| 1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|---|
| 2 | * |
|---|
| 3 | * This file is a part of LEMON, a generic C++ optimization library. |
|---|
| 4 | * |
|---|
| 5 | * Copyright (C) 2003-2009 |
|---|
| 6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 8 | * |
|---|
| 9 | * Permission to use, modify and distribute this software is granted |
|---|
| 10 | * provided that this copyright notice appears in all copies. For |
|---|
| 11 | * precise terms see the accompanying LICENSE file. |
|---|
| 12 | * |
|---|
| 13 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 14 | * express or implied, and with no claim as to its suitability for any |
|---|
| 15 | * purpose. |
|---|
| 16 | * |
|---|
| 17 | */ |
|---|
| 18 | |
|---|
| 19 | #ifndef LEMON_NETWORK_SIMPLEX_H |
|---|
| 20 | #define LEMON_NETWORK_SIMPLEX_H |
|---|
| 21 | |
|---|
| 22 | /// \ingroup min_cost_flow_algs |
|---|
| 23 | /// |
|---|
| 24 | /// \file |
|---|
| 25 | /// \brief Network Simplex algorithm for finding a minimum cost flow. |
|---|
| 26 | |
|---|
| 27 | #include <vector> |
|---|
| 28 | #include <limits> |
|---|
| 29 | #include <algorithm> |
|---|
| 30 | |
|---|
| 31 | #include <lemon/core.h> |
|---|
| 32 | #include <lemon/math.h> |
|---|
| 33 | |
|---|
| 34 | namespace lemon { |
|---|
| 35 | |
|---|
| 36 | /// \addtogroup min_cost_flow_algs |
|---|
| 37 | /// @{ |
|---|
| 38 | |
|---|
| 39 | /// \brief Implementation of the primal Network Simplex algorithm |
|---|
| 40 | /// for finding a \ref min_cost_flow "minimum cost flow". |
|---|
| 41 | /// |
|---|
| 42 | /// \ref NetworkSimplex implements the primal Network Simplex algorithm |
|---|
| 43 | /// for finding a \ref min_cost_flow "minimum cost flow" |
|---|
| 44 | /// \ref amo93networkflows, \ref dantzig63linearprog, |
|---|
| 45 | /// \ref kellyoneill91netsimplex. |
|---|
| 46 | /// This algorithm is a specialized version of the linear programming |
|---|
| 47 | /// simplex method directly for the minimum cost flow problem. |
|---|
| 48 | /// It is one of the most efficient solution methods. |
|---|
| 49 | /// |
|---|
| 50 | /// In general this class is the fastest implementation available |
|---|
| 51 | /// in LEMON for the minimum cost flow problem. |
|---|
| 52 | /// Moreover it supports both directions of the supply/demand inequality |
|---|
| 53 | /// constraints. For more information, see \ref SupplyType. |
|---|
| 54 | /// |
|---|
| 55 | /// Most of the parameters of the problem (except for the digraph) |
|---|
| 56 | /// can be given using separate functions, and the algorithm can be |
|---|
| 57 | /// executed using the \ref run() function. If some parameters are not |
|---|
| 58 | /// specified, then default values will be used. |
|---|
| 59 | /// |
|---|
| 60 | /// \tparam GR The digraph type the algorithm runs on. |
|---|
| 61 | /// \tparam V The value type used for flow amounts, capacity bounds |
|---|
| 62 | /// and supply values in the algorithm. By default, it is \c int. |
|---|
| 63 | /// \tparam C The value type used for costs and potentials in the |
|---|
| 64 | /// algorithm. By default, it is the same as \c V. |
|---|
| 65 | /// |
|---|
| 66 | /// \warning Both value types must be signed and all input data must |
|---|
| 67 | /// be integer. |
|---|
| 68 | /// |
|---|
| 69 | /// \note %NetworkSimplex provides five different pivot rule |
|---|
| 70 | /// implementations, from which the most efficient one is used |
|---|
| 71 | /// by default. For more information, see \ref PivotRule. |
|---|
| 72 | template <typename GR, typename V = int, typename C = V> |
|---|
| 73 | class NetworkSimplex |
|---|
| 74 | { |
|---|
| 75 | public: |
|---|
| 76 | |
|---|
| 77 | /// The type of the flow amounts, capacity bounds and supply values |
|---|
| 78 | typedef V Value; |
|---|
| 79 | /// The type of the arc costs |
|---|
| 80 | typedef C Cost; |
|---|
| 81 | |
|---|
| 82 | public: |
|---|
| 83 | |
|---|
| 84 | /// \brief Problem type constants for the \c run() function. |
|---|
| 85 | /// |
|---|
| 86 | /// Enum type containing the problem type constants that can be |
|---|
| 87 | /// returned by the \ref run() function of the algorithm. |
|---|
| 88 | enum ProblemType { |
|---|
| 89 | /// The problem has no feasible solution (flow). |
|---|
| 90 | INFEASIBLE, |
|---|
| 91 | /// The problem has optimal solution (i.e. it is feasible and |
|---|
| 92 | /// bounded), and the algorithm has found optimal flow and node |
|---|
| 93 | /// potentials (primal and dual solutions). |
|---|
| 94 | OPTIMAL, |
|---|
| 95 | /// The objective function of the problem is unbounded, i.e. |
|---|
| 96 | /// there is a directed cycle having negative total cost and |
|---|
| 97 | /// infinite upper bound. |
|---|
| 98 | UNBOUNDED |
|---|
| 99 | }; |
|---|
| 100 | |
|---|
| 101 | /// \brief Constants for selecting the type of the supply constraints. |
|---|
| 102 | /// |
|---|
| 103 | /// Enum type containing constants for selecting the supply type, |
|---|
| 104 | /// i.e. the direction of the inequalities in the supply/demand |
|---|
| 105 | /// constraints of the \ref min_cost_flow "minimum cost flow problem". |
|---|
| 106 | /// |
|---|
| 107 | /// The default supply type is \c GEQ, the \c LEQ type can be |
|---|
| 108 | /// selected using \ref supplyType(). |
|---|
| 109 | /// The equality form is a special case of both supply types. |
|---|
| 110 | enum SupplyType { |
|---|
| 111 | /// This option means that there are <em>"greater or equal"</em> |
|---|
| 112 | /// supply/demand constraints in the definition of the problem. |
|---|
| 113 | GEQ, |
|---|
| 114 | /// This option means that there are <em>"less or equal"</em> |
|---|
| 115 | /// supply/demand constraints in the definition of the problem. |
|---|
| 116 | LEQ |
|---|
| 117 | }; |
|---|
| 118 | |
|---|
| 119 | /// \brief Constants for selecting the pivot rule. |
|---|
| 120 | /// |
|---|
| 121 | /// Enum type containing constants for selecting the pivot rule for |
|---|
| 122 | /// the \ref run() function. |
|---|
| 123 | /// |
|---|
| 124 | /// \ref NetworkSimplex provides five different pivot rule |
|---|
| 125 | /// implementations that significantly affect the running time |
|---|
| 126 | /// of the algorithm. |
|---|
| 127 | /// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
|---|
| 128 | /// proved to be the most efficient and the most robust on various |
|---|
| 129 | /// test inputs according to our benchmark tests. |
|---|
| 130 | /// However, another pivot rule can be selected using the \ref run() |
|---|
| 131 | /// function with the proper parameter. |
|---|
| 132 | enum PivotRule { |
|---|
| 133 | |
|---|
| 134 | /// The \e First \e Eligible pivot rule. |
|---|
| 135 | /// The next eligible arc is selected in a wraparound fashion |
|---|
| 136 | /// in every iteration. |
|---|
| 137 | FIRST_ELIGIBLE, |
|---|
| 138 | |
|---|
| 139 | /// The \e Best \e Eligible pivot rule. |
|---|
| 140 | /// The best eligible arc is selected in every iteration. |
|---|
| 141 | BEST_ELIGIBLE, |
|---|
| 142 | |
|---|
| 143 | /// The \e Block \e Search pivot rule. |
|---|
| 144 | /// A specified number of arcs are examined in every iteration |
|---|
| 145 | /// in a wraparound fashion and the best eligible arc is selected |
|---|
| 146 | /// from this block. |
|---|
| 147 | BLOCK_SEARCH, |
|---|
| 148 | |
|---|
| 149 | /// The \e Candidate \e List pivot rule. |
|---|
| 150 | /// In a major iteration a candidate list is built from eligible arcs |
|---|
| 151 | /// in a wraparound fashion and in the following minor iterations |
|---|
| 152 | /// the best eligible arc is selected from this list. |
