector> |
---|
25 | |
---|
26 | #include <lemon/bits/utility.h> |
---|
27 | #include <lemon/bits/traits.h> |
---|
28 | |
---|
29 | ///\file |
---|
30 | ///\ingroup maps |
---|
31 | ///\brief Miscellaneous property maps |
---|
32 | |
---|
33 | #include <map> |
---|
34 | |
---|
35 | namespace lemon { |
---|
36 | |
---|
37 | /// \addtogroup maps |
---|
38 | /// @{ |
---|
39 | |
---|
40 | /// Base class of maps. |
---|
41 | |
---|
42 | /// Base class of maps. It provides the necessary type definitions |
---|
43 | /// required by the map %concepts. |
---|
44 | template<typename K, typename V> |
---|
45 | class MapBase { |
---|
46 | public: |
---|
47 | /// \biref The key type of the map. |
---|
48 | typedef K Key; |
---|
49 | /// \brief The value type of the map. |
---|
50 | /// (The type of objects associated with the keys). |
---|
51 | typedef V Value; |
---|
52 | }; |
---|
53 | |
---|
54 | |
---|
55 | /// Null map. (a.k.a. DoNothingMap) |
---|
56 | |
---|
57 | /// This map can be used if you have to provide a map only for |
---|
58 | /// its type definitions, or if you have to provide a writable map, |
---|
59 | /// but data written to it is not required (i.e. it will be sent to |
---|
60 | /// <tt>/dev/null</tt>). |
---|
61 | /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
62 | /// |
---|
63 | /// \sa ConstMap |
---|
64 | template<typename K, typename V> |
---|
65 | class NullMap : public MapBase<K, V> { |
---|
66 | public: |
---|
67 | typedef MapBase<K, V> Parent; |
---|
68 | typedef typename Parent::Key Key; |
---|
69 | typedef typename Parent::Value Value; |
---|
70 | |
---|
71 | /// Gives back a default constructed element. |
---|
72 | Value operator[](const Key&) const { return Value(); } |
---|
73 | /// Absorbs the value. |
---|
74 | void set(const Key&, const Value&) {} |
---|
75 | }; |
---|
76 | |
---|
77 | /// Returns a \ref NullMap class |
---|
78 | |
---|
79 | /// This function just returns a \ref NullMap class. |
---|
80 | /// \relates NullMap |
---|
81 | template <typename K, typename V> |
---|
82 | NullMap<K, V> nullMap() { |
---|
83 | return NullMap<K, V>(); |
---|
84 | } |
---|
85 | |
---|
86 | |
---|
87 | /// Constant map. |
---|
88 | |
---|
89 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
---|
90 | /// value to each key. |
---|
91 | /// |
---|
92 | /// In other aspects it is equivalent to \ref NullMap. |
---|
93 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
---|
94 | /// concept, but it absorbs the data written to it. |
---|
95 | /// |
---|
96 | /// The simplest way of using this map is through the constMap() |
---|
97 | /// function. |
---|
98 | /// |
---|
99 | /// \sa NullMap |
---|
100 | /// \sa IdentityMap |
---|
101 | template<typename K, typename V> |
---|
102 | class ConstMap : public MapBase<K, V> { |
---|
103 | private: |
---|
104 | V _value; |
---|
105 | public: |
---|
106 | typedef MapBase<K, V> Parent; |
---|
107 | typedef typename Parent::Key Key; |
---|
108 | typedef typename Parent::Value Value; |
---|
109 | |
---|
110 | /// Default constructor |
---|
111 | |
---|
112 | /// Default constructor. |
---|
113 | /// The value of the map will be default constructed. |
---|
114 | ConstMap() {} |
---|
115 | |
---|
116 | /// Constructor with specified initial value |
---|
117 | |
---|
118 | /// Constructor with specified initial value. |
---|
119 | /// \param v The initial value of the map. |
---|
120 | ConstMap(const Value &v) : _value(v) {} |
---|
121 | |
---|
122 | /// Gives back the specified value. |
---|
123 | Value operator[](const Key&) const { return _value; } |
---|
124 | |
---|
125 | /// Absorbs the value. |
---|
126 | void set(const Key&, const Value&) {} |
---|
127 | |
---|
128 | /// Sets the value that is assigned to each key. |
---|
129 | void setAll(const Value &v) { |
---|
130 | _value = v; |
---|
131 | } |
---|
132 | |
---|
133 | template<typename V1> |
---|
134 | ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
---|
135 | }; |
---|
136 | |
---|
137 | /// Returns a \ref ConstMap class |
---|
138 | |
---|
139 | /// This function just returns a \ref ConstMap class. |
---|
140 | /// \relates ConstMap |
---|
141 | template<typename K, typename V> |
---|
142 | inline ConstMap<K, V> constMap(const V &v) { |
---|
143 | return ConstMap<K, V>(v); |
---|
144 | } |
---|
145 | |
---|
146 | template<typename K, typename V> |
---|
147 | inline ConstMap<K, V> constMap() { |
---|
148 | return ConstMap<K, V>(); |
---|
149 | } |
---|
150 | |
---|
151 | |
---|
152 | template<typename T, T v> |
---|
153 | struct Const {}; |
---|
154 | |
---|
155 | /// Constant map with inlined constant value. |
---|
156 | |
---|
157 | /// This \ref concepts::ReadMap "readable map" assigns a specified |
---|
158 | /// value to each key. |
---|
159 | /// |
---|
160 | /// In other aspects it is equivalent to \ref NullMap. |
---|
161 | /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
---|
162 | /// concept, but it absorbs the data written to it. |
---|
163 | /// |
---|
164 | /// The simplest way of using this map is through the constMap() |
---|
165 | /// function. |
---|
166 | /// |
---|
167 | /// \sa NullMap |
---|
168 | /// \sa IdentityMap |
---|
169 | template<typename K, typename V, V v> |
---|
170 | class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
---|
171 | public: |
---|
172 | typedef MapBase<K, V> Parent; |
---|
173 | typedef typename Parent::Key Key; |
---|
174 | typedef typename Parent::Value Value; |
---|
175 | |
---|
176 | /// Constructor. |
---|
177 | ConstMap() {} |
---|
178 | |
---|
179 | /// Gives back the specified value. |
---|
180 | Value operator[](const Key&) const { return v; } |
---|
181 | |
---|
182 | /// Absorbs the value. |
---|
183 | void set(const Key&, const Value&) {} |
---|
184 | }; |
---|
185 | |
---|
186 | /// Returns a \ref ConstMap class with inlined constant value |
---|
187 | |
---|
188 | /// This function just returns a \ref ConstMap class with inlined |
---|
189 | /// constant value. |
---|
190 | /// \relates ConstMap |
---|
191 | template<typename K, typename V, V v> |
---|
192 | inline ConstMap<K, Const<V, v> > constMap() { |
---|
193 | return ConstMap<K, Const<V, v> >(); |
---|
194 | } |
---|
195 | |
---|
196 | |
---|
197 | /// Identity map. |
---|
198 | |
---|
199 | /// This \ref concepts::ReadMap "read-only map" gives back the given |
---|
200 | /// key as value without any modification. |
---|
201 | /// |
---|
202 | /// \sa ConstMap |
---|
203 | template <typename T> |
---|
204 | class IdentityMap : public MapBase<T, T> { |
---|
205 | public: |
---|
206 | typedef MapBase<T, T> Parent; |
---|
207 | typedef typename Parent::Key Key; |
---|
208 | typedef typename Parent::Value Value; |
---|
209 | |
---|
210 | /// Gives back the given value without any modification. |
---|
211 | Value operator[](const Key &k) const { |
---|
212 | return k; |
---|
213 | } |
---|
214 | }; |
---|
215 | |
---|
216 | /// Returns an \ref IdentityMap class |
---|
217 | |
---|
218 | /// This function just returns an \ref IdentityMap class. |
---|
219 | /// \relates IdentityMap |
---|
220 | template<typename T> |
---|
221 | inline IdentityMap<T> identityMap() { |
---|
222 | return IdentityMap<T>(); |
---|
223 | } |
---|
224 | |
---|
225 | |
---|
226 | /// \brief Map for storing values for integer keys from the range |
---|
227 | /// <tt>[0..size-1]</tt>. |
---|
228 | /// |
---|
229 | /// This map is essentially a wrapper for \c std::vector. It assigns |
---|
230 | /// values to integer keys from the range <tt>[0..size-1]</tt>. |
---|
231 | /// It can be used with some data structures, for example |
---|
232 | /// \ref UnionFind, \ref BinHeap, when the used items are small |
---|
233 | /// integers. This map conforms the \ref concepts::ReferenceMap |
---|
234 | /// "ReferenceMap" concept. |
---|
235 | /// |
---|
236 | /// The simplest way of using this map is through the rangeMap() |
---|
237 | /// function. |
---|
238 | template <typename V> |
---|
239 | class RangeMap : public MapBase<int, V> { |
---|
240 | template <typename V1> |
---|
241 | friend class RangeMap; |
---|
242 | private: |
---|
243 | |
---|
244 | typedef std::vector<V> Vector; |
---|
245 | Vector _vector; |
---|
246 | |
---|
247 | public: |
---|
248 | |
---|
249 | typedef MapBase<int, V> Parent; |
---|
250 | /// Key type |
---|
251 | typedef typename Parent::Key Key; |
---|
252 | /// Value type |
---|
253 | typedef typename Parent::Value Value; |
---|
254 | /// Reference type |
---|
255 | typedef typename Vector::reference Reference; |
---|
256 | /// Const reference type |
---|
257 | typedef typename Vector::const_reference ConstReference; |
---|
258 | |
---|
259 | typedef True ReferenceMapTag; |
---|
260 | |
---|
261 | public: |
---|
