1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2013 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | ///\ingroup paths |
---|
20 | ///\file |
---|
21 | ///\brief Classes for representing paths in digraphs. |
---|
22 | /// |
---|
23 | |
---|
24 | #ifndef LEMON_PATH_H |
---|
25 | #define LEMON_PATH_H |
---|
26 | |
---|
27 | #include <vector> |
---|
28 | #include <algorithm> |
---|
29 | |
---|
30 | #include <lemon/error.h> |
---|
31 | #include <lemon/core.h> |
---|
32 | #include <lemon/concepts/path.h> |
---|
33 | #include <lemon/bits/stl_iterators.h> |
---|
34 | |
---|
35 | namespace lemon { |
---|
36 | |
---|
37 | /// \addtogroup paths |
---|
38 | /// @{ |
---|
39 | |
---|
40 | |
---|
41 | /// \brief A structure for representing directed paths in a digraph. |
---|
42 | /// |
---|
43 | /// A structure for representing directed path in a digraph. |
---|
44 | /// \tparam GR The digraph type in which the path is. |
---|
45 | /// |
---|
46 | /// In a sense, the path can be treated as a list of arcs. The |
---|
47 | /// LEMON path type stores just this list. As a consequence, it |
---|
48 | /// cannot enumerate the nodes of the path and the source node of |
---|
49 | /// a zero length path is undefined. |
---|
50 | /// |
---|
51 | /// This implementation is a back and front insertable and erasable |
---|
52 | /// path type. It can be indexed in O(1) time. The front and back |
---|
53 | /// insertion and erase is done in O(1) (amortized) time. The |
---|
54 | /// implementation uses two vectors for storing the front and back |
---|
55 | /// insertions. |
---|
56 | template <typename GR> |
---|
57 | class Path { |
---|
58 | public: |
---|
59 | |
---|
60 | typedef GR Digraph; |
---|
61 | typedef typename Digraph::Arc Arc; |
---|
62 | |
---|
63 | /// \brief Default constructor |
---|
64 | /// |
---|
65 | /// Default constructor |
---|
66 | Path() {} |
---|
67 | |
---|
68 | /// \brief Copy constructor |
---|
69 | /// |
---|
70 | Path(const Path& cpath) { |
---|
71 | pathCopy(cpath, *this); |
---|
72 | } |
---|
73 | |
---|
74 | /// \brief Template copy constructor |
---|
75 | /// |
---|
76 | /// This constuctor initializes the path from any other path type. |
---|
77 | /// It simply makes a copy of the given path. |
---|
78 | template <typename CPath> |
---|
79 | Path(const CPath& cpath) { |
---|
80 | pathCopy(cpath, *this); |
---|
81 | } |
---|
82 | |
---|
83 | /// \brief Copy assignment |
---|
84 | /// |
---|
85 | Path& operator=(const Path& cpath) { |
---|
86 | pathCopy(cpath, *this); |
---|
87 | return *this; |
---|
88 | } |
---|
89 | |
---|
90 | /// \brief Template copy assignment |
---|
91 | /// |
---|
92 | /// This operator makes a copy of a path of any other type. |
---|
93 | template <typename CPath> |
---|
94 | Path& operator=(const CPath& cpath) { |
---|
95 | pathCopy(cpath, *this); |
---|
96 | return *this; |
---|
97 | } |
---|
98 | |
---|
99 | /// \brief LEMON style iterator for path arcs |
---|
100 | /// |
---|
101 | /// This class is used to iterate on the arcs of the paths. |
---|
102 | class ArcIt { |
---|
103 | friend class Path; |
---|
104 | public: |
---|
105 | /// \brief Default constructor |
---|
106 | ArcIt() {} |
---|
107 | /// \brief Invalid constructor |
---|
108 | ArcIt(Invalid) : path(0), idx(-1) {} |
---|
109 | /// \brief Initializate the iterator to the first arc of path |
---|
110 | ArcIt(const Path &_path) |
---|
111 | : path(&_path), idx(_path.empty() ? -1 : 0) {} |
---|
112 | |
---|
113 | private: |
---|
114 | |
---|
115 | ArcIt(const Path &_path, int _idx) |
---|
116 | : path(&_path), idx(_idx) {} |
---|
117 | |
---|
118 | public: |
---|
119 | |
---|
120 | /// \brief Conversion to Arc |
---|
121 | operator const Arc&() const { |
---|
122 | return path->nth(idx); |
---|
123 | } |
---|