|---|
| 153 | CANDIDATE_LIST, |
|---|
| 154 | |
|---|
| 155 | /// The \e Altering \e Candidate \e List pivot rule. |
|---|
| 156 | /// It is a modified version of the Candidate List method. |
|---|
| 157 | /// It keeps only the several best eligible arcs from the former |
|---|
| 158 | /// candidate list and extends this list in every iteration. |
|---|
| 159 | ALTERING_LIST |
|---|
| 160 | }; |
|---|
| 161 | |
|---|
| 162 | private: |
|---|
| 163 | |
|---|
| 164 | TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|---|
| 165 | |
|---|
| 166 | typedef std::vector<int> IntVector; |
|---|
| 167 | typedef std::vector<bool> BoolVector; |
|---|
| 168 | typedef std::vector<Value> ValueVector; |
|---|
| 169 | typedef std::vector<Cost> CostVector; |
|---|
| 170 | |
|---|
| 171 | // State constants for arcs |
|---|
| 172 | enum ArcStateEnum { |
|---|
| 173 | STATE_UPPER = -1, |
|---|
| 174 | STATE_TREE = 0, |
|---|
| 175 | STATE_LOWER = 1 |
|---|
| 176 | }; |
|---|
| 177 | |
|---|
| 178 | private: |
|---|
| 179 | |
|---|
| 180 | // Data related to the underlying digraph |
|---|
| 181 | const GR &_graph; |
|---|
| 182 | int _node_num; |
|---|
| 183 | int _arc_num; |
|---|
| 184 | int _all_arc_num; |
|---|
| 185 | int _search_arc_num; |
|---|
| 186 | |
|---|
| 187 | // Parameters of the problem |
|---|
| 188 | bool _have_lower; |
|---|
| 189 | SupplyType _stype; |
|---|
| 190 | Value _sum_supply; |
|---|
| 191 | |
|---|
| 192 | // Data structures for storing the digraph |
|---|
| 193 | IntNodeMap _node_id; |
|---|
| 194 | IntArcMap _arc_id; |
|---|
| 195 | IntVector _source; |
|---|
| 196 | IntVector _target; |
|---|
| 197 | |
|---|
| 198 | // Node and arc data |
|---|
| 199 | ValueVector _lower; |
|---|
| 200 | ValueVector _upper; |
|---|
| 201 | ValueVector _cap; |
|---|
| 202 | CostVector _cost; |
|---|
| 203 | ValueVector _supply; |
|---|
| 204 | ValueVector _flow; |
|---|
| 205 | CostVector _pi; |
|---|
| 206 | |
|---|
| 207 | // Data for storing the spanning tree structure |
|---|
| 208 | IntVector _parent; |
|---|
| 209 | IntVector _pred; |
|---|
| 210 | IntVector _thread; |
|---|
| 211 | IntVector _rev_thread; |
|---|
| 212 | IntVector _succ_num; |
|---|
| 213 | IntVector _last_succ; |
|---|
| 214 | IntVector _dirty_revs; |
|---|
| 215 | BoolVector _forward; |
|---|
| 216 | IntVector _state; |
|---|
| 217 | int _root; |
|---|
| 218 | |
|---|
| 219 | // Temporary data used in the current pivot iteration |
|---|
| 220 | int in_arc, join, u_in, v_in, u_out, v_out; |
|---|
| 221 | int first, second, right, last; |
|---|
| 222 | int stem, par_stem, new_stem; |
|---|
| 223 | Value delta; |
|---|
| 224 | |
|---|
| 225 | public: |
|---|
| 226 | |
|---|
| 227 | /// \brief Constant for infinite upper bounds (capacities). |
|---|
| 228 | /// |
|---|
| 229 | /// Constant for infinite upper bounds (capacities). |
|---|
| 230 | /// It is \c std::numeric_limits<Value>::infinity() if available, |
|---|
| 231 | /// \c std::numeric_limits<Value>::max() otherwise. |
|---|
| 232 | const Value INF; |
|---|
| 233 | |
|---|
| 234 | private: |
|---|
| 235 | |
|---|
| 236 | // Implementation of the First Eligible pivot rule |
|---|
| 237 | class FirstEligiblePivotRule |
|---|
| 238 | { |
|---|
| 239 | private: |
|---|
| 240 | |
|---|
| 241 | // References to the NetworkSimplex class |
|---|
| 242 | const IntVector &_source; |
|---|
| 243 | const IntVector &_target; |
|---|
| 244 | const CostVector &_cost; |
|---|
| 245 | const IntVector &_state; |
|---|
| 246 | const CostVector &_pi; |
|---|
| 247 | int &_in_arc; |
|---|
| 248 | int _search_arc_num; |
|---|
| 249 | |
|---|
| 250 | // Pivot rule data |
|---|
| 251 | int _next_arc; |
|---|
| 252 | |
|---|
| 253 | public: |
|---|
| 254 | |
|---|
| 255 | // Constructor |
|---|
| 256 | FirstEligiblePivotRule(NetworkSimplex &ns) : |
|---|
| 257 | _source(ns._source), _target(ns._target), |
|---|
| 258 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|---|
| 259 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|---|
| 260 | _next_arc(0) |
|---|
| 261 | {} |
|---|
| 262 | |
|---|
| 263 | // Find next entering arc |
|---|
| 264 | bool findEnteringArc() { |
|---|
| 265 | Cost c; |
|---|
| 266 | for (int e = _next_arc; e < _search_arc_num; ++e) { |
|---|
| 267 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 268 | if (c < 0) { |
|---|
| 269 | _in_arc = e; |
|---|
| 270 | _next_arc = e + 1; |
|---|
| 271 | return true; |
|---|
| 272 | } |
|---|
| 273 | } |
|---|
| 274 | for (int e = 0; e < _next_arc; ++e) { |
|---|
| 275 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 276 | if (c < 0) { |
|---|
| 277 | _in_arc = e; |
|---|
| 278 | _next_arc = e + 1; |
|---|
| 279 | return true; |
|---|
| 280 | } |
|---|
| 281 | } |
|---|
| 282 | return false; |
|---|
| 283 | } |
|---|
| 284 | |
|---|
| 285 | }; //class FirstEligiblePivotRule |
|---|
| 286 | |
|---|
| 287 | |
|---|
| 288 | // Implementation of the Best Eligible pivot rule |
|---|
| 289 | class BestEligiblePivotRule |
|---|
| 290 | { |
|---|
| 291 | private: |
|---|
| 292 | |
|---|
| 293 | // References to the NetworkSimplex class |
|---|
| 294 | const IntVector &_source; |
|---|
| 295 | const IntVector &_target; |
|---|
| 296 | const CostVector &_cost; |
|---|
| 297 | const IntVector &_state; |
|---|
| 298 | const CostVector &_pi; |
|---|
| 299 | int &_in_arc; |
|---|
| 300 | int _search_arc_num; |
|---|
| 301 | |
|---|
| 302 | public: |
|---|
| 303 | |
|---|
| 304 | // Constructor |
|---|
| 305 | BestEligiblePivotRule(NetworkSimplex &ns) : |
|---|
| 306 | _source(ns._source), _target(ns._target), |
|---|
| 307 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|---|
| 308 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
|---|
| 309 | {} |
|---|
| 310 | |
|---|
| 311 | // Find next entering arc |
|---|
| 312 | bool findEnteringArc() { |
|---|
| 313 | Cost c, min = 0; |
|---|
| 314 | for (int e = 0; e < _search_arc_num; ++e) { |
|---|
| 315 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 316 | if (c < min) { |
|---|
| 317 | min = c; |
|---|
| 318 | _in_arc = e; |
|---|
| 319 | } |
|---|
| 320 | } |
|---|
| 321 | return min < 0; |
|---|
| 322 | } |
|---|
| 323 | |
|---|
| 324 | }; //class BestEligiblePivotRule |
|---|
| 325 | |
|---|
| 326 | |
|---|
| 327 | // Implementation of the Block Search pivot rule |
|---|
| 328 | class BlockSearchPivotRule |
|---|
| 329 | { |
|---|
| 330 | private: |
|---|
| 331 | |
|---|
| 332 | // References to the NetworkSimplex class |
|---|
| 333 | const IntVector &_source; |
|---|
| 334 | const IntVector &_target; |
|---|
| 335 | const CostVector &_cost; |
|---|
| 336 | const IntVector &_state; |
|---|
| 337 | const CostVector &_pi; |
|---|
| 338 | int &_in_arc; |
|---|
| 339 | int _search_arc_num; |
|---|
| 340 | |
|---|
| 341 | // Pivot rule data |
|---|
| 342 | int _block_size; |
|---|
| 343 | int _next_arc; |
|---|
| 344 | |
|---|
| 345 | public: |
|---|
| 346 | |
|---|
| 347 | // Constructor |
|---|
| 348 | BlockSearchPivotRule(NetworkSimplex &ns) : |
|---|
| 349 | _source(ns._source), _target(ns._target), |
|---|
| 350 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|---|
| 351 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|---|
| 352 | _next_arc(0) |
|---|
| 353 | { |
|---|
| 354 | // The main parameters of the pivot rule |
|---|
| 355 | const double BLOCK_SIZE_FACTOR = 0.5; |
|---|
| 356 | const int MIN_BLOCK_SIZE = 10; |
|---|
| 357 | |
|---|
| 358 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * |
|---|
| 359 | std::sqrt(double(_search_arc_num))), |
|---|
| 360 | MIN_BLOCK_SIZE ); |
|---|
| 361 | } |
|---|
| 362 | |
|---|