262 | |
---|
263 | /// Constructor with specified default value. |
---|
264 | RangeMap(int size = 0, const Value &value = Value()) |
---|
265 | : _vector(size, value) {} |
---|
266 | |
---|
267 | /// Constructs the map from an appropriate \c std::vector. |
---|
268 | template <typename V1> |
---|
269 | RangeMap(const std::vector<V1>& vector) |
---|
270 | : _vector(vector.begin(), vector.end()) {} |
---|
271 | |
---|
272 | /// Constructs the map from another \ref RangeMap. |
---|
273 | template <typename V1> |
---|
274 | RangeMap(const RangeMap<V1> &c) |
---|
275 | : _vector(c._vector.begin(), c._vector.end()) {} |
---|
276 | |
---|
277 | /// Returns the size of the map. |
---|
278 | int size() { |
---|
279 | return _vector.size(); |
---|
280 | } |
---|
281 | |
---|
282 | /// Resizes the map. |
---|
283 | |
---|
284 | /// Resizes the underlying \c std::vector container, so changes the |
---|
285 | /// keyset of the map. |
---|
286 | /// \param size The new size of the map. The new keyset will be the |
---|
287 | /// range <tt>[0..size-1]</tt>. |
---|
288 | /// \param value The default value to assign to the new keys. |
---|
289 | void resize(int size, const Value &value = Value()) { |
---|
290 | _vector.resize(size, value); |
---|
291 | } |
---|
292 | |
---|
293 | private: |
---|
294 | |
---|
295 | RangeMap& operator=(const RangeMap&); |
---|
296 | |
---|
297 | public: |
---|
298 | |
---|
299 | ///\e |
---|
300 | Reference operator[](const Key &k) { |
---|
301 | return _vector[k]; |
---|
302 | } |
---|
303 | |
---|
304 | ///\e |
---|
305 | ConstReference operator[](const Key &k) const { |
---|
306 | return _vector[k]; |
---|
307 | } |
---|
308 | |
---|
309 | ///\e |
---|
310 | void set(const Key &k, const Value &v) { |
---|
311 | _vector[k] = v; |
---|
312 | } |
---|
313 | }; |
---|
314 | |
---|
315 | /// Returns a \ref RangeMap class |
---|
316 | |
---|
317 | /// This function just returns a \ref RangeMap class. |
---|
318 | /// \relates RangeMap |
---|
319 | template<typename V> |
---|
320 | inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
---|
321 | return RangeMap<V>(size, value); |
---|
322 | } |
---|
323 | |
---|
324 | /// \brief Returns a \ref RangeMap class created from an appropriate |
---|
325 | /// \c std::vector |
---|
326 | |
---|
327 | /// This function just returns a \ref RangeMap class created from an |
---|
328 | /// appropriate \c std::vector. |
---|
329 | /// \relates RangeMap |
---|
330 | template<typename V> |
---|
331 | inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
---|
332 | return RangeMap<V>(vector); |
---|
333 | } |
---|
334 | |
---|
335 | |
---|
336 | /// Map type based on \c std::map |
---|
337 | |
---|
338 | /// This map is essentially a wrapper for \c std::map with addition |
---|
339 | /// that you can specify a default value for the keys that are not |
---|
340 | /// stored actually. This value can be different from the default |
---|
341 | /// contructed value (i.e. \c %Value()). |
---|
342 | /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
---|
343 | /// concept. |
---|
344 | /// |
---|
345 | /// This map is useful if a default value should be assigned to most of |
---|
346 | /// the keys and different values should be assigned only to a few |
---|
347 | /// keys (i.e. the map is "sparse"). |
---|
348 | /// The name of this type also refers to this important usage. |
---|
349 | /// |
---|
350 | /// Apart form that this map can be used in many other cases since it |
---|
351 | /// is based on \c std::map, which is a general associative container. |
---|
352 | /// However keep in mind that it is usually not as efficient as other |
---|
353 | /// maps. |
---|
354 | /// |
---|
355 | /// The simplest way of using this map is through the sparseMap() |
---|
356 | /// function. |
---|
357 | template <typename K, typename V, typename Compare = std::less<K> > |
---|
358 | class SparseMap : public MapBase<K, V> { |
---|
359 | template <typename K1, typename V1, typename C1> |
---|
360 | friend class SparseMap; |
---|
361 | public: |
---|
362 | |
---|
363 | typedef MapBase<K, V> Parent; |
---|
364 | /// Key type |
---|
365 | typedef typename Parent::Key Key; |
---|
366 | /// Value type |
---|
367 | typedef typename Parent::Value Value; |
---|
368 | /// Reference type |
---|
369 | typedef Value& Reference; |
---|
370 | /// Const reference type |
---|
371 | typedef const Value& ConstReference; |
---|
372 | |
---|
373 | typedef True ReferenceMapTag; |
---|
374 | |
---|
375 | private: |
---|
376 | |
---|
377 | typedef std::map<K, V, Compare> Map; |
---|
378 | Map _map; |
---|
379 | Value _value; |
---|
380 | |
---|
381 | public: |
---|
382 | |
---|
383 | /// \brief Constructor with specified default value. |
---|
384 | SparseMap(const Value &value = Value()) : _value(value) {} |
---|
385 | /// \brief Constructs the map from an appropriate \c std::map, and |
---|
386 | /// explicitly specifies a default value. |
---|
387 | template <typename V1, typename Comp1> |
---|
388 | SparseMap(const std::map<Key, V1, Comp1> &map, |
---|
389 | const Value &value = Value()) |
---|
390 | : _map(map.begin(), map.end()), _value(value) {} |
---|
391 | |
---|
392 | /// \brief Constructs the map from another \ref SparseMap. |
---|
393 | template<typename V1, typename Comp1> |
---|
394 | SparseMap(const SparseMap<Key, V1, Comp1> &c) |
---|
395 | : _map(c._map.begin(), c._map.end()), _value(c._value) {} |
---|
396 | |
---|
397 | private: |
---|
398 | |
---|
399 | SparseMap& operator=(const SparseMap&); |
---|
400 | |
---|
401 | public: |
---|
402 | |
---|
403 | ///\e |
---|
404 | Reference operator[](const Key &k) { |
---|
405 | typename Map::iterator it = _map.lower_bound(k); |
---|
406 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
---|
407 | return it->second; |
---|
408 | else |
---|
409 | return _map.insert(it, std::make_pair(k, _value))->second; |
---|
410 | } |
---|
411 | |
---|
412 | ///\e |
---|
413 | ConstReference operator[](const Key &k) const { |
---|
414 | typename Map::const_iterator it = _map.find(k); |
---|
415 | if (it != _map.end()) |
---|
416 | return it->second; |
---|
417 | else |
---|
418 | return _value; |
---|
419 | } |
---|
420 | |
---|
421 | ///\e |
---|
422 | void set(const Key &k, const Value &v) { |
---|
423 | typename Map::iterator it = _map.lower_bound(k); |
---|
424 | if (it != _map.end() && !_map.key_comp()(k, it->first)) |
---|
425 | it->second = v; |
---|
426 | else |
---|
427 | _map.insert(it, std::make_pair(k, v)); |
---|
428 | } |
---|
429 | |
---|
430 | ///\e |
---|
431 | void setAll(const Value &v) { |
---|
432 | _value = v; |
---|
433 | _map.clear(); |
---|
434 | } |
---|
435 | }; |
---|
436 | |
---|
437 | /// Returns a \ref SparseMap class |
---|
438 | |
---|
439 | /// This function just returns a \ref SparseMap class with specified |
---|
440 | /// default value. |
---|
441 | /// \relates SparseMap |
---|
442 | template<typename K, typename V, typename Compare> |
---|
443 | inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
---|
444 | return SparseMap<K, V, Compare>(value); |
---|
445 | } |
---|
446 | |
---|
447 | template<typename K, typename V> |
---|
448 | inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
---|
449 | return SparseMap<K, V, std::less<K> >(value); |
---|
450 | } |
---|
451 | |
---|
452 | /// \brief Returns a \ref SparseMap class created from an appropriate |
---|
453 | /// \c std::map |
---|
454 | |
---|
455 | /// This function just returns a \ref SparseMap class created from an |
---|
456 | /// appropriate \c std::map. |
---|
457 | /// \relates SparseMap |
---|
458 | template<typename K, typename V, typename Compare> |
---|
459 | inline SparseMap<K, V, Compare> |
---|
460 | sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
---|
461 | { |
---|
462 | return SparseMap<K, V, Compare>(map, value); |
---|
463 | } |
---|
464 | |
---|
465 | /// @} |
---|
466 | |
---|
467 | /// \addtogroup map_adaptors |
---|
468 | /// @{ |
---|
469 | |
---|
470 | /// Composition of two maps |
---|
471 | |
---|
472 | /// This \ref concepts::ReadMap "read-only map" returns the |
---|
473 | /// composition of two given maps. That is to say, if \c m1 is of |
---|
474 | /// type \c M1 and \c m2 is of \c M2, then for |
---|
475 | /// \code |
---|
476 | /// ComposeMap<M1, M2> cm(m1,m2); |
---|
477 | /// \endcode |
---|
478 | /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
---|
479 | /// |
---|
480 | /// The \c Key type of the map is inherited from \c M2 and the |
---|
481 | /// \c Value type is from \c M1. |
---|
482 | /// \c M2::Value must be convertible to \c M1::Key. |
---|
483 | /// |
---|
484 | /// The simplest way of using this map is through the composeMap() |
---|
485 | /// function. |