124 | |
---|
125 | /// \brief Next arc |
---|
126 | ArcIt& operator++() { |
---|
127 | ++idx; |
---|
128 | if (idx >= path->length()) idx = -1; |
---|
129 | return *this; |
---|
130 | } |
---|
131 | |
---|
132 | /// \brief Comparison operator |
---|
133 | bool operator==(const ArcIt& e) const { return idx==e.idx; } |
---|
134 | /// \brief Comparison operator |
---|
135 | bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
---|
136 | /// \brief Comparison operator |
---|
137 | bool operator<(const ArcIt& e) const { return idx<e.idx; } |
---|
138 | |
---|
139 | private: |
---|
140 | const Path *path; |
---|
141 | int idx; |
---|
142 | }; |
---|
143 | |
---|
144 | /// \brief Gets the collection of the arcs of the path. |
---|
145 | /// |
---|
146 | /// This function can be used for iterating on the |
---|
147 | /// arcs of the path. It returns a wrapped |
---|
148 | /// ArcIt, which looks like an STL container |
---|
149 | /// (by having begin() and end()) which you can use in range-based |
---|
150 | /// for loops, STL algorithms, etc. |
---|
151 | /// For example you can write: |
---|
152 | ///\code |
---|
153 | /// for(auto a: p.arcs()) |
---|
154 | /// doSomething(a); |
---|
155 | ///\endcode |
---|
156 | LemonRangeWrapper1<ArcIt, Path> arcs() const { |
---|
157 | return LemonRangeWrapper1<ArcIt, Path>(*this); |
---|
158 | } |
---|
159 | |
---|
160 | |
---|
161 | /// \brief Length of the path. |
---|
162 | int length() const { return head.size() + tail.size(); } |
---|
163 | /// \brief Return whether the path is empty. |
---|
164 | bool empty() const { return head.empty() && tail.empty(); } |
---|
165 | |
---|
166 | /// \brief Reset the path to an empty one. |
---|
167 | void clear() { head.clear(); tail.clear(); } |
---|
168 | |
---|
169 | /// \brief The n-th arc. |
---|
170 | /// |
---|
171 | /// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
---|
172 | const Arc& nth(int n) const { |
---|
173 | return n < int(head.size()) ? *(head.rbegin() + n) : |
---|
174 | *(tail.begin() + (n - head.size())); |
---|
175 | } |
---|
176 | |
---|
177 | /// \brief Initialize arc iterator to point to the n-th arc |
---|
178 | /// |
---|
179 | /// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
---|
180 | ArcIt nthIt(int n) const { |
---|
181 | return ArcIt(*this, n); |
---|
182 | } |
---|
183 | |
---|
184 | /// \brief The first arc of the path |
---|
185 | const Arc& front() const { |
---|
186 | return head.empty() ? tail.front() : head.back(); |
---|
187 | } |
---|
188 | |
---|
189 | /// \brief Add a new arc before the current path |
---|
190 | void addFront(const Arc& arc) { |
---|
191 | head.push_back(arc); |
---|
192 | } |
---|
193 | |
---|
194 | /// \brief Erase the first arc of the path |
---|
195 | void eraseFront() { |
---|
196 | if (!head.empty()) { |
---|
197 | head.pop_back(); |
---|
198 | } else { |
---|
199 | head.clear(); |
---|
200 | int halfsize = tail.size() / 2; |
---|
201 | head.resize(halfsize); |
---|
202 | std::copy(tail.begin() + 1, tail.begin() + halfsize + 1, |
---|
203 | head.rbegin()); |
---|
204 | std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin()); |
---|
205 | tail.resize(tail.size() - halfsize - 1); |
---|
206 | } |
---|
207 | } |
---|
208 | |
---|
209 | /// \brief The last arc of the path |
---|
210 | const Arc& back() const { |
---|
211 | return tail.empty() ? head.front() : tail.back(); |
---|
212 | } |
---|
213 | |
---|
214 | /// \brief Add a new arc behind the current path |
---|
215 | void addBack(const Arc& arc) { |
---|
216 | tail.push_back(arc); |
---|
217 | } |
---|
218 | |
---|
219 | /// \brief Erase the last arc of the path |
---|
220 | void eraseBack() { |
---|
221 | if (!tail.empty()) { |
---|
222 | tail.pop_back(); |
---|
223 | } else { |
---|
224 | int halfsize = head.size() / 2; |