| 363 | // Find next entering arc |
|---|
| 364 | bool findEnteringArc() { |
|---|
| 365 | Cost c, min = 0; |
|---|
| 366 | int cnt = _block_size; |
|---|
| 367 | int e; |
|---|
| 368 | for (e = _next_arc; e < _search_arc_num; ++e) { |
|---|
| 369 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 370 | if (c < min) { |
|---|
| 371 | min = c; |
|---|
| 372 | _in_arc = e; |
|---|
| 373 | } |
|---|
| 374 | if (--cnt == 0) { |
|---|
| 375 | if (min < 0) goto search_end; |
|---|
| 376 | cnt = _block_size; |
|---|
| 377 | } |
|---|
| 378 | } |
|---|
| 379 | for (e = 0; e < _next_arc; ++e) { |
|---|
| 380 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 381 | if (c < min) { |
|---|
| 382 | min = c; |
|---|
| 383 | _in_arc = e; |
|---|
| 384 | } |
|---|
| 385 | if (--cnt == 0) { |
|---|
| 386 | if (min < 0) goto search_end; |
|---|
| 387 | cnt = _block_size; |
|---|
| 388 | } |
|---|
| 389 | } |
|---|
| 390 | if (min >= 0) return false; |
|---|
| 391 | |
|---|
| 392 | search_end: |
|---|
| 393 | _next_arc = e; |
|---|
| 394 | return true; |
|---|
| 395 | } |
|---|
| 396 | |
|---|
| 397 | }; //class BlockSearchPivotRule |
|---|
| 398 | |
|---|
| 399 | |
|---|
| 400 | // Implementation of the Candidate List pivot rule |
|---|
| 401 | class CandidateListPivotRule |
|---|
| 402 | { |
|---|
| 403 | private: |
|---|
| 404 | |
|---|
| 405 | // References to the NetworkSimplex class |
|---|
| 406 | const IntVector &_source; |
|---|
| 407 | const IntVector &_target; |
|---|
| 408 | const CostVector &_cost; |
|---|
| 409 | const IntVector &_state; |
|---|
| 410 | const CostVector &_pi; |
|---|
| 411 | int &_in_arc; |
|---|
| 412 | int _search_arc_num; |
|---|
| 413 | |
|---|
| 414 | // Pivot rule data |
|---|
| 415 | IntVector _candidates; |
|---|
| 416 | int _list_length, _minor_limit; |
|---|
| 417 | int _curr_length, _minor_count; |
|---|
| 418 | int _next_arc; |
|---|
| 419 | |
|---|
| 420 | public: |
|---|
| 421 | |
|---|
| 422 | /// Constructor |
|---|
| 423 | CandidateListPivotRule(NetworkSimplex &ns) : |
|---|
| 424 | _source(ns._source), _target(ns._target), |
|---|
| 425 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|---|
| 426 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|---|
| 427 | _next_arc(0) |
|---|
| 428 | { |
|---|
| 429 | // The main parameters of the pivot rule |
|---|
| 430 | const double LIST_LENGTH_FACTOR = 0.25; |
|---|
| 431 | const int MIN_LIST_LENGTH = 10; |
|---|
| 432 | const double MINOR_LIMIT_FACTOR = 0.1; |
|---|
| 433 | const int MIN_MINOR_LIMIT = 3; |
|---|
| 434 | |
|---|
| 435 | _list_length = std::max( int(LIST_LENGTH_FACTOR * |
|---|
| 436 | std::sqrt(double(_search_arc_num))), |
|---|
| 437 | MIN_LIST_LENGTH ); |
|---|
| 438 | _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
|---|
| 439 | MIN_MINOR_LIMIT ); |
|---|
| 440 | _curr_length = _minor_count = 0; |
|---|
| 441 | _candidates.resize(_list_length); |
|---|
| 442 | } |
|---|
| 443 | |
|---|
| 444 | /// Find next entering arc |
|---|
| 445 | bool findEnteringArc() { |
|---|
| 446 | Cost min, c; |
|---|
| 447 | int e; |
|---|
| 448 | if (_curr_length > 0 && _minor_count < _minor_limit) { |
|---|
| 449 | // Minor iteration: select the best eligible arc from the |
|---|
| 450 | // current candidate list |
|---|
| 451 | ++_minor_count; |
|---|
| 452 | min = 0; |
|---|
| 453 | for (int i = 0; i < _curr_length; ++i) { |
|---|
| 454 | e = _candidates[i]; |
|---|
| 455 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 456 | if (c < min) { |
|---|
| 457 | min = c; |
|---|
| 458 | _in_arc = e; |
|---|
| 459 | } |
|---|
| 460 | else if (c >= 0) { |
|---|
| 461 | _candidates[i--] = _candidates[--_curr_length]; |
|---|
| 462 | } |
|---|
| 463 | } |
|---|
| 464 | if (min < 0) return true; |
|---|
| 465 | } |
|---|
| 466 | |
|---|
| 467 | // Major iteration: build a new candidate list |
|---|
| 468 | min = 0; |
|---|
| 469 | _curr_length = 0; |
|---|
| 470 | for (e = _next_arc; e < _search_arc_num; ++e) { |
|---|
| 471 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 472 | if (c < 0) { |
|---|
| 473 | _candidates[_curr_length++] = e; |
|---|
| 474 | if (c < min) { |
|---|
| 475 | min = c; |
|---|
| 476 | _in_arc = e; |
|---|
| 477 | } |
|---|
| 478 | if (_curr_length == _list_length) goto search_end; |
|---|
| 479 | } |
|---|
| 480 | } |
|---|
| 481 | for (e = 0; e < _next_arc; ++e) { |
|---|
| 482 | c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 483 | if (c < 0) { |
|---|
| 484 | _candidates[_curr_length++] = e; |
|---|
| 485 | if (c < min) { |
|---|
| 486 | min = c; |
|---|
| 487 | _in_arc = e; |
|---|
| 488 | } |
|---|
| 489 | if (_curr_length == _list_length) goto search_end; |
|---|
| 490 | } |
|---|
| 491 | } |
|---|
| 492 | if (_curr_length == 0) return false; |
|---|
| 493 | |
|---|
| 494 | search_end: |
|---|
| 495 | _minor_count = 1; |
|---|
| 496 | _next_arc = e; |
|---|
| 497 | return true; |
|---|
| 498 | } |
|---|
| 499 | |
|---|
| 500 | }; //class CandidateListPivotRule |
|---|
| 501 | |
|---|
| 502 | |
|---|
| 503 | // Implementation of the Altering Candidate List pivot rule |
|---|
| 504 | class AlteringListPivotRule |
|---|
| 505 | { |
|---|
| 506 | private: |
|---|
| 507 | |
|---|
| 508 | // References to the NetworkSimplex class |
|---|
| 509 | const IntVector &_source; |
|---|
| 510 | const IntVector &_target; |
|---|
| 511 | const CostVector &_cost; |
|---|
| 512 | const IntVector &_state; |
|---|
| 513 | const CostVector &_pi; |
|---|
| 514 | int &_in_arc; |
|---|
| 515 | int _search_arc_num; |
|---|
| 516 | |
|---|
| 517 | // Pivot rule data |
|---|
| 518 | int _block_size, _head_length, _curr_length; |
|---|
| 519 | int _next_arc; |
|---|
| 520 | IntVector _candidates; |
|---|
| 521 | CostVector _cand_cost; |
|---|
| 522 | |
|---|
| 523 | // Functor class to compare arcs during sort of the candidate list |
|---|
| 524 | class SortFunc |
|---|
| 525 | { |
|---|
| 526 | private: |
|---|
| 527 | const CostVector &_map; |
|---|
| 528 | public: |
|---|
| 529 | SortFunc(const CostVector &map) : _map(map) {} |
|---|
| 530 | bool operator()(int left, int right) { |
|---|
| 531 | return _map[left] > _map[right]; |
|---|
| 532 | } |
|---|
| 533 | }; |
|---|
| 534 | |
|---|
| 535 | SortFunc _sort_func; |
|---|
| 536 | |
|---|
| 537 | public: |
|---|
| 538 | |
|---|
| 539 | // Constructor |
|---|
| 540 | AlteringListPivotRule(NetworkSimplex &ns) : |
|---|
| 541 | _source(ns._source), _target(ns._target), |
|---|
| 542 | _cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|---|
| 543 | _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|---|
| 544 | _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
|---|
| 545 | { |
|---|
| 546 | // The main parameters of the pivot rule |
|---|
| 547 | const double BLOCK_SIZE_FACTOR = 1.0; |
|---|
| 548 | const int MIN_BLOCK_SIZE = 10; |
|---|
| 549 | const double HEAD_LENGTH_FACTOR = 0.1; |
|---|
| 550 | const int MIN_HEAD_LENGTH = 3; |
|---|
| 551 | |
|---|
| 552 | _block_size = std::max( int(BLOCK_SIZE_FACTOR * |
|---|
| 553 | std::sqrt(double(_search_arc_num))), |
|---|
| 554 | MIN_BLOCK_SIZE ); |
|---|
| 555 | _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
|---|
| 556 | MIN_HEAD_LENGTH ); |
|---|
| 557 | _candidates.resize(_head_length + _block_size); |
|---|
| 558 | _curr_length = 0; |
|---|
| 559 | } |
|---|
| 560 | |
|---|
| 561 | // Find next entering arc |
|---|
| 562 | bool findEnteringArc() { |
|---|
| 563 | // Check the current candidate list |
|---|
| 564 | int e; |
|---|
| 565 | for (int i = 0; i < _curr_length; ++i) { |
|---|
| 566 | e = _candidates[i]; |
|---|
| 567 | _cand_cost[e] = _state[e] * |