---|
486 | /// |
---|
487 | /// \sa CombineMap |
---|
488 | /// |
---|
489 | /// \todo Check the requirements. |
---|
490 | template <typename M1, typename M2> |
---|
491 | class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
---|
492 | const M1 &_m1; |
---|
493 | const M2 &_m2; |
---|
494 | public: |
---|
495 | typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
---|
496 | typedef typename Parent::Key Key; |
---|
497 | typedef typename Parent::Value Value; |
---|
498 | |
---|
499 | /// Constructor |
---|
500 | ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
501 | |
---|
502 | /// \e |
---|
503 | typename MapTraits<M1>::ConstReturnValue |
---|
504 | operator[](const Key &k) const { return _m1[_m2[k]]; } |
---|
505 | }; |
---|
506 | |
---|
507 | /// Returns a \ref ComposeMap class |
---|
508 | |
---|
509 | /// This function just returns a \ref ComposeMap class. |
---|
510 | /// |
---|
511 | /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
---|
512 | /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
---|
513 | /// will be equal to <tt>m1[m2[x]]</tt>. |
---|
514 | /// |
---|
515 | /// \relates ComposeMap |
---|
516 | template <typename M1, typename M2> |
---|
517 | inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
---|
518 | return ComposeMap<M1, M2>(m1, m2); |
---|
519 | } |
---|
520 | |
---|
521 | |
---|
522 | /// Combination of two maps using an STL (binary) functor. |
---|
523 | |
---|
524 | /// This \ref concepts::ReadMap "read-only map" takes two maps and a |
---|
525 | /// binary functor and returns the combination of the two given maps |
---|
526 | /// using the functor. |
---|
527 | /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
---|
528 | /// and \c f is of \c F, then for |
---|
529 | /// \code |
---|
530 | /// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
---|
531 | /// \endcode |
---|
532 | /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
---|
533 | /// |
---|
534 | /// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
---|
535 | /// must be convertible to \c M2::Key) and the \c Value type is \c V. |
---|
536 | /// \c M2::Value and \c M1::Value must be convertible to the |
---|
537 | /// corresponding input parameter of \c F and the return type of \c F |
---|
538 | /// must be convertible to \c V. |
---|
539 | /// |
---|
540 | /// The simplest way of using this map is through the combineMap() |
---|
541 | /// function. |
---|
542 | /// |
---|
543 | /// \sa ComposeMap |
---|
544 | /// |
---|
545 | /// \todo Check the requirements. |
---|
546 | template<typename M1, typename M2, typename F, |
---|
547 | typename V = typename F::result_type> |
---|
548 | class CombineMap : public MapBase<typename M1::Key, V> { |
---|
549 | const M1 &_m1; |
---|
550 | const M2 &_m2; |
---|
551 | F _f; |
---|
552 | public: |
---|
553 | typedef MapBase<typename M1::Key, V> Parent; |
---|
554 | typedef typename Parent::Key Key; |
---|
555 | typedef typename Parent::Value Value; |
---|
556 | |
---|
557 | /// Constructor |
---|
558 | CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
---|
559 | : _m1(m1), _m2(m2), _f(f) {} |
---|
560 | /// \e |
---|
561 | Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
---|
562 | }; |
---|
563 | |
---|
564 | /// Returns a \ref CombineMap class |
---|
565 | |
---|
566 | /// This function just returns a \ref CombineMap class. |
---|
567 | /// |
---|
568 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
569 | /// values, then |
---|
570 | /// \code |
---|
571 | /// combineMap(m1,m2,std::plus<double>()) |
---|
572 | /// \endcode |
---|
573 | /// is equivalent to |
---|
574 | /// \code |
---|
575 | /// addMap(m1,m2) |
---|
576 | /// \endcode |
---|
577 | /// |
---|
578 | /// This function is specialized for adaptable binary function |
---|
579 | /// classes and C++ functions. |
---|
580 | /// |
---|
581 | /// \relates CombineMap |
---|
582 | template<typename M1, typename M2, typename F, typename V> |
---|
583 | inline CombineMap<M1, M2, F, V> |
---|
584 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
---|
585 | return CombineMap<M1, M2, F, V>(m1,m2,f); |
---|
586 | } |
---|
587 | |
---|
588 | template<typename M1, typename M2, typename F> |
---|
589 | inline CombineMap<M1, M2, F, typename F::result_type> |
---|
590 | combineMap(const M1 &m1, const M2 &m2, const F &f) { |
---|
591 | return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
---|
592 | } |
---|
593 | |
---|
594 | template<typename M1, typename M2, typename K1, typename K2, typename V> |
---|
595 | inline CombineMap<M1, M2, V (*)(K1, K2), V> |
---|
596 | combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
---|
597 | return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
---|
598 | } |
---|
599 | |
---|
600 | |
---|
601 | /// Converts an STL style (unary) functor to a map |
---|
602 | |
---|
603 | /// This \ref concepts::ReadMap "read-only map" returns the value |
---|
604 | /// of a given functor. Actually, it just wraps the functor and |
---|
605 | /// provides the \c Key and \c Value typedefs. |
---|
606 | /// |
---|
607 | /// Template parameters \c K and \c V will become its \c Key and |
---|
608 | /// \c Value. In most cases they have to be given explicitly because |
---|
609 | /// a functor typically does not provide \c argument_type and |
---|
610 | /// \c result_type typedefs. |
---|
611 | /// Parameter \c F is the type of the used functor. |
---|
612 | /// |
---|
613 | /// The simplest way of using this map is through the functorToMap() |
---|
614 | /// function. |
---|
615 | /// |
---|
616 | /// \sa MapToFunctor |
---|
617 | template<typename F, |
---|
618 | typename K = typename F::argument_type, |
---|
619 | typename V = typename F::result_type> |
---|
620 | class FunctorToMap : public MapBase<K, V> { |
---|
621 | F _f; |
---|
622 | public: |
---|
623 | typedef MapBase<K, V> Parent; |
---|
624 | typedef typename Parent::Key Key; |
---|
625 | typedef typename Parent::Value Value; |
---|
626 | |
---|
627 | /// Constructor |
---|
628 | FunctorToMap(const F &f = F()) : _f(f) {} |
---|
629 | /// \e |
---|
630 | Value operator[](const Key &k) const { return _f(k); } |
---|
631 | }; |
---|
632 | |
---|
633 | /// Returns a \ref FunctorToMap class |
---|
634 | |
---|
635 | /// This function just returns a \ref FunctorToMap class. |
---|
636 | /// |
---|
637 | /// This function is specialized for adaptable binary function |
---|
638 | /// classes and C++ functions. |
---|
639 | /// |
---|
640 | /// \relates FunctorToMap |
---|
641 | template<typename K, typename V, typename F> |
---|
642 | inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
---|
643 | return FunctorToMap<F, K, V>(f); |
---|
644 | } |
---|
645 | |
---|
646 | template <typename F> |
---|
647 | inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
---|
648 | functorToMap(const F &f) |
---|
649 | { |
---|
650 | return FunctorToMap<F, typename F::argument_type, |
---|
651 | typename F::result_type>(f); |
---|
652 | } |
---|
653 | |
---|
654 | template <typename K, typename V> |
---|
655 | inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
---|
656 | return FunctorToMap<V (*)(K), K, V>(f); |
---|
657 | } |
---|
658 | |
---|
659 | |
---|
660 | /// Converts a map to an STL style (unary) functor |
---|
661 | |
---|
662 | /// This class converts a map to an STL style (unary) functor. |
---|
663 | /// That is it provides an <tt>operator()</tt> to read its values. |
---|
664 | /// |
---|
665 | /// For the sake of convenience it also works as a usual |
---|
666 | /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
---|
667 | /// and the \c Key and \c Value typedefs also exist. |
---|
668 | /// |
---|
669 | /// The simplest way of using this map is through the mapToFunctor() |
---|
670 | /// function. |
---|
671 | /// |
---|
672 | ///\sa FunctorToMap |
---|
673 | template <typename M> |
---|
674 | class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
---|
675 | const M &_m; |
---|
676 | public: |
---|
677 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
678 | typedef typename Parent::Key Key; |
---|
679 | typedef typename Parent::Value Value; |
---|
680 | |
---|
681 | typedef typename Parent::Key argument_type; |
---|
682 | typedef typename Parent::Value result_type; |
---|
683 | |
---|
684 | /// Constructor |
---|
685 | MapToFunctor(const M &m) : _m(m) {} |
---|
686 | /// \e |
---|
687 | Value operator()(const Key &k) const { return _m[k]; } |
---|
688 | /// \e |
---|
689 | Value operator[](const Key &k) const { return _m[k]; } |
---|
690 | }; |
---|
691 | |
---|
692 | /// Returns a \ref MapToFunctor class |
---|
693 | |
---|
694 | /// This function just returns a \ref MapToFunctor class. |
---|