|---|
| 568 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 569 | if (_cand_cost[e] >= 0) { |
|---|
| 570 | _candidates[i--] = _candidates[--_curr_length]; |
|---|
| 571 | } |
|---|
| 572 | } |
|---|
| 573 | |
|---|
| 574 | // Extend the list |
|---|
| 575 | int cnt = _block_size; |
|---|
| 576 | int limit = _head_length; |
|---|
| 577 | |
|---|
| 578 | for (e = _next_arc; e < _search_arc_num; ++e) { |
|---|
| 579 | _cand_cost[e] = _state[e] * |
|---|
| 580 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 581 | if (_cand_cost[e] < 0) { |
|---|
| 582 | _candidates[_curr_length++] = e; |
|---|
| 583 | } |
|---|
| 584 | if (--cnt == 0) { |
|---|
| 585 | if (_curr_length > limit) goto search_end; |
|---|
| 586 | limit = 0; |
|---|
| 587 | cnt = _block_size; |
|---|
| 588 | } |
|---|
| 589 | } |
|---|
| 590 | for (e = 0; e < _next_arc; ++e) { |
|---|
| 591 | _cand_cost[e] = _state[e] * |
|---|
| 592 | (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|---|
| 593 | if (_cand_cost[e] < 0) { |
|---|
| 594 | _candidates[_curr_length++] = e; |
|---|
| 595 | } |
|---|
| 596 | if (--cnt == 0) { |
|---|
| 597 | if (_curr_length > limit) goto search_end; |
|---|
| 598 | limit = 0; |
|---|
| 599 | cnt = _block_size; |
|---|
| 600 | } |
|---|
| 601 | } |
|---|
| 602 | if (_curr_length == 0) return false; |
|---|
| 603 | |
|---|
| 604 | search_end: |
|---|
| 605 | |
|---|
| 606 | // Make heap of the candidate list (approximating a partial sort) |
|---|
| 607 | make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|---|
| 608 | _sort_func ); |
|---|
| 609 | |
|---|
| 610 | // Pop the first element of the heap |
|---|
| 611 | _in_arc = _candidates[0]; |
|---|
| 612 | _next_arc = e; |
|---|
| 613 | pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|---|
| 614 | _sort_func ); |
|---|
| 615 | _curr_length = std::min(_head_length, _curr_length - 1); |
|---|
| 616 | return true; |
|---|
| 617 | } |
|---|
| 618 | |
|---|
| 619 | }; //class AlteringListPivotRule |
|---|
| 620 | |
|---|
| 621 | public: |
|---|
| 622 | |
|---|
| 623 | /// \brief Constructor. |
|---|
| 624 | /// |
|---|
| 625 | /// The constructor of the class. |
|---|
| 626 | /// |
|---|
| 627 | /// \param graph The digraph the algorithm runs on. |
|---|
| 628 | /// \param arc_mixing Indicate if the arcs have to be stored in a |
|---|
| 629 | /// mixed order in the internal data structure. |
|---|
| 630 | /// In special cases, it could lead to better overall performance, |
|---|
| 631 | /// but it is usually slower. Therefore it is disabled by default. |
|---|
| 632 | NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
|---|
| 633 | _graph(graph), _node_id(graph), _arc_id(graph), |
|---|
| 634 | INF(std::numeric_limits<Value>::has_infinity ? |
|---|
| 635 | std::numeric_limits<Value>::infinity() : |
|---|
| 636 | std::numeric_limits<Value>::max()) |
|---|
| 637 | { |
|---|
| 638 | // Check the value types |
|---|
| 639 | LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|---|
| 640 | "The flow type of NetworkSimplex must be signed"); |
|---|
| 641 | LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
|---|
| 642 | "The cost type of NetworkSimplex must be signed"); |
|---|
| 643 | |
|---|
| 644 | // Resize vectors |
|---|
| 645 | _node_num = countNodes(_graph); |
|---|
| 646 | _arc_num = countArcs(_graph); |
|---|
| 647 | int all_node_num = _node_num + 1; |
|---|
| 648 | int max_arc_num = _arc_num + 2 * _node_num; |
|---|
| 649 | |
|---|
| 650 | _source.resize(max_arc_num); |
|---|
| 651 | _target.resize(max_arc_num); |
|---|
| 652 | |
|---|
| 653 | _lower.resize(_arc_num); |
|---|
| 654 | _upper.resize(_arc_num); |
|---|
| 655 | _cap.resize(max_arc_num); |
|---|
| 656 | _cost.resize(max_arc_num); |
|---|
| 657 | _supply.resize(all_node_num); |
|---|
| 658 | _flow.resize(max_arc_num); |
|---|
| 659 | _pi.resize(all_node_num); |
|---|
| 660 | |
|---|
| 661 | _parent.resize(all_node_num); |
|---|
| 662 | _pred.resize(all_node_num); |
|---|
| 663 | _forward.resize(all_node_num); |
|---|
| 664 | _thread.resize(all_node_num); |
|---|
| 665 | _rev_thread.resize(all_node_num); |
|---|
| 666 | _succ_num.resize(all_node_num); |
|---|
| 667 | _last_succ.resize(all_node_num); |
|---|
| 668 | _state.resize(max_arc_num); |
|---|
| 669 | |
|---|
| 670 | // Copy the graph |
|---|
| 671 | int i = 0; |
|---|
| 672 | for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|---|
| 673 | _node_id[n] = i; |
|---|
| 674 | } |
|---|
| 675 | if (arc_mixing) { |
|---|
| 676 | // Store the arcs in a mixed order |
|---|
| 677 | int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|---|
| 678 | int i = 0, j = 0; |
|---|
| 679 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 680 | _arc_id[a] = i; |
|---|
| 681 | _source[i] = _node_id[_graph.source(a)]; |
|---|
| 682 | _target[i] = _node_id[_graph.target(a)]; |
|---|
| 683 | if ((i += k) >= _arc_num) i = ++j; |
|---|
| 684 | } |
|---|
| 685 | } else { |
|---|
| 686 | // Store the arcs in the original order |
|---|
| 687 | int i = 0; |
|---|
| 688 | for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
|---|
| 689 | _arc_id[a] = i; |
|---|
| 690 | _source[i] = _node_id[_graph.source(a)]; |
|---|
| 691 | _target[i] = _node_id[_graph.target(a)]; |
|---|
| 692 | } |
|---|
| 693 | } |
|---|
| 694 | |
|---|
| 695 | // Reset parameters |
|---|
| 696 | reset(); |
|---|
| 697 | } |
|---|
| 698 | |
|---|
| 699 | /// \name Parameters |
|---|
| 700 | /// The parameters of the algorithm can be specified using these |
|---|
| 701 | /// functions. |
|---|
| 702 | |
|---|
| 703 | /// @{ |
|---|
| 704 | |
|---|
| 705 | /// \brief Set the lower bounds on the arcs. |
|---|
| 706 | /// |
|---|
| 707 | /// This function sets the lower bounds on the arcs. |
|---|
| 708 | /// If it is not used before calling \ref run(), the lower bounds |
|---|
| 709 | /// will be set to zero on all arcs. |
|---|
| 710 | /// |
|---|
| 711 | /// \param map An arc map storing the lower bounds. |
|---|
| 712 | /// Its \c Value type must be convertible to the \c Value type |
|---|
| 713 | /// of the algorithm. |
|---|
| 714 | /// |
|---|
| 715 | /// \return <tt>(*this)</tt> |
|---|
| 716 | template <typename LowerMap> |
|---|
| 717 | NetworkSimplex& lowerMap(const LowerMap& map) { |
|---|
| 718 | _have_lower = true; |
|---|
| 719 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 720 | _lower[_arc_id[a]] = map[a]; |
|---|
| 721 | } |
|---|
| 722 | return *this; |
|---|
| 723 | } |
|---|
| 724 | |
|---|
| 725 | /// \brief Set the upper bounds (capacities) on the arcs. |
|---|
| 726 | /// |
|---|
| 727 | /// This function sets the upper bounds (capacities) on the arcs. |
|---|
| 728 | /// If it is not used before calling \ref run(), the upper bounds |
|---|
| 729 | /// will be set to \ref INF on all arcs (i.e. the flow value will be |
|---|
| 730 | /// unbounded from above on each arc). |
|---|
| 731 | /// |
|---|
| 732 | /// \param map An arc map storing the upper bounds. |
|---|
| 733 | /// Its \c Value type must be convertible to the \c Value type |
|---|
| 734 | /// of the algorithm. |
|---|
| 735 | /// |
|---|
| 736 | /// \return <tt>(*this)</tt> |
|---|
| 737 | template<typename UpperMap> |
|---|
| 738 | NetworkSimplex& upperMap(const UpperMap& map) { |
|---|
| 739 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 740 | _upper[_arc_id[a]] = map[a]; |
|---|
| 741 | } |
|---|
| 742 | return *this; |
|---|
| 743 | } |
|---|
| 744 | |
|---|
| 745 | /// \brief Set the costs of the arcs. |
|---|
| 746 | /// |
|---|
| 747 | /// This function sets the costs of the arcs. |
|---|
| 748 | /// If it is not used before calling \ref run(), the costs |
|---|
| 749 | /// will be set to \c 1 on all arcs. |
|---|
| 750 | /// |
|---|
| 751 | /// \param map An arc map storing the costs. |
|---|
| 752 | /// Its \c Value type must be convertible to the \c Cost type |
|---|
| 753 | /// of the algorithm. |
|---|
| 754 | /// |
|---|
| 755 | /// \return <tt>(*this)</tt> |
|---|
| 756 | template<typename CostMap> |
|---|
| 757 | NetworkSimplex& costMap(const CostMap& map) { |
|---|
| 758 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 759 | _cost[_arc_id[a]] = map[a]; |
|---|
| 760 | } |
|---|
| 761 | return *this; |
|---|
| 762 | } |
|---|
| 763 | |
|---|
| 764 | /// \brief Set the supply values of the nodes. |
|---|
| 765 | /// |
|---|
| 766 | /// This function sets the supply values of the nodes. |
|---|
| 767 | /// If neither this function nor \ref stSupply() is used before |
|---|
| 768 | /// calling \ref run(), the supply of each node will be set to zero. |
|---|
| 769 | /// |
|---|
| 770 | /// \param map A node map storing the supply values. |
|---|
| 771 | /// Its \c Value type must be convertible to the \c Value type |
|---|
| 772 | /// of the algorithm. |
|---|
| 773 | /// |
|---|
| 774 | /// \return <tt>(*this)</tt> |
|---|
| 775 | template<typename SupplyMap> |
|---|
| 776 | NetworkSimplex& supplyMap(const SupplyMap& map) { |
|---|
| 777 | for (NodeIt n(_graph); n != INVALID; ++n) { |
|---|
| 778 | _supply[_node_id[n]] = map[n]; |
|---|
| 779 | } |
|---|
| 780 | return *this; |
|---|
| 781 | } |
|---|
| 782 | |
|---|
| 783 | /// \brief Set single source and target nodes and a supply value. |
|---|
| 784 | /// |
|---|
| 785 | /// This function sets a single source node and a single target node |
|---|
| 786 | /// and the required flow value. |
|---|
| 787 | /// If neither this function nor \ref supplyMap() is used before |
|---|
| 788 | /// calling \ref run(), the supply of each node will be set to zero. |
|---|
| 789 | /// |
|---|
| 790 | /// Using this function has the same effect as using \ref supplyMap() |
|---|
| 791 | /// with such a map in which \c k is assigned to \c s, \c -k is |
|---|
| 792 | /// assigned to \c t and all other nodes have zero supply value. |
|---|
| 793 | /// |
|---|
| 794 | /// \param s The source node. |
|---|
| 795 | /// \param t The target node. |
|---|
| 796 | /// \param k The required amount of flow from node \c s to node \c t |
|---|
| 797 | /// (i.e. the supply of \c s and the demand of \c t). |
|---|
| 798 | /// |
|---|
| 799 | /// \return <tt>(*this)</tt> |
|---|
| 800 | NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
|---|
| 801 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 802 | _supply[i] = 0; |
|---|
| 803 | } |
|---|
| 804 | _supply[_node_id[s]] = k; |
|---|
| 805 | _supply[_node_id[t]] = -k; |
|---|
| 806 | return *this; |
|---|
| 807 | } |
|---|
| 808 | |
|---|
| 809 | /// \brief Set the type of the supply constraints. |
|---|
| 810 | /// |
|---|
| 811 | /// This function sets the type of the supply/demand constraints. |
|---|
| 812 | /// If it is not used before calling \ref run(), the \ref GEQ supply |
|---|
| 813 | /// type will be used. |
|---|
| 814 | /// |
|---|
| 815 | /// For more information, see \ref SupplyType. |
|---|
| 816 | /// |
|---|
| 817 | /// \return <tt>(*this)</tt> |
|---|
| 818 | NetworkSimplex& supplyType(SupplyType supply_type) { |
|---|
| 819 | _stype = supply_type; |
|---|
| 820 | return *this; |
|---|
| 821 | } |
|---|
| 822 | |
|---|
| 823 | /// @} |
|---|
| 824 | |
|---|
| 825 | /// \name Execution Control |
|---|
| 826 | /// The algorithm can be executed using \ref run(). |
|---|
| 827 | |
|---|
| 828 | /// @{ |
|---|
| 829 | |
|---|
| 830 | /// \brief Run the algorithm. |
|---|
| 831 | /// |
|---|
| 832 | /// This function runs the algorithm. |
|---|
| 833 | /// The paramters can be specified using functions \ref lowerMap(), |
|---|
| 834 | /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|---|
| 835 | /// \ref supplyType(). |
|---|
| 836 | /// For example, |
|---|
| 837 | /// \code |
|---|
| 838 | /// NetworkSimplex<ListDigraph> ns(graph); |
|---|
| 839 | /// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|---|
| 840 | /// .supplyMap(sup).run(); |
|---|
| 841 | /// \endcode |
|---|
| 842 | /// |
|---|
| 843 | /// This function can be called more than once. All the parameters |
|---|
| 844 | /// that have been given are kept for the next call, unless |
|---|
| 845 | /// \ref reset() is called, thus only the modified parameters |
|---|
| 846 | /// have to be set again. See \ref reset() for examples. |
|---|
| 847 | /// However, the underlying digraph must not be modified after this |
|---|
| 848 | /// class have been constructed, since it copies and extends the graph. |
|---|
| 849 | /// |
|---|
| 850 | /// \param pivot_rule The pivot rule that will be used during the |
|---|
| 851 | /// algorithm. For more information, see \ref PivotRule. |
|---|
| 852 | /// |
|---|
| 853 | /// \return \c INFEASIBLE if no feasible flow exists, |
|---|
| 854 | /// \n \c OPTIMAL if the problem has optimal solution |
|---|
| 855 | /// (i.e. it is feasible and bounded), and the algorithm has found |
|---|
| 856 | /// optimal flow and node potentials (primal and dual solutions), |
|---|
| 857 | /// \n \c UNBOUNDED if the objective function of the problem is |
|---|
| 858 | /// unbounded, i.e. there is a directed cycle having negative total |
|---|
| 859 | /// cost and infinite upper bound. |
|---|
| 860 | /// |
|---|
| 861 | /// \see ProblemType, PivotRule |
|---|
| 862 | ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|---|
| 863 | if (!init()) return INFEASIBLE; |
|---|
| 864 | return start(pivot_rule); |
|---|
| 865 | } |
|---|
| 866 | |
|---|
| 867 | /// \brief Reset all the parameters that have been given before. |
|---|
| 868 | /// |
|---|
| 869 | /// This function resets all the paramaters that have been given |
|---|
| 870 | /// before using functions \ref lowerMap(), \ref upperMap(), |
|---|
| 871 | /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
|---|
| 872 | /// |
|---|
| 873 | /// It is useful for multiple run() calls. If this function is not |
|---|
| 874 | /// used, all the parameters given before are kept for the next |
|---|
| 875 | /// \ref run() call. |
|---|
| 876 | /// However, the underlying digraph must not be modified after this |
|---|
| 877 | /// class have been constructed, since it copies and extends the graph. |
|---|
| 878 | /// |
|---|
| 879 | /// For example, |
|---|
| 880 | /// \code |
|---|
| 881 | /// NetworkSimplex<ListDigraph> ns(graph); |
|---|
| 882 | /// |
|---|
| 883 | /// // First run |
|---|
| 884 | /// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
|---|
| 885 | /// .supplyMap(sup).run(); |
|---|
| 886 | /// |
|---|
| 887 | /// // Run again with modified cost map (reset() is not called, |
|---|
| 888 | /// // so only the cost map have to be set again) |
|---|
| 889 | /// cost[e] += 100; |
|---|
| 890 | /// ns.costMap(cost).run(); |
|---|
| 891 | /// |
|---|
| 892 | /// // Run again from scratch using reset() |
|---|
| 893 | /// // (the lower bounds will be set to zero on all arcs) |
|---|
| 894 | /// ns.reset(); |
|---|
| 895 | /// ns.upperMap(capacity).costMap(cost) |
|---|
| 896 | /// .supplyMap(sup).run(); |
|---|
| 897 | /// \endcode |
|---|
| 898 | /// |
|---|
| 899 | /// \return <tt>(*this)</tt> |
|---|
| 900 | NetworkSimplex& reset() { |
|---|
| 901 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 902 | _supply[i] = 0; |
|---|
| 903 | } |
|---|
| 904 | for (int i = 0; i != _arc_num; ++i) { |
|---|
| 905 | _lower[i] = 0; |
|---|
| 906 | _upper[i] = INF; |