695 | /// \relates MapToFunctor |
---|
696 | template<typename M> |
---|
697 | inline MapToFunctor<M> mapToFunctor(const M &m) { |
---|
698 | return MapToFunctor<M>(m); |
---|
699 | } |
---|
700 | |
---|
701 | |
---|
702 | /// \brief Map adaptor to convert the \c Value type of a map to |
---|
703 | /// another type using the default conversion. |
---|
704 | |
---|
705 | /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
---|
706 | /// "readable map" to another type using the default conversion. |
---|
707 | /// The \c Key type of it is inherited from \c M and the \c Value |
---|
708 | /// type is \c V. |
---|
709 | /// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
---|
710 | /// |
---|
711 | /// The simplest way of using this map is through the convertMap() |
---|
712 | /// function. |
---|
713 | template <typename M, typename V> |
---|
714 | class ConvertMap : public MapBase<typename M::Key, V> { |
---|
715 | const M &_m; |
---|
716 | public: |
---|
717 | typedef MapBase<typename M::Key, V> Parent; |
---|
718 | typedef typename Parent::Key Key; |
---|
719 | typedef typename Parent::Value Value; |
---|
720 | |
---|
721 | /// Constructor |
---|
722 | |
---|
723 | /// Constructor. |
---|
724 | /// \param m The underlying map. |
---|
725 | ConvertMap(const M &m) : _m(m) {} |
---|
726 | |
---|
727 | /// \e |
---|
728 | Value operator[](const Key &k) const { return _m[k]; } |
---|
729 | }; |
---|
730 | |
---|
731 | /// Returns a \ref ConvertMap class |
---|
732 | |
---|
733 | /// This function just returns a \ref ConvertMap class. |
---|
734 | /// \relates ConvertMap |
---|
735 | template<typename V, typename M> |
---|
736 | inline ConvertMap<M, V> convertMap(const M &map) { |
---|
737 | return ConvertMap<M, V>(map); |
---|
738 | } |
---|
739 | |
---|
740 | |
---|
741 | /// Applies all map setting operations to two maps |
---|
742 | |
---|
743 | /// This map has two \ref concepts::WriteMap "writable map" parameters |
---|
744 | /// and each write request will be passed to both of them. |
---|
745 | /// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
---|
746 | /// operations will return the corresponding values of \c M1. |
---|
747 | /// |
---|
748 | /// The \c Key and \c Value types are inherited from \c M1. |
---|
749 | /// The \c Key and \c Value of \c M2 must be convertible from those |
---|
750 | /// of \c M1. |
---|
751 | /// |
---|
752 | /// The simplest way of using this map is through the forkMap() |
---|
753 | /// function. |
---|
754 | template<typename M1, typename M2> |
---|
755 | class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
756 | M1 &_m1; |
---|
757 | M2 &_m2; |
---|
758 | public: |
---|
759 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
760 | typedef typename Parent::Key Key; |
---|
761 | typedef typename Parent::Value Value; |
---|
762 | |
---|
763 | /// Constructor |
---|
764 | ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
---|
765 | /// Returns the value associated with the given key in the first map. |
---|
766 | Value operator[](const Key &k) const { return _m1[k]; } |
---|
767 | /// Sets the value associated with the given key in both maps. |
---|
768 | void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
---|
769 | }; |
---|
770 | |
---|
771 | /// Returns a \ref ForkMap class |
---|
772 | |
---|
773 | /// This function just returns a \ref ForkMap class. |
---|
774 | /// \relates ForkMap |
---|
775 | template <typename M1, typename M2> |
---|
776 | inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
---|
777 | return ForkMap<M1,M2>(m1,m2); |
---|
778 | } |
---|
779 | |
---|
780 | |
---|
781 | /// Sum of two maps |
---|
782 | |
---|
783 | /// This \ref concepts::ReadMap "read-only map" returns the sum |
---|
784 | /// of the values of the two given maps. |
---|
785 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
786 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
787 | /// \c M1. |
---|
788 | /// |
---|
789 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
790 | /// \code |
---|
791 | /// AddMap<M1,M2> am(m1,m2); |
---|
792 | /// \endcode |
---|
793 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
---|
794 | /// |
---|
795 | /// The simplest way of using this map is through the addMap() |
---|
796 | /// function. |
---|
797 | /// |
---|
798 | /// \sa SubMap, MulMap, DivMap |
---|
799 | /// \sa ShiftMap, ShiftWriteMap |
---|
800 | template<typename M1, typename M2> |
---|
801 | class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
802 | const M1 &_m1; |
---|
803 | const M2 &_m2; |
---|
804 | public: |
---|
805 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
806 | typedef typename Parent::Key Key; |
---|
807 | typedef typename Parent::Value Value; |
---|
808 | |
---|
809 | /// Constructor |
---|
810 | AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
811 | /// \e |
---|
812 | Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
---|
813 | }; |
---|
814 | |
---|
815 | /// Returns an \ref AddMap class |
---|
816 | |
---|
817 | /// This function just returns an \ref AddMap class. |
---|
818 | /// |
---|
819 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
820 | /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
---|
821 | /// <tt>m1[x]+m2[x]</tt>. |
---|
822 | /// |
---|
823 | /// \relates AddMap |
---|
824 | template<typename M1, typename M2> |
---|
825 | inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
---|
826 | return AddMap<M1, M2>(m1,m2); |
---|
827 | } |
---|
828 | |
---|
829 | |
---|
830 | /// Difference of two maps |
---|
831 | |
---|
832 | /// This \ref concepts::ReadMap "read-only map" returns the difference |
---|
833 | /// of the values of the two given maps. |
---|
834 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
835 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
836 | /// \c M1. |
---|
837 | /// |
---|
838 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
839 | /// \code |
---|
840 | /// SubMap<M1,M2> sm(m1,m2); |
---|
841 | /// \endcode |
---|
842 | /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
---|
843 | /// |
---|
844 | /// The simplest way of using this map is through the subMap() |
---|
845 | /// function. |
---|
846 | /// |
---|
847 | /// \sa AddMap, MulMap, DivMap |
---|
848 | template<typename M1, typename M2> |
---|
849 | class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
850 | const M1 &_m1; |
---|
851 | const M2 &_m2; |
---|
852 | public: |
---|
853 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
854 | typedef typename Parent::Key Key; |
---|
855 | typedef typename Parent::Value Value; |
---|
856 | |
---|
857 | /// Constructor |
---|
858 | SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
859 | /// \e |
---|
860 | Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
---|
861 | }; |
---|
862 | |
---|
863 | /// Returns a \ref SubMap class |
---|
864 | |
---|
865 | /// This function just returns a \ref SubMap class. |
---|
866 | /// |
---|
867 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
868 | /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
---|
869 | /// <tt>m1[x]-m2[x]</tt>. |
---|
870 | /// |
---|
871 | /// \relates SubMap |
---|
872 | template<typename M1, typename M2> |
---|
873 | inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
---|
874 | return SubMap<M1, M2>(m1,m2); |
---|
875 | } |
---|
876 | |
---|
877 | |
---|
878 | /// Product of two maps |
---|
879 | |
---|
880 | /// This \ref concepts::ReadMap "read-only map" returns the product |
---|
881 | /// of the values of the two given maps. |
---|
882 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
883 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
884 | /// \c M1. |
---|
885 | /// |
---|
886 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
887 | /// \code |
---|
888 | /// MulMap<M1,M2> mm(m1,m2); |
---|
889 | /// \endcode |
---|
890 | /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
---|
891 | /// |
---|
892 | /// The simplest way of using this map is through the mulMap() |
---|
893 | /// function. |
---|
894 | /// |
---|
895 | /// \sa AddMap, SubMap, DivMap |
---|
896 | /// \sa ScaleMap, ScaleWriteMap |
---|
897 | template<typename M1, typename M2> |
---|
898 | class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
899 | const M1 &_m1; |
---|
900 | const M2 &_m2; |
---|
901 | public: |
---|
902 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
903 | typedef typename Parent::Key Key; |
---|
904 | typedef typename Parent::Value Value; |
---|
905 | |
---|
906 | /// Constructor |
---|
907 | MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
908 | /// \e |
---|
909 | Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
---|
910 | }; |
---|
911 | |
---|
912 | /// Returns a \ref MulMap class |