|---|
| 907 | _cost[i] = 1; |
|---|
| 908 | } |
|---|
| 909 | _have_lower = false; |
|---|
| 910 | _stype = GEQ; |
|---|
| 911 | return *this; |
|---|
| 912 | } |
|---|
| 913 | |
|---|
| 914 | /// @} |
|---|
| 915 | |
|---|
| 916 | /// \name Query Functions |
|---|
| 917 | /// The results of the algorithm can be obtained using these |
|---|
| 918 | /// functions.\n |
|---|
| 919 | /// The \ref run() function must be called before using them. |
|---|
| 920 | |
|---|
| 921 | /// @{ |
|---|
| 922 | |
|---|
| 923 | /// \brief Return the total cost of the found flow. |
|---|
| 924 | /// |
|---|
| 925 | /// This function returns the total cost of the found flow. |
|---|
| 926 | /// Its complexity is O(e). |
|---|
| 927 | /// |
|---|
| 928 | /// \note The return type of the function can be specified as a |
|---|
| 929 | /// template parameter. For example, |
|---|
| 930 | /// \code |
|---|
| 931 | /// ns.totalCost<double>(); |
|---|
| 932 | /// \endcode |
|---|
| 933 | /// It is useful if the total cost cannot be stored in the \c Cost |
|---|
| 934 | /// type of the algorithm, which is the default return type of the |
|---|
| 935 | /// function. |
|---|
| 936 | /// |
|---|
| 937 | /// \pre \ref run() must be called before using this function. |
|---|
| 938 | template <typename Number> |
|---|
| 939 | Number totalCost() const { |
|---|
| 940 | Number c = 0; |
|---|
| 941 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 942 | int i = _arc_id[a]; |
|---|
| 943 | c += Number(_flow[i]) * Number(_cost[i]); |
|---|
| 944 | } |
|---|
| 945 | return c; |
|---|
| 946 | } |
|---|
| 947 | |
|---|
| 948 | #ifndef DOXYGEN |
|---|
| 949 | Cost totalCost() const { |
|---|
| 950 | return totalCost<Cost>(); |
|---|
| 951 | } |
|---|
| 952 | #endif |
|---|
| 953 | |
|---|
| 954 | /// \brief Return the flow on the given arc. |
|---|
| 955 | /// |
|---|
| 956 | /// This function returns the flow on the given arc. |
|---|
| 957 | /// |
|---|
| 958 | /// \pre \ref run() must be called before using this function. |
|---|
| 959 | Value flow(const Arc& a) const { |
|---|
| 960 | return _flow[_arc_id[a]]; |
|---|
| 961 | } |
|---|
| 962 | |
|---|
| 963 | /// \brief Return the flow map (the primal solution). |
|---|
| 964 | /// |
|---|
| 965 | /// This function copies the flow value on each arc into the given |
|---|
| 966 | /// map. The \c Value type of the algorithm must be convertible to |
|---|
| 967 | /// the \c Value type of the map. |
|---|
| 968 | /// |
|---|
| 969 | /// \pre \ref run() must be called before using this function. |
|---|
| 970 | template <typename FlowMap> |
|---|
| 971 | void flowMap(FlowMap &map) const { |
|---|
| 972 | for (ArcIt a(_graph); a != INVALID; ++a) { |
|---|
| 973 | map.set(a, _flow[_arc_id[a]]); |
|---|
| 974 | } |
|---|
| 975 | } |
|---|
| 976 | |
|---|
| 977 | /// \brief Return the potential (dual value) of the given node. |
|---|
| 978 | /// |
|---|
| 979 | /// This function returns the potential (dual value) of the |
|---|
| 980 | /// given node. |
|---|
| 981 | /// |
|---|
| 982 | /// \pre \ref run() must be called before using this function. |
|---|
| 983 | Cost potential(const Node& n) const { |
|---|
| 984 | return _pi[_node_id[n]]; |
|---|
| 985 | } |
|---|
| 986 | |
|---|
| 987 | /// \brief Return the potential map (the dual solution). |
|---|
| 988 | /// |
|---|
| 989 | /// This function copies the potential (dual value) of each node |
|---|
| 990 | /// into the given map. |
|---|
| 991 | /// The \c Cost type of the algorithm must be convertible to the |
|---|
| 992 | /// \c Value type of the map. |
|---|
| 993 | /// |
|---|
| 994 | /// \pre \ref run() must be called before using this function. |
|---|
| 995 | template <typename PotentialMap> |
|---|
| 996 | void potentialMap(PotentialMap &map) const { |
|---|
| 997 | for (NodeIt n(_graph); n != INVALID; ++n) { |
|---|
| 998 | map.set(n, _pi[_node_id[n]]); |
|---|
| 999 | } |
|---|
| 1000 | } |
|---|
| 1001 | |
|---|
| 1002 | /// @} |
|---|
| 1003 | |
|---|
| 1004 | private: |
|---|
| 1005 | |
|---|
| 1006 | // Initialize internal data structures |
|---|
| 1007 | bool init() { |
|---|
| 1008 | if (_node_num == 0) return false; |
|---|
| 1009 | |
|---|
| 1010 | // Check the sum of supply values |
|---|
| 1011 | _sum_supply = 0; |
|---|
| 1012 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 1013 | _sum_supply += _supply[i]; |
|---|
| 1014 | } |
|---|
| 1015 | if ( !((_stype == GEQ && _sum_supply <= 0) || |
|---|
| 1016 | (_stype == LEQ && _sum_supply >= 0)) ) return false; |
|---|
| 1017 | |
|---|
| 1018 | // Remove non-zero lower bounds |
|---|
| 1019 | if (_have_lower) { |
|---|
| 1020 | for (int i = 0; i != _arc_num; ++i) { |
|---|
| 1021 | Value c = _lower[i]; |
|---|
| 1022 | if (c >= 0) { |
|---|
| 1023 | _cap[i] = _upper[i] < INF ? _upper[i] - c : INF; |
|---|
| 1024 | } else { |
|---|
| 1025 | _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF; |
|---|
| 1026 | } |
|---|
| 1027 | _supply[_source[i]] -= c; |
|---|
| 1028 | _supply[_target[i]] += c; |
|---|
| 1029 | } |
|---|
| 1030 | } else { |
|---|
| 1031 | for (int i = 0; i != _arc_num; ++i) { |
|---|
| 1032 | _cap[i] = _upper[i]; |
|---|
| 1033 | } |
|---|
| 1034 | } |
|---|
| 1035 | |
|---|
| 1036 | // Initialize artifical cost |
|---|
| 1037 | Cost ART_COST; |
|---|
| 1038 | if (std::numeric_limits<Cost>::is_exact) { |
|---|
| 1039 | ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
|---|
| 1040 | } else { |
|---|
| 1041 | ART_COST = std::numeric_limits<Cost>::min(); |
|---|
| 1042 | for (int i = 0; i != _arc_num; ++i) { |
|---|
| 1043 | if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
|---|
| 1044 | } |
|---|
| 1045 | ART_COST = (ART_COST + 1) * _node_num; |
|---|
| 1046 | } |
|---|
| 1047 | |
|---|
| 1048 | // Initialize arc maps |
|---|
| 1049 | for (int i = 0; i != _arc_num; ++i) { |
|---|
| 1050 | _flow[i] = 0; |
|---|
| 1051 | _state[i] = STATE_LOWER; |
|---|
| 1052 | } |
|---|
| 1053 | |
|---|
| 1054 | // Set data for the artificial root node |
|---|
| 1055 | _root = _node_num; |
|---|
| 1056 | _parent[_root] = -1; |
|---|
| 1057 | _pred[_root] = -1; |
|---|
| 1058 | _thread[_root] = 0; |
|---|
| 1059 | _rev_thread[0] = _root; |
|---|
| 1060 | _succ_num[_root] = _node_num + 1; |
|---|
| 1061 | _last_succ[_root] = _root - 1; |
|---|
| 1062 | _supply[_root] = -_sum_supply; |
|---|
| 1063 | _pi[_root] = 0; |
|---|
| 1064 | |
|---|
| 1065 | // Add artificial arcs and initialize the spanning tree data structure |
|---|
| 1066 | if (_sum_supply == 0) { |
|---|
| 1067 | // EQ supply constraints |
|---|
| 1068 | _search_arc_num = _arc_num; |
|---|
| 1069 | _all_arc_num = _arc_num + _node_num; |
|---|
| 1070 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|---|
| 1071 | _parent[u] = _root; |
|---|
| 1072 | _pred[u] = e; |
|---|
| 1073 | _thread[u] = u + 1; |
|---|
| 1074 | _rev_thread[u + 1] = u; |
|---|
| 1075 | _succ_num[u] = 1; |
|---|
| 1076 | _last_succ[u] = u; |
|---|
| 1077 | _cap[e] = INF; |
|---|
| 1078 | _state[e] = STATE_TREE; |
|---|
| 1079 | if (_supply[u] >= 0) { |
|---|
| 1080 | _forward[u] = true; |
|---|
| 1081 | _pi[u] = 0; |
|---|
| 1082 | _source[e] = u; |
|---|
| 1083 | _target[e] = _root; |
|---|
| 1084 | _flow[e] = _supply[u]; |
|---|
| 1085 | _cost[e] = 0; |
|---|
| 1086 | } else { |
|---|
| 1087 | _forward[u] = false; |
|---|
| 1088 | _pi[u] = ART_COST; |
|---|
| 1089 | _source[e] = _root; |
|---|
| 1090 | _target[e] = u; |
|---|
| 1091 | _flow[e] = -_supply[u]; |
|---|
| 1092 | _cost[e] = ART_COST; |
|---|
| 1093 | } |
|---|
| 1094 | } |
|---|
| 1095 | } |
|---|
| 1096 | else if (_sum_supply > 0) { |
|---|
| 1097 | // LEQ supply constraints |
|---|
| 1098 | _search_arc_num = _arc_num + _node_num; |
|---|
| 1099 | int f = _arc_num + _node_num; |
|---|
| 1100 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|---|
| 1101 | _parent[u] = _root; |
|---|
| 1102 | _thread[u] = u + 1; |
|---|
| 1103 | _rev_thread[u + 1] = u; |
|---|
| 1104 | _succ_num[u] = 1; |
|---|
| 1105 | _last_succ[u] = u; |
|---|
| 1106 | if (_supply[u] >= 0) { |
|---|
| 1107 | _forward[u] = true; |
|---|
| 1108 | _pi[u] = 0; |
|---|
| 1109 | _pred[u] = e; |
|---|
| 1110 | _source[e] = u; |
|---|
| 1111 | _target[e] = _root; |
|---|
| 1112 | _cap[e] = INF; |
|---|
| 1113 | _flow[e] = _supply[u]; |
|---|
| 1114 | _cost[e] = 0; |
|---|
| 1115 | _state[e] = STATE_TREE; |
|---|
| 1116 | } else { |
|---|
| 1117 | _forward[u] = false; |
|---|
| 1118 | _pi[u] = ART_COST; |
|---|
| 1119 | _pred[u] = f; |
|---|
| 1120 | _source[f] = _root; |
|---|
| 1121 | _target[f] = u; |
|---|
| 1122 | _cap[f] = INF; |
|---|
| 1123 | _flow[f] = -_supply[u]; |
|---|
| 1124 | _cost[f] = ART_COST; |
|---|
| 1125 | _state[f] = STATE_TREE; |
|---|
| 1126 | _source[e] = u; |
|---|
| 1127 | _target[e] = _root; |
|---|
| 1128 | _cap[e] = INF; |
|---|
| 1129 | _flow[e] = 0; |
|---|
| 1130 | _cost[e] = 0; |
|---|
| 1131 | _state[e] = STATE_LOWER; |
|---|
| 1132 | ++f; |
|---|
| 1133 | } |
|---|
| 1134 | } |
|---|
| 1135 | _all_arc_num = f; |
|---|
| 1136 | } |
|---|
| 1137 | else { |
|---|
| 1138 | // GEQ supply constraints |
|---|
| 1139 | _search_arc_num = _arc_num + _node_num; |
|---|
| 1140 | int f = _arc_num + _node_num; |
|---|
| 1141 | for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|---|
| 1142 | _parent[u] = _root; |
|---|
| 1143 | _thread[u] = u + 1; |
|---|
| 1144 | _rev_thread[u + 1] = u; |
|---|
| 1145 | _succ_num[u] = 1; |
|---|
| 1146 | _last_succ[u] = u; |
|---|
| 1147 | if (_supply[u] <= 0) { |
|---|
| 1148 | _forward[u] = false; |
|---|
| 1149 | _pi[u] = 0; |
|---|
| 1150 | _pred[u] = e; |
|---|
| 1151 | _source[e] = _root; |
|---|
| 1152 | _target[e] = u; |
|---|
| 1153 | _cap[e] = INF; |
|---|
| 1154 | _flow[e] = -_supply[u]; |
|---|
| 1155 | _cost[e] = 0; |
|---|
| 1156 | _state[e] = STATE_TREE; |
|---|
| 1157 | } else { |
|---|
| 1158 | _forward[u] = true; |
|---|
| 1159 | _pi[u] = -ART_COST; |
|---|
| 1160 | _pred[u] = f; |
|---|
| 1161 | _source[f] = u; |
|---|
| 1162 | _target[f] = _root; |
|---|
| 1163 | _cap[f] = INF; |
|---|
| 1164 | _flow[f] = _supply[u]; |
|---|
| 1165 | _state[f] = STATE_TREE; |
|---|
| 1166 | _cost[f] = ART_COST; |
|---|
| 1167 | _source[e] = _root; |
|---|
| 1168 | _target[e] = u; |
|---|
| 1169 | _cap[e] = INF; |
|---|
| 1170 | _flow[e] = 0; |
|---|
| 1171 | _cost[e] = 0; |
|---|
| 1172 | _state[e] = STATE_LOWER; |
|---|
| 1173 | ++f; |
|---|
| 1174 | } |
|---|
| 1175 | } |
|---|
| 1176 | _all_arc_num = f; |
|---|
| 1177 | } |
|---|
| 1178 | |
|---|
| 1179 | return true; |
|---|
| 1180 | } |
|---|
| 1181 | |
|---|
| 1182 | // Find the join node |
|---|
| 1183 | void findJoinNode() { |
|---|
| 1184 | int u = _source[in_arc]; |
|---|
| 1185 | int v = _target[in_arc]; |
|---|
| 1186 | while (u != v) { |
|---|
| 1187 | if (_succ_num[u] < _succ_num[v]) { |
|---|
| 1188 | u = _parent[u]; |
|---|
| 1189 | } else { |
|---|
| 1190 | v = _parent[v]; |
|---|
| 1191 | } |
|---|
| 1192 | } |
|---|
| 1193 | join = u; |
|---|
| 1194 | } |
|---|
| 1195 | |
|---|
| 1196 | // Find the leaving arc of the cycle and returns true if the |
|---|
| 1197 | // leaving arc is not the same as the entering arc |
|---|
| 1198 | bool findLeavingArc() { |
|---|
| 1199 | // Initialize first and second nodes according to the direction |
|---|
| 1200 | // of the cycle |
|---|
| 1201 | if (_state[in_arc] == STATE_LOWER) { |
|---|
| 1202 | first = _source[in_arc]; |
|---|
| 1203 | second = _target[in_arc]; |
|---|
| 1204 | } else { |
|---|
| 1205 | first = _target[in_arc]; |
|---|
| 1206 | second = _source[in_arc]; |
|---|
| 1207 | } |
|---|
| 1208 | delta = _cap[in_arc]; |
|---|
| 1209 | int result = 0; |
|---|
| 1210 | Value d; |
|---|
| 1211 | int e; |
|---|
| 1212 | |
|---|
| 1213 | // Search the cycle along the path form the first node to the root |
|---|
| 1214 | for (int u = first; u != join; u = _parent[u]) { |
|---|
| 1215 | e = _pred[u]; |
|---|
| 1216 | d = _forward[u] ? |
|---|
| 1217 | _flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]); |
|---|
| 1218 | if (d < delta) { |
|---|
| 1219 | delta = d; |
|---|
| 1220 | u_out = u; |
|---|
| 1221 | result = 1; |
|---|
| 1222 | } |
|---|
| 1223 | } |
|---|
| 1224 | // Search the cycle along the path form the second node to the root |
|---|
| 1225 | for (int u = second; u != join; u = _parent[u]) { |
|---|
| 1226 | e = _pred[u]; |
|---|
| 1227 | d = _forward[u] ? |
|---|
| 1228 | (_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|---|
| 1229 | if (d <= delta) { |
|---|
| 1230 | delta = d; |
|---|
| 1231 | u_out = u; |
|---|
| 1232 | result = 2; |
|---|
| 1233 | } |
|---|
| 1234 | } |
|---|
| 1235 | |
|---|
| 1236 | if (result == 1) { |
|---|
| 1237 | u_in = first; |
|---|
| 1238 | v_in = second; |
|---|
| 1239 | } else { |
|---|
| 1240 | u_in = second; |
|---|
| 1241 | v_in = first; |
|---|
| 1242 | } |
|---|
| 1243 | return result != 0; |
|---|
| 1244 | } |
|---|
| 1245 | |
|---|
| 1246 | // Change _flow and _state vectors |
|---|
| 1247 | void changeFlow(bool change) { |
|---|
| 1248 | // Augment along the cycle |
|---|
| 1249 | if (delta > 0) { |
|---|
| 1250 | Value val = _state[in_arc] * delta; |
|---|
| 1251 | _flow[in_arc] += val; |
|---|
| 1252 | for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
|---|
| 1253 | _flow[_pred[u]] += _forward[u] ? -val : val; |
|---|
| 1254 | } |
|---|
| 1255 | for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
|---|
| 1256 | _flow[_pred[u]] += _forward[u] ? val : -val; |
|---|
| 1257 | } |
|---|
| 1258 | } |
|---|
| 1259 | // Update the state of the entering and leaving arcs |
|---|
| 1260 | if (change) { |
|---|
| 1261 | _state[in_arc] = STATE_TREE; |
|---|
| 1262 | _state[_pred[u_out]] = |
|---|
| 1263 | (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
|---|
| 1264 | } else { |
|---|
| 1265 | _state[in_arc] = -_state[in_arc]; |
|---|
| 1266 | } |
|---|
| 1267 | } |
|---|
| 1268 | |
|---|
| 1269 | // Update the tree structure |
|---|
| 1270 | void updateTreeStructure() { |
|---|
| 1271 | int u, w; |
|---|
| 1272 | int old_rev_thread = _rev_thread[u_out]; |
|---|
| 1273 | int old_succ_num = _succ_num[u_out]; |
|---|
| 1274 | int old_last_succ = _last_succ[u_out]; |
|---|
| 1275 | v_out = _parent[u_out]; |
|---|
| 1276 | |
|---|
| 1277 | u = _last_succ[u_in]; // the last successor of u_in |
|---|
| 1278 | right = _thread[u]; // the node after it |
|---|
| 1279 | |
|---|
| 1280 | // Handle the case when old_rev_thread equals to v_in |
|---|
| 1281 | // (it also means that join and v_out coincide) |
|---|
| 1282 | if (old_rev_thread == v_in) { |
|---|
| 1283 | last = _thread[_last_succ[u_out]]; |
|---|
| 1284 | } else { |
|---|
| 1285 | last = _thread[v_in]; |
|---|
| 1286 | } |
|---|
| 1287 | |
|---|
| 1288 | // Update _thread and _parent along the stem nodes (i.e. the nodes |
|---|
| 1289 | // between u_in and u_out, whose parent have to be changed) |
|---|
| 1290 | _thread[v_in] = stem = u_in; |
|---|
| 1291 | _dirty_revs.clear(); |
|---|
| 1292 | _dirty_revs.push_back(v_in); |
|---|
| 1293 | par_stem = v_in; |
|---|
| 1294 | while (stem != u_out) { |
|---|
| 1295 | // Insert the next stem node into the thread list |
|---|
| 1296 | new_stem = _parent[stem]; |
|---|
| 1297 | _thread[u] = new_stem; |