---|
913 | |
---|
914 | /// This function just returns a \ref MulMap class. |
---|
915 | /// |
---|
916 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
917 | /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
---|
918 | /// <tt>m1[x]*m2[x]</tt>. |
---|
919 | /// |
---|
920 | /// \relates MulMap |
---|
921 | template<typename M1, typename M2> |
---|
922 | inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
---|
923 | return MulMap<M1, M2>(m1,m2); |
---|
924 | } |
---|
925 | |
---|
926 | |
---|
927 | /// Quotient of two maps |
---|
928 | |
---|
929 | /// This \ref concepts::ReadMap "read-only map" returns the quotient |
---|
930 | /// of the values of the two given maps. |
---|
931 | /// Its \c Key and \c Value types are inherited from \c M1. |
---|
932 | /// The \c Key and \c Value of \c M2 must be convertible to those of |
---|
933 | /// \c M1. |
---|
934 | /// |
---|
935 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
936 | /// \code |
---|
937 | /// DivMap<M1,M2> dm(m1,m2); |
---|
938 | /// \endcode |
---|
939 | /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
---|
940 | /// |
---|
941 | /// The simplest way of using this map is through the divMap() |
---|
942 | /// function. |
---|
943 | /// |
---|
944 | /// \sa AddMap, SubMap, MulMap |
---|
945 | template<typename M1, typename M2> |
---|
946 | class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
947 | const M1 &_m1; |
---|
948 | const M2 &_m2; |
---|
949 | public: |
---|
950 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
951 | typedef typename Parent::Key Key; |
---|
952 | typedef typename Parent::Value Value; |
---|
953 | |
---|
954 | /// Constructor |
---|
955 | DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
956 | /// \e |
---|
957 | Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
---|
958 | }; |
---|
959 | |
---|
960 | /// Returns a \ref DivMap class |
---|
961 | |
---|
962 | /// This function just returns a \ref DivMap class. |
---|
963 | /// |
---|
964 | /// For example, if \c m1 and \c m2 are both maps with \c double |
---|
965 | /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
---|
966 | /// <tt>m1[x]/m2[x]</tt>. |
---|
967 | /// |
---|
968 | /// \relates DivMap |
---|
969 | template<typename M1, typename M2> |
---|
970 | inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
---|
971 | return DivMap<M1, M2>(m1,m2); |
---|
972 | } |
---|
973 | |
---|
974 | |
---|
975 | /// Shifts a map with a constant. |
---|
976 | |
---|
977 | /// This \ref concepts::ReadMap "read-only map" returns the sum of |
---|
978 | /// the given map and a constant value (i.e. it shifts the map with |
---|
979 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
---|
980 | /// |
---|
981 | /// Actually, |
---|
982 | /// \code |
---|
983 | /// ShiftMap<M> sh(m,v); |
---|
984 | /// \endcode |
---|
985 | /// is equivalent to |
---|
986 | /// \code |
---|
987 | /// ConstMap<M::Key, M::Value> cm(v); |
---|
988 | /// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
---|
989 | /// \endcode |
---|
990 | /// |
---|
991 | /// The simplest way of using this map is through the shiftMap() |
---|
992 | /// function. |
---|
993 | /// |
---|
994 | /// \sa ShiftWriteMap |
---|
995 | template<typename M, typename C = typename M::Value> |
---|
996 | class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
---|
997 | const M &_m; |
---|
998 | C _v; |
---|
999 | public: |
---|
1000 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
1001 | typedef typename Parent::Key Key; |
---|
1002 | typedef typename Parent::Value Value; |
---|
1003 | |
---|
1004 | /// Constructor |
---|
1005 | |
---|
1006 | /// Constructor. |
---|
1007 | /// \param m The undelying map. |
---|
1008 | /// \param v The constant value. |
---|
1009 | ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
---|
1010 | /// \e |
---|
1011 | Value operator[](const Key &k) const { return _m[k]+_v; } |
---|
1012 | }; |
---|
1013 | |
---|
1014 | /// Shifts a map with a constant (read-write version). |
---|
1015 | |
---|
1016 | /// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
---|
1017 | /// of the given map and a constant value (i.e. it shifts the map with |
---|
1018 | /// the constant). Its \c Key and \c Value are inherited from \c M. |
---|
1019 | /// It makes also possible to write the map. |
---|
1020 | /// |
---|
1021 | /// The simplest way of using this map is through the shiftWriteMap() |
---|
1022 | /// function. |
---|
1023 | /// |
---|
1024 | /// \sa ShiftMap |
---|
1025 | template<typename M, typename C = typename M::Value> |
---|
1026 | class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1027 | M &_m; |
---|
1028 | C _v; |
---|
1029 | public: |
---|
1030 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
1031 | typedef typename Parent::Key Key; |
---|
1032 | typedef typename Parent::Value Value; |
---|
1033 | |
---|
1034 | /// Constructor |
---|
1035 | |
---|
1036 | /// Constructor. |
---|
1037 | /// \param m The undelying map. |
---|
1038 | /// \param v The constant value. |
---|
1039 | ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
---|
1040 | /// \e |
---|
1041 | Value operator[](const Key &k) const { return _m[k]+_v; } |
---|
1042 | /// \e |
---|
1043 | void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
---|
1044 | }; |
---|
1045 | |
---|
1046 | /// Returns a \ref ShiftMap class |
---|
1047 | |
---|
1048 | /// This function just returns a \ref ShiftMap class. |
---|
1049 | /// |
---|
1050 | /// For example, if \c m is a map with \c double values and \c v is |
---|
1051 | /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
---|
1052 | /// <tt>m[x]+v</tt>. |
---|
1053 | /// |
---|
1054 | /// \relates ShiftMap |
---|
1055 | template<typename M, typename C> |
---|
1056 | inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
---|
1057 | return ShiftMap<M, C>(m,v); |
---|
1058 | } |
---|
1059 | |
---|
1060 | /// Returns a \ref ShiftWriteMap class |
---|
1061 | |
---|
1062 | /// This function just returns a \ref ShiftWriteMap class. |
---|
1063 | /// |
---|
1064 | /// For example, if \c m is a map with \c double values and \c v is |
---|
1065 | /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
---|
1066 | /// <tt>m[x]+v</tt>. |
---|
1067 | /// Moreover it makes also possible to write the map. |
---|
1068 | /// |
---|
1069 | /// \relates ShiftWriteMap |
---|
1070 | template<typename M, typename C> |
---|
1071 | inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
---|
1072 | return ShiftWriteMap<M, C>(m,v); |
---|
1073 | } |
---|
1074 | |
---|
1075 | |
---|
1076 | /// Scales a map with a constant. |
---|
1077 | |
---|
1078 | /// This \ref concepts::ReadMap "read-only map" returns the value of |
---|
1079 | /// the given map multiplied from the left side with a constant value. |
---|
1080 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1081 | /// |
---|
1082 | /// Actually, |
---|
1083 | /// \code |
---|
1084 | /// ScaleMap<M> sc(m,v); |
---|
1085 | /// \endcode |
---|
1086 | /// is equivalent to |
---|
1087 | /// \code |
---|
1088 | /// ConstMap<M::Key, M::Value> cm(v); |
---|
1089 | /// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
---|
1090 | /// \endcode |
---|
1091 | /// |
---|
1092 | /// The simplest way of using this map is through the scaleMap() |
---|
1093 | /// function. |
---|
1094 | /// |
---|
1095 | /// \sa ScaleWriteMap |
---|
1096 | template<typename M, typename C = typename M::Value> |
---|
1097 | class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1098 | const M &_m; |
---|
1099 | C _v; |
---|
1100 | public: |
---|
1101 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
1102 | typedef typename Parent::Key Key; |
---|
1103 | typedef typename Parent::Value Value; |
---|
1104 | |
---|
1105 | /// Constructor |
---|
1106 | |
---|
1107 | /// Constructor. |
---|
1108 | /// \param m The undelying map. |
---|
1109 | /// \param v The constant value. |
---|
1110 | ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
---|
1111 | /// \e |
---|
1112 | Value operator[](const Key &k) const { return _v*_m[k]; } |
---|
1113 | }; |
---|
1114 | |
---|
1115 | /// Scales a map with a constant (read-write version). |
---|
1116 | |
---|
1117 | /// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
---|
1118 | /// the given map multiplied from the left side with a constant value. |
---|
1119 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1120 | /// It can also be used as write map if the \c / operator is defined |
---|
1121 | /// between \c Value and \c C and the given multiplier is not zero. |
---|
1122 | /// |
---|
1123 | /// The simplest way of using this map is through the scaleWriteMap() |
---|
1124 | /// function. |
---|
1125 | /// |
---|
1126 | /// \sa ScaleMap |
---|
1127 | template<typename M, typename C = typename M::Value> |
---|
1128 | class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1129 | M &_m; |
---|
1130 | C _v; |
---|
1131 | public: |
---|
1132 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
1133 | typedef typename Parent::Key Key; |
---|
1134 | typedef typename Parent::Value Value; |
---|
1135 | |
---|
1136 | /// Constructor |
---|
1137 | |
---|
1138 | /// Constructor. |
---|
1139 | /// \param m The undelying map. |
---|
1140 | /// \param v The constant value. |
---|
1141 | ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
---|
1142 | /// \e |
---|
1143 | Value operator[](const Key &k) const { return _v*_m[k]; } |
---|
1144 | /// \e |
---|
1145 | void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
---|
1146 | }; |
---|
1147 | |
---|
1148 | /// Returns a \ref ScaleMap class |
---|
1149 | |
---|
1150 | /// This function just returns a \ref ScaleMap class. |
---|
1151 | /// |
---|
1152 | /// For example, if \c m is a map with \c double values and \c v is |
---|
1153 | /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
---|
1154 | /// <tt>v*m[x]</tt>. |
---|
1155 | /// |
---|
1156 | /// \relates ScaleMap |
---|
1157 | template<typename M, typename C> |
---|
1158 | inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
---|
1159 | return ScaleMap<M, C>(m,v); |
---|
1160 | } |
---|
1161 | |
---|
1162 | /// Returns a \ref ScaleWriteMap class |
---|
1163 | |
---|
1164 | /// This function just returns a \ref ScaleWriteMap class. |
---|
1165 | /// |
---|
1166 | /// For example, if \c m is a map with \c double values and \c v is |
---|
1167 | /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
---|
1168 | /// <tt>v*m[x]</tt>. |
---|
1169 | /// Moreover it makes also possible to write the map. |
---|
1170 | /// |
---|
1171 | /// \relates ScaleWriteMap |
---|
1172 | template<typename M, typename C> |
---|
1173 | inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
---|
1174 | return ScaleWriteMap<M, C>(m,v); |
---|
1175 | } |
---|
1176 | |
---|
1177 | |
---|
1178 | /// Negative of a map |
---|
1179 | |
---|
1180 | /// This \ref concepts::ReadMap "read-only map" returns the negative |
---|
1181 | /// of the values of the given map (using the unary \c - operator). |
---|
1182 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1183 | /// |
---|
1184 | /// If M::Value is \c int, \c double etc., then |
---|
1185 | /// \code |
---|
1186 | /// NegMap<M> neg(m); |
---|
1187 | /// \endcode |
---|
1188 | /// is equivalent to |
---|
1189 | /// \code |
---|
1190 | /// ScaleMap<M> neg(m,-1); |
---|
1191 | /// \endcode |
---|
1192 | /// |
---|
1193 | /// The simplest way of using this map is through the negMap() |
---|
1194 | /// function. |
---|
1195 | /// |
---|
1196 | /// \sa NegWriteMap |
---|
1197 | template<typename M> |
---|
1198 | class NegMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1199 | const M& _m; |
---|
1200 | public: |
---|
1201 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
1202 | typedef typename Parent::Key Key; |
---|
1203 | typedef typename Parent::Value Value; |
---|
1204 | |
---|
1205 | /// Constructor |
---|
1206 | NegMap(const M &m) : _m(m) {} |
---|
1207 | /// \e |
---|
1208 | Value operator[](const Key &k) const { return -_m[k]; } |
---|
1209 | }; |
---|
1210 | |
---|
1211 | /// Negative of a map (read-write version) |
---|
1212 | |
---|
1213 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
---|
1214 | /// negative of the values of the given map (using the unary \c - |
---|
1215 | /// operator). |
---|
1216 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1217 | /// It makes also possible to write the map. |
---|
1218 | /// |
---|
1219 | /// If M::Value is \c int, \c double etc., then |
---|
1220 | /// \code |
---|
1221 | /// NegWriteMap<M> neg(m); |
---|
1222 | /// \endcode |
---|
1223 | /// is equivalent to |
---|
1224 | /// \code |
---|
1225 | /// ScaleWriteMap<M> neg(m,-1); |
---|
1226 | /// \endcode |
---|
1227 | /// |
---|
1228 | /// The simplest way of using this map is through the negWriteMap() |
---|
1229 | /// function. |
---|
1230 | /// |
---|
1231 | /// \sa NegMap |
---|
1232 | template<typename M> |
---|
1233 | class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1234 | M &_m; |
---|
1235 | public: |
---|
1236 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
1237 | typedef typename Parent::Key Key; |
---|
1238 | typedef typename Parent::Value Value; |
---|
1239 | |
---|
1240 | /// Constructor |
---|
1241 | NegWriteMap(M &m) : _m(m) {} |
---|
1242 | /// \e |
---|
1243 | Value operator[](const Key &k) const { return -_m[k]; } |
---|
1244 | /// \e |
---|
1245 | void set(const Key &k, const Value &v) { _m.set(k, -v); } |
---|
1246 | }; |
---|
1247 | |
---|
1248 | /// Returns a \ref NegMap class |
---|
1249 | |
---|
1250 | /// This function just returns a \ref NegMap class. |
---|
1251 | /// |
---|
1252 | /// For example, if \c m is a map with \c double values, then |
---|
1253 | /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
---|
1254 | /// |
---|
1255 | /// \relates NegMap |
---|
1256 | template <typename M> |
---|
1257 | inline NegMap<M> negMap(const M &m) { |
---|
1258 | return NegMap<M>(m); |
---|
1259 | } |
---|
1260 | |
---|
1261 | /// Returns a \ref NegWriteMap class |
---|
1262 | |
---|
1263 | /// This function just returns a \ref NegWriteMap class. |
---|
1264 | /// |
---|
1265 | /// For example, if \c m is a map with \c double values, then |
---|
1266 | /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
---|
1267 | /// Moreover it makes also possible to write the map. |
---|
1268 | /// |
---|
1269 | /// \relates NegWriteMap |
---|
1270 | template <typename M> |
---|
1271 | inline NegWriteMap<M> negWriteMap(M &m) { |
---|
1272 | return NegWriteMap<M>(m); |
---|
1273 | } |
---|
1274 | |
---|
1275 | |
---|
1276 | /// Absolute value of a map |
---|
1277 | |
---|
1278 | /// This \ref concepts::ReadMap "read-only map" returns the absolute |
---|
1279 | /// value of the values of the given map. |
---|
1280 | /// Its \c Key and \c Value are inherited from \c M. |
---|
1281 | /// \c Value must be comparable to \c 0 and the unary \c - |
---|
1282 | /// operator must be defined for it, of course. |
---|
1283 | /// |
---|
1284 | /// The simplest way of using this map is through the absMap() |
---|
1285 | /// function. |
---|
1286 | template<typename M> |
---|
1287 | class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
---|
1288 | const M &_m; |
---|
1289 | public: |
---|
1290 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
1291 | typedef typename Parent::Key Key; |
---|
1292 | typedef typename Parent::Value Value; |
---|
1293 | |
---|
1294 | /// Constructor |
---|
1295 | AbsMap(const M &m) : _m(m) {} |
---|
1296 | /// \e |
---|
1297 | Value operator[](const Key &k) const { |
---|
1298 | Value tmp = _m[k]; |
---|
1299 | return tmp >= 0 ? tmp : -tmp; |
---|
1300 | } |
---|
1301 | |
---|
1302 | }; |
---|
1303 | |
---|
1304 | /// Returns an \ref AbsMap class |
---|
1305 | |
---|
1306 | /// This function just returns an \ref AbsMap class. |
---|
1307 | /// |
---|
1308 | /// For example, if \c m is a map with \c double values, then |
---|
1309 | /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
---|
1310 | /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
---|
1311 | /// negative. |
---|
1312 | /// |
---|
1313 | /// \relates AbsMap |
---|
1314 | template<typename M> |
---|
1315 | inline AbsMap<M> absMap(const M &m) { |
---|
1316 | return AbsMap<M>(m); |
---|
1317 | } |
---|
1318 | |
---|
1319 | /// @} |
---|
1320 | |
---|
1321 | // Logical maps and map adaptors: |
---|
1322 | |
---|
1323 | /// \addtogroup maps |
---|
1324 | /// @{ |
---|
1325 | |
---|
1326 | /// Constant \c true map. |
---|
1327 | |
---|
1328 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
---|
1329 | /// each key. |
---|
1330 | /// |
---|
1331 | /// Note that |
---|
1332 | /// \code |
---|
1333 | /// TrueMap<K> tm; |
---|
1334 | /// \endcode |
---|
1335 | /// is equivalent to |
---|
1336 | /// \code |
---|
1337 | /// ConstMap<K,bool> tm(true); |
---|
1338 | /// \endcode |
---|
1339 | /// |
---|
1340 | /// \sa FalseMap |
---|
1341 | /// \sa ConstMap |
---|
1342 | template <typename K> |
---|
1343 | class TrueMap : public MapBase<K, bool> { |
---|
1344 | public: |
---|
1345 | typedef MapBase<K, bool> Parent; |
---|
1346 | typedef typename Parent::Key Key; |
---|
1347 | typedef typename Parent::Value Value; |
---|
1348 | |
---|
1349 | /// Gives back \c true. |
---|
1350 | Value operator[](const Key&) const { return true; } |
---|
1351 | }; |
---|
1352 | |
---|
1353 | /// Returns a \ref TrueMap class |