|---|
| 1298 | _dirty_revs.push_back(u); |
|---|
| 1299 | |
|---|
| 1300 | // Remove the subtree of stem from the thread list |
|---|
| 1301 | w = _rev_thread[stem]; |
|---|
| 1302 | _thread[w] = right; |
|---|
| 1303 | _rev_thread[right] = w; |
|---|
| 1304 | |
|---|
| 1305 | // Change the parent node and shift stem nodes |
|---|
| 1306 | _parent[stem] = par_stem; |
|---|
| 1307 | par_stem = stem; |
|---|
| 1308 | stem = new_stem; |
|---|
| 1309 | |
|---|
| 1310 | // Update u and right |
|---|
| 1311 | u = _last_succ[stem] == _last_succ[par_stem] ? |
|---|
| 1312 | _rev_thread[par_stem] : _last_succ[stem]; |
|---|
| 1313 | right = _thread[u]; |
|---|
| 1314 | } |
|---|
| 1315 | _parent[u_out] = par_stem; |
|---|
| 1316 | _thread[u] = last; |
|---|
| 1317 | _rev_thread[last] = u; |
|---|
| 1318 | _last_succ[u_out] = u; |
|---|
| 1319 | |
|---|
| 1320 | // Remove the subtree of u_out from the thread list except for |
|---|
| 1321 | // the case when old_rev_thread equals to v_in |
|---|
| 1322 | // (it also means that join and v_out coincide) |
|---|
| 1323 | if (old_rev_thread != v_in) { |
|---|
| 1324 | _thread[old_rev_thread] = right; |
|---|
| 1325 | _rev_thread[right] = old_rev_thread; |
|---|
| 1326 | } |
|---|
| 1327 | |
|---|
| 1328 | // Update _rev_thread using the new _thread values |
|---|
| 1329 | for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
|---|
| 1330 | u = _dirty_revs[i]; |
|---|
| 1331 | _rev_thread[_thread[u]] = u; |
|---|
| 1332 | } |
|---|
| 1333 | |
|---|
| 1334 | // Update _pred, _forward, _last_succ and _succ_num for the |
|---|
| 1335 | // stem nodes from u_out to u_in |
|---|
| 1336 | int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
|---|
| 1337 | u = u_out; |
|---|
| 1338 | while (u != u_in) { |
|---|
| 1339 | w = _parent[u]; |
|---|
| 1340 | _pred[u] = _pred[w]; |
|---|
| 1341 | _forward[u] = !_forward[w]; |
|---|
| 1342 | tmp_sc += _succ_num[u] - _succ_num[w]; |
|---|
| 1343 | _succ_num[u] = tmp_sc; |
|---|
| 1344 | _last_succ[w] = tmp_ls; |
|---|
| 1345 | u = w; |
|---|
| 1346 | } |
|---|
| 1347 | _pred[u_in] = in_arc; |
|---|
| 1348 | _forward[u_in] = (u_in == _source[in_arc]); |
|---|
| 1349 | _succ_num[u_in] = old_succ_num; |
|---|
| 1350 | |
|---|
| 1351 | // Set limits for updating _last_succ form v_in and v_out |
|---|
| 1352 | // towards the root |
|---|
| 1353 | int up_limit_in = -1; |
|---|
| 1354 | int up_limit_out = -1; |
|---|
| 1355 | if (_last_succ[join] == v_in) { |
|---|
| 1356 | up_limit_out = join; |
|---|
| 1357 | } else { |
|---|
| 1358 | up_limit_in = join; |
|---|
| 1359 | } |
|---|
| 1360 | |
|---|
| 1361 | // Update _last_succ from v_in towards the root |
|---|
| 1362 | for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
|---|
| 1363 | u = _parent[u]) { |
|---|
| 1364 | _last_succ[u] = _last_succ[u_out]; |
|---|
| 1365 | } |
|---|
| 1366 | // Update _last_succ from v_out towards the root |
|---|
| 1367 | if (join != old_rev_thread && v_in != old_rev_thread) { |
|---|
| 1368 | for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|---|
| 1369 | u = _parent[u]) { |
|---|
| 1370 | _last_succ[u] = old_rev_thread; |
|---|
| 1371 | } |
|---|
| 1372 | } else { |
|---|
| 1373 | for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|---|
| 1374 | u = _parent[u]) { |
|---|
| 1375 | _last_succ[u] = _last_succ[u_out]; |
|---|
| 1376 | } |
|---|
| 1377 | } |
|---|
| 1378 | |
|---|
| 1379 | // Update _succ_num from v_in to join |
|---|
| 1380 | for (u = v_in; u != join; u = _parent[u]) { |
|---|
| 1381 | _succ_num[u] += old_succ_num; |
|---|
| 1382 | } |
|---|
| 1383 | // Update _succ_num from v_out to join |
|---|
| 1384 | for (u = v_out; u != join; u = _parent[u]) { |
|---|
| 1385 | _succ_num[u] -= old_succ_num; |
|---|
| 1386 | } |
|---|
| 1387 | } |
|---|
| 1388 | |
|---|
| 1389 | // Update potentials |
|---|
| 1390 | void updatePotential() { |
|---|
| 1391 | Cost sigma = _forward[u_in] ? |
|---|
| 1392 | _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
|---|
| 1393 | _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
|---|
| 1394 | // Update potentials in the subtree, which has been moved |
|---|
| 1395 | int end = _thread[_last_succ[u_in]]; |
|---|
| 1396 | for (int u = u_in; u != end; u = _thread[u]) { |
|---|
| 1397 | _pi[u] += sigma; |
|---|
| 1398 | } |
|---|
| 1399 | } |
|---|
| 1400 | |
|---|
| 1401 | // Execute the algorithm |
|---|
| 1402 | ProblemType start(PivotRule pivot_rule) { |
|---|
| 1403 | // Select the pivot rule implementation |
|---|
| 1404 | switch (pivot_rule) { |
|---|
| 1405 | case FIRST_ELIGIBLE: |
|---|
| 1406 | return start<FirstEligiblePivotRule>(); |
|---|
| 1407 | case BEST_ELIGIBLE: |
|---|
| 1408 | return start<BestEligiblePivotRule>(); |
|---|
| 1409 | case BLOCK_SEARCH: |
|---|
| 1410 | return start<BlockSearchPivotRule>(); |
|---|
| 1411 | case CANDIDATE_LIST: |
|---|
| 1412 | return start<CandidateListPivotRule>(); |
|---|
| 1413 | case ALTERING_LIST: |
|---|
| 1414 | return start<AlteringListPivotRule>(); |
|---|
| 1415 | } |
|---|
| 1416 | return INFEASIBLE; // avoid warning |
|---|
| 1417 | } |
|---|
| 1418 | |
|---|
| 1419 | template <typename PivotRuleImpl> |
|---|
| 1420 | ProblemType start() { |
|---|
| 1421 | PivotRuleImpl pivot(*this); |
|---|
| 1422 | |
|---|
| 1423 | // Execute the Network Simplex algorithm |
|---|
| 1424 | while (pivot.findEnteringArc()) { |
|---|
| 1425 | findJoinNode(); |
|---|
| 1426 | bool change = findLeavingArc(); |
|---|
| 1427 | if (delta >= INF) return UNBOUNDED; |
|---|
| 1428 | changeFlow(change); |
|---|
| 1429 | if (change) { |
|---|
| 1430 | updateTreeStructure(); |
|---|
| 1431 | updatePotential(); |
|---|
| 1432 | } |
|---|
| 1433 | } |
|---|
| 1434 | |
|---|
| 1435 | // Check feasibility |
|---|
| 1436 | for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
|---|
| 1437 | if (_flow[e] != 0) return INFEASIBLE; |
|---|
| 1438 | } |
|---|
| 1439 | |
|---|
| 1440 | // Transform the solution and the supply map to the original form |
|---|
| 1441 | if (_have_lower) { |
|---|
| 1442 | for (int i = 0; i != _arc_num; ++i) { |
|---|
| 1443 | Value c = _lower[i]; |
|---|
| 1444 | if (c != 0) { |
|---|
| 1445 | _flow[i] += c; |
|---|
| 1446 | _supply[_source[i]] += c; |
|---|
| 1447 | _supply[_target[i]] -= c; |
|---|
| 1448 | } |
|---|
| 1449 | } |
|---|
| 1450 | } |
|---|
| 1451 | |
|---|
| 1452 | // Shift potentials to meet the requirements of the GEQ/LEQ type |
|---|
| 1453 | // optimality conditions |
|---|
| 1454 | if (_sum_supply == 0) { |
|---|
| 1455 | if (_stype == GEQ) { |
|---|
| 1456 | Cost max_pot = std::numeric_limits<Cost>::min(); |
|---|
| 1457 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 1458 | if (_pi[i] > max_pot) max_pot = _pi[i]; |
|---|
| 1459 | } |
|---|
| 1460 | if (max_pot > 0) { |
|---|
| 1461 | for (int i = 0; i != _node_num; ++i) |
|---|
| 1462 | _pi[i] -= max_pot; |
|---|
| 1463 | } |
|---|
| 1464 | } else { |
|---|
| 1465 | Cost min_pot = std::numeric_limits<Cost>::max(); |
|---|
| 1466 | for (int i = 0; i != _node_num; ++i) { |
|---|
| 1467 | if (_pi[i] < min_pot) min_pot = _pi[i]; |
|---|
| 1468 | } |
|---|
| 1469 | if (min_pot < 0) { |
|---|
| 1470 | for (int i = 0; i != _node_num; ++i) |
|---|
| 1471 | _pi[i] -= min_pot; |
|---|
| 1472 | } |
|---|
| 1473 | } |
|---|
| 1474 | } |
|---|
| 1475 | |
|---|
| 1476 | return OPTIMAL; |
|---|
| 1477 | } |
|---|
| 1478 | |
|---|
| 1479 | }; //class NetworkSimplex |
|---|
| 1480 | |
|---|
| 1481 | ///@} |
|---|
| 1482 | |
|---|
| 1483 | } //namespace lemon |
|---|
| 1484 | |
|---|
| 1485 | #endif //LEMON_NETWORK_SIMPLEX_H |
|---|