---|
1354 | |
---|
1355 | /// This function just returns a \ref TrueMap class. |
---|
1356 | /// \relates TrueMap |
---|
1357 | template<typename K> |
---|
1358 | inline TrueMap<K> trueMap() { |
---|
1359 | return TrueMap<K>(); |
---|
1360 | } |
---|
1361 | |
---|
1362 | |
---|
1363 | /// Constant \c false map. |
---|
1364 | |
---|
1365 | /// This \ref concepts::ReadMap "read-only map" assigns \c false to |
---|
1366 | /// each key. |
---|
1367 | /// |
---|
1368 | /// Note that |
---|
1369 | /// \code |
---|
1370 | /// FalseMap<K> fm; |
---|
1371 | /// \endcode |
---|
1372 | /// is equivalent to |
---|
1373 | /// \code |
---|
1374 | /// ConstMap<K,bool> fm(false); |
---|
1375 | /// \endcode |
---|
1376 | /// |
---|
1377 | /// \sa TrueMap |
---|
1378 | /// \sa ConstMap |
---|
1379 | template <typename K> |
---|
1380 | class FalseMap : public MapBase<K, bool> { |
---|
1381 | public: |
---|
1382 | typedef MapBase<K, bool> Parent; |
---|
1383 | typedef typename Parent::Key Key; |
---|
1384 | typedef typename Parent::Value Value; |
---|
1385 | |
---|
1386 | /// Gives back \c false. |
---|
1387 | Value operator[](const Key&) const { return false; } |
---|
1388 | }; |
---|
1389 | |
---|
1390 | /// Returns a \ref FalseMap class |
---|
1391 | |
---|
1392 | /// This function just returns a \ref FalseMap class. |
---|
1393 | /// \relates FalseMap |
---|
1394 | template<typename K> |
---|
1395 | inline FalseMap<K> falseMap() { |
---|
1396 | return FalseMap<K>(); |
---|
1397 | } |
---|
1398 | |
---|
1399 | /// @} |
---|
1400 | |
---|
1401 | /// \addtogroup map_adaptors |
---|
1402 | /// @{ |
---|
1403 | |
---|
1404 | /// Logical 'and' of two maps |
---|
1405 | |
---|
1406 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
---|
1407 | /// 'and' of the values of the two given maps. |
---|
1408 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
1409 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
1410 | /// |
---|
1411 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
1412 | /// \code |
---|
1413 | /// AndMap<M1,M2> am(m1,m2); |
---|
1414 | /// \endcode |
---|
1415 | /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
---|
1416 | /// |
---|
1417 | /// The simplest way of using this map is through the andMap() |
---|
1418 | /// function. |
---|
1419 | /// |
---|
1420 | /// \sa OrMap |
---|
1421 | /// \sa NotMap, NotWriteMap |
---|
1422 | template<typename M1, typename M2> |
---|
1423 | class AndMap : public MapBase<typename M1::Key, bool> { |
---|
1424 | const M1 &_m1; |
---|
1425 | const M2 &_m2; |
---|
1426 | public: |
---|
1427 | typedef MapBase<typename M1::Key, bool> Parent; |
---|
1428 | typedef typename Parent::Key Key; |
---|
1429 | typedef typename Parent::Value Value; |
---|
1430 | |
---|
1431 | /// Constructor |
---|
1432 | AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
1433 | /// \e |
---|
1434 | Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
---|
1435 | }; |
---|
1436 | |
---|
1437 | /// Returns an \ref AndMap class |
---|
1438 | |
---|
1439 | /// This function just returns an \ref AndMap class. |
---|
1440 | /// |
---|
1441 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
---|
1442 | /// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
---|
1443 | /// <tt>m1[x]&&m2[x]</tt>. |
---|
1444 | /// |
---|
1445 | /// \relates AndMap |
---|
1446 | template<typename M1, typename M2> |
---|
1447 | inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
---|
1448 | return AndMap<M1, M2>(m1,m2); |
---|
1449 | } |
---|
1450 | |
---|
1451 | |
---|
1452 | /// Logical 'or' of two maps |
---|
1453 | |
---|
1454 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
---|
1455 | /// 'or' of the values of the two given maps. |
---|
1456 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
1457 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
1458 | /// |
---|
1459 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
1460 | /// \code |
---|
1461 | /// OrMap<M1,M2> om(m1,m2); |
---|
1462 | /// \endcode |
---|
1463 | /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
---|
1464 | /// |
---|
1465 | /// The simplest way of using this map is through the orMap() |
---|
1466 | /// function. |
---|
1467 | /// |
---|
1468 | /// \sa AndMap |
---|
1469 | /// \sa NotMap, NotWriteMap |
---|
1470 | template<typename M1, typename M2> |
---|
1471 | class OrMap : public MapBase<typename M1::Key, bool> { |
---|
1472 | const M1 &_m1; |
---|
1473 | const M2 &_m2; |
---|
1474 | public: |
---|
1475 | typedef MapBase<typename M1::Key, bool> Parent; |
---|
1476 | typedef typename Parent::Key Key; |
---|
1477 | typedef typename Parent::Value Value; |
---|
1478 | |
---|
1479 | /// Constructor |
---|
1480 | OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
1481 | /// \e |
---|
1482 | Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
---|
1483 | }; |
---|
1484 | |
---|
1485 | /// Returns an \ref OrMap class |
---|
1486 | |
---|
1487 | /// This function just returns an \ref OrMap class. |
---|
1488 | /// |
---|
1489 | /// For example, if \c m1 and \c m2 are both maps with \c bool values, |
---|
1490 | /// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
---|
1491 | /// <tt>m1[x]||m2[x]</tt>. |
---|
1492 | /// |
---|
1493 | /// \relates OrMap |
---|
1494 | template<typename M1, typename M2> |
---|
1495 | inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
---|
1496 | return OrMap<M1, M2>(m1,m2); |
---|
1497 | } |
---|
1498 | |
---|
1499 | |
---|
1500 | /// Logical 'not' of a map |
---|
1501 | |
---|
1502 | /// This \ref concepts::ReadMap "read-only map" returns the logical |
---|
1503 | /// negation of the values of the given map. |
---|
1504 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
---|
1505 | /// |
---|
1506 | /// The simplest way of using this map is through the notMap() |
---|
1507 | /// function. |
---|
1508 | /// |
---|
1509 | /// \sa NotWriteMap |
---|
1510 | template <typename M> |
---|
1511 | class NotMap : public MapBase<typename M::Key, bool> { |
---|
1512 | const M &_m; |
---|
1513 | public: |
---|
1514 | typedef MapBase<typename M::Key, bool> Parent; |
---|
1515 | typedef typename Parent::Key Key; |
---|
1516 | typedef typename Parent::Value Value; |
---|
1517 | |
---|
1518 | /// Constructor |
---|
1519 | NotMap(const M &m) : _m(m) {} |
---|
1520 | /// \e |
---|
1521 | Value operator[](const Key &k) const { return !_m[k]; } |
---|
1522 | }; |
---|
1523 | |
---|
1524 | /// Logical 'not' of a map (read-write version) |
---|
1525 | |
---|
1526 | /// This \ref concepts::ReadWriteMap "read-write map" returns the |
---|
1527 | /// logical negation of the values of the given map. |
---|
1528 | /// Its \c Key is inherited from \c M and its \c Value is \c bool. |
---|
1529 | /// It makes also possible to write the map. When a value is set, |
---|
1530 | /// the opposite value is set to the original map. |
---|
1531 | /// |
---|
1532 | /// The simplest way of using this map is through the notWriteMap() |
---|
1533 | /// function. |
---|
1534 | /// |
---|
1535 | /// \sa NotMap |
---|
1536 | template <typename M> |
---|
1537 | class NotWriteMap : public MapBase<typename M::Key, bool> { |
---|
1538 | M &_m; |
---|
1539 | public: |
---|
1540 | typedef MapBase<typename M::Key, bool> Parent; |
---|
1541 | typedef typename Parent::Key Key; |
---|
1542 | typedef typename Parent::Value Value; |
---|
1543 | |
---|
1544 | /// Constructor |
---|
1545 | NotWriteMap(M &m) : _m(m) {} |
---|
1546 | /// \e |
---|
1547 | Value operator[](const Key &k) const { return !_m[k]; } |
---|
1548 | /// \e |
---|
1549 | void set(const Key &k, bool v) { _m.set(k, !v); } |
---|
1550 | }; |
---|
1551 | |
---|
1552 | /// Returns a \ref NotMap class |
---|
1553 | |
---|
1554 | /// This function just returns a \ref NotMap class. |
---|
1555 | /// |
---|
1556 | /// For example, if \c m is a map with \c bool values, then |
---|
1557 | /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
---|
1558 | /// |
---|
1559 | /// \relates NotMap |
---|
1560 | template <typename M> |
---|
1561 | inline NotMap<M> notMap(const M &m) { |
---|
1562 | return NotMap<M>(m); |
---|
1563 | } |
---|
1564 | |
---|
1565 | /// Returns a \ref NotWriteMap class |
---|
1566 | |
---|
1567 | /// This function just returns a \ref NotWriteMap class. |
---|
1568 | /// |
---|
1569 | /// For example, if \c m is a map with \c bool values, then |
---|
1570 | /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
---|
1571 | /// Moreover it makes also possible to write the map. |
---|
1572 | /// |
---|
1573 | /// \relates NotWriteMap |
---|
1574 | template <typename M> |
---|
1575 | inline NotWriteMap<M> notWriteMap(M &m) { |
---|
1576 | return NotWriteMap<M>(m); |
---|
1577 | } |
---|
1578 | |
---|
1579 | |
---|
1580 | /// Combination of two maps using the \c == operator |
---|
1581 | |
---|
1582 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
---|
1583 | /// the keys for which the corresponding values of the two maps are |
---|
1584 | /// equal. |
---|
1585 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
1586 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
1587 | /// |
---|
1588 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
1589 | /// \code |
---|
1590 | /// EqualMap<M1,M2> em(m1,m2); |
---|
1591 | /// \endcode |
---|
1592 | /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
---|
1593 | /// |
---|
1594 | /// The simplest way of using this map is through the equalMap() |
---|
1595 | /// function. |
---|
1596 | /// |
---|
1597 | /// \sa LessMap |
---|
1598 | template<typename M1, typename M2> |
---|
1599 | class EqualMap : public MapBase<typename M1::Key, bool> { |
---|
1600 | const M1 &_m1; |
---|
1601 | const M2 &_m2; |
---|
1602 | public: |
---|
1603 | typedef MapBase<typename M1::Key, bool> Parent; |
---|
1604 | typedef typename Parent::Key Key; |
---|
1605 | typedef typename Parent::Value Value; |
---|
1606 | |
---|
1607 | /// Constructor |
---|
1608 | EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
1609 | /// \e |
---|
1610 | Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
---|
1611 | }; |
---|
1612 | |
---|
1613 | /// Returns an \ref EqualMap class |
---|
1614 | |
---|
1615 | /// This function just returns an \ref EqualMap class. |
---|
1616 | /// |
---|
1617 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
---|
1618 | /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
---|
1619 | /// <tt>m1[x]==m2[x]</tt>. |
---|
1620 | /// |
---|
1621 | /// \relates EqualMap |
---|
1622 | template<typename M1, typename M2> |
---|
1623 | inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
---|
1624 | return EqualMap<M1, M2>(m1,m2); |
---|
1625 | } |
---|
1626 | |
---|
1627 | |
---|
1628 | /// Combination of two maps using the \c < operator |
---|
1629 | |
---|
1630 | /// This \ref concepts::ReadMap "read-only map" assigns \c true to |
---|
1631 | /// the keys for which the corresponding value of the first map is |
---|
1632 | /// less then the value of the second map. |
---|
1633 | /// Its \c Key type is inherited from \c M1 and its \c Value type is |
---|
1634 | /// \c bool. \c M2::Key must be convertible to \c M1::Key. |
---|
1635 | /// |
---|
1636 | /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
---|
1637 | /// \code |
---|
1638 | /// LessMap<M1,M2> lm(m1,m2); |
---|
1639 | /// \endcode |
---|
1640 | /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
---|
1641 | /// |
---|
1642 | /// The simplest way of using this map is through the lessMap() |
---|
1643 | /// function. |
---|
1644 | /// |
---|
1645 | /// \sa EqualMap |
---|
1646 | template<typename M1, typename M2> |
---|
1647 | class LessMap : public MapBase<typename M1::Key, bool> { |
---|
1648 | const M1 &_m1; |
---|
1649 | const M2 &_m2; |
---|
1650 | public: |
---|
1651 | typedef MapBase<typename M1::Key, bool> Parent; |
---|
1652 | typedef typename Parent::Key Key; |
---|
1653 | typedef typename Parent::Value Value; |
---|
1654 | |
---|
1655 | /// Constructor |
---|
1656 | LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
1657 | /// \e |
---|
1658 | Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
---|
1659 | }; |
---|
1660 | |
---|
1661 | /// Returns an \ref LessMap class |
---|
1662 | |
---|
1663 | /// This function just returns an \ref LessMap class. |
---|
1664 | /// |
---|
1665 | /// For example, if \c m1 and \c m2 are maps with keys and values of |
---|
1666 | /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
---|
1667 | /// <tt>m1[x]<m2[x]</tt>. |
---|
1668 | /// |
---|
1669 | /// \relates LessMap |
---|
1670 | template<typename M1, typename M2> |
---|
1671 | inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
---|
1672 | return LessMap<M1, M2>(m1,m2); |
---|
1673 | } |
---|
1674 | |
---|
1675 | namespace _maps_bits { |
---|
1676 | |
---|
1677 | template <typename _Iterator, typename Enable = void> |
---|
1678 | struct IteratorTraits { |
---|
1679 | typedef typename std::iterator_traits<_Iterator>::value_type Value; |
---|
1680 | }; |
---|
1681 | |
---|
1682 | template <typename _Iterator> |
---|
1683 | struct IteratorTraits<_Iterator, |
---|
1684 | typename exists<typename _Iterator::container_type>::type> |
---|
1685 | { |
---|
1686 | typedef typename _Iterator::container_type::value_type Value; |
---|
1687 | }; |
---|
1688 | |
---|
1689 | } |
---|
1690 | |
---|
1691 | /// \brief Writable bool map for logging each \c true assigned element |
---|
1692 | /// |
---|
1693 | /// A \ref concepts::WriteMap "writable" bool map for logging |
---|
1694 | /// each \c true assigned element, i.e it copies subsequently each |
---|
1695 | /// keys set to \c true to the given iterator. |
---|
1696 | /// The most important usage of it is storing certain nodes or arcs |
---|
1697 | /// that were marked \c true by an algorithm. |
---|
1698 | /// |
---|
1699 | /// There are several algorithms that provide solutions through bool |
---|
1700 | /// maps and most of them assign \c true at most once for each key. |
---|
1701 | /// In these cases it is a natural request to store each \c true |
---|
1702 | /// assigned elements (in order of the assignment), which can be |
---|
1703 | /// easily done with LoggerBoolMap. |
---|
1704 | /// |
---|
1705 | /// The simplest way of using this map is through the loggerBoolMap() |
---|
1706 | /// function. |
---|
1707 | /// |
---|
1708 | /// \tparam It The type of the iterator. |
---|
1709 | /// \tparam Ke The key type of the map. The default value set |
---|
1710 | /// according to the iterator type should work in most cases. |
---|
1711 | /// |
---|
1712 | /// \note The container of the iterator must contain enough space |
---|
1713 | /// for the elements or the iterator should be an inserter iterator. |
---|
1714 | #ifdef DOXYGEN |
---|
1715 | template <typename It, typename Ke> |
---|
1716 | #else |
---|
1717 | template <typename It, |
---|
1718 | typename Ke=typename _maps_bits::IteratorTraits<It>::Value> |
---|
1719 | #endif |
---|
1720 | class LoggerBoolMap { |
---|
1721 | public: |
---|
1722 | typedef It Iterator; |
---|
1723 | |
---|
1724 | typedef Ke Key; |
---|
1725 | typedef bool Value; |
---|
1726 | |
---|
1727 | /// Constructor |
---|
1728 | LoggerBoolMap(Iterator it) |
---|
1729 | : _begin(it), _end(it) {} |
---|
1730 | |
---|
1731 | /// Gives back the given iterator set for the first key |
---|
1732 | Iterator begin() const { |
---|
1733 | return _begin; |
---|
1734 | } |
---|
1735 | |
---|
1736 | /// Gives back the the 'after the last' iterator |
---|
1737 | Iterator end() const { |
---|
1738 | return _end; |
---|
1739 | } |
---|
1740 | |
---|
1741 | /// The set function of the map |
---|
1742 | void set(const Key& key, Value value) { |
---|
1743 | if (value) { |
---|
1744 | *_end++ = key; |
---|
1745 | } |
---|
1746 | } |
---|
1747 | |
---|
1748 | private: |
---|
1749 | Iterator _begin; |
---|
1750 | Iterator _end; |
---|
1751 | }; |
---|
1752 | |
---|
1753 | /// Returns a \ref LoggerBoolMap class |
---|
1754 | |
---|
1755 | /// This function just returns a \ref LoggerBoolMap class. |
---|
1756 | /// |
---|
1757 | /// The most important usage of it is storing certain nodes or arcs |
---|
1758 | /// that were marked \c true by an algorithm. |
---|
1759 | /// For example it makes easier to store the nodes in the processing |
---|
1760 | /// order of Dfs algorithm, as the following examples show. |
---|
1761 | /// \code |
---|
1762 | /// std::vector<Node> v; |
---|
1763 | /// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
---|
1764 | /// \endcode |
---|
1765 | /// \code |
---|
1766 | /// std::vector<Node> v(countNodes(g)); |
---|
1767 | /// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
---|
1768 | /// \endcode |
---|
1769 | /// |
---|
1770 | /// \note The container of the iterator must contain enough space |
---|
1771 | /// for the elements or the iterator should be an inserter iterator. |
---|
1772 | /// |
---|
1773 | /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
---|
1774 | /// it cannot be used when a readable map is needed, for example as |
---|
1775 | /// \c ReachedMap for \ref Bfs, \ref Dfs and \ref Dijkstra algorithms. |
---|
1776 | /// |
---|
1777 | /// \relates LoggerBoolMap |
---|
1778 | template<typename Iterator> |
---|
1779 | inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
---|
1780 | return LoggerBoolMap<Iterator>(it); |
---|
1781 | } |
---|
1782 | |
---|
1783 | /// @} |
---|
1784 | } |
---|
1785 | |
---|
1786 | #endif // LEMON_MAPS_H |
---|