---|
225 | tail.resize(halfsize); |
---|
226 | std::copy(head.begin() + 1, head.begin() + halfsize + 1, |
---|
227 | tail.rbegin()); |
---|
228 | std::copy(head.begin() + halfsize + 1, head.end(), head.begin()); |
---|
229 | head.resize(head.size() - halfsize - 1); |
---|
230 | } |
---|
231 | } |
---|
232 | |
---|
233 | typedef True BuildTag; |
---|
234 | |
---|
235 | template <typename CPath> |
---|
236 | void build(const CPath& path) { |
---|
237 | int len = path.length(); |
---|
238 | tail.reserve(len); |
---|
239 | for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
---|
240 | tail.push_back(it); |
---|
241 | } |
---|
242 | } |
---|
243 | |
---|
244 | template <typename CPath> |
---|
245 | void buildRev(const CPath& path) { |
---|
246 | int len = path.length(); |
---|
247 | head.reserve(len); |
---|
248 | for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
---|
249 | head.push_back(it); |
---|
250 | } |
---|
251 | } |
---|
252 | |
---|
253 | protected: |
---|
254 | typedef std::vector<Arc> Container; |
---|
255 | Container head, tail; |
---|
256 | |
---|
257 | }; |
---|
258 | |
---|
259 | /// \brief A structure for representing directed paths in a digraph. |
---|
260 | /// |
---|
261 | /// A structure for representing directed path in a digraph. |
---|
262 | /// \tparam GR The digraph type in which the path is. |
---|
263 | /// |
---|
264 | /// In a sense, the path can be treated as a list of arcs. The |
---|
265 | /// LEMON path type stores just this list. As a consequence it |
---|
266 | /// cannot enumerate the nodes in the path and the zero length paths |
---|
267 | /// cannot store the source. |
---|
268 | /// |
---|
269 | /// This implementation is a just back insertable and erasable path |
---|
270 | /// type. It can be indexed in O(1) time. The back insertion and |
---|
271 | /// erasure is amortized O(1) time. This implementation is faster |
---|
272 | /// then the \c Path type because it use just one vector for the |
---|
273 | /// arcs. |
---|
274 | template <typename GR> |
---|
275 | class SimplePath { |
---|
276 | public: |
---|
277 | |
---|
278 | typedef GR Digraph; |
---|
279 | typedef typename Digraph::Arc Arc; |
---|
280 | |
---|
281 | /// \brief Default constructor |
---|
282 | /// |
---|
283 | /// Default constructor |
---|
284 | SimplePath() {} |
---|
285 | |
---|
286 | /// \brief Copy constructor |
---|
287 | /// |
---|
288 | SimplePath(const SimplePath& cpath) { |
---|
289 | pathCopy(cpath, *this); |
---|
290 | } |
---|
291 | |
---|
292 | /// \brief Template copy constructor |
---|
293 | /// |
---|
294 | /// This path can be initialized with any other path type. It just |
---|
295 | /// makes a copy of the given path. |
---|
296 | template <typename CPath> |
---|
297 | SimplePath(const CPath& cpath) { |
---|
298 | pathCopy(cpath, *this); |
---|
299 | } |
---|
300 | |
---|
301 | /// \brief Copy assignment |
---|
302 | /// |
---|
303 | SimplePath& operator=(const SimplePath& cpath) { |
---|
304 | pathCopy(cpath, *this); |
---|
305 | return *this; |
---|
306 | } |
---|
307 | |
---|
308 | /// \brief Template copy assignment |
---|
309 | /// |
---|
310 | /// This path can be initialized with any other path type. It just |
---|
311 | /// makes a copy of the given path. |
---|
312 | template <typename CPath> |
---|
313 | SimplePath& operator=(const CPath& cpath) { |
---|
314 | pathCopy(cpath, *this); |
---|
315 | return *this; |
---|
316 | } |
---|
317 | |
---|
318 | /// \brief Iterator class to iterate on the arcs of the paths |
---|
319 | /// |
---|
320 | /// This class is used to iterate on the arcs of the paths |
---|
321 | /// |
---|
322 | /// Of course it converts to Digraph::Arc |
---|
323 | class ArcIt { |
---|
324 | friend class SimplePath; |
---|
325 | public: |
---|
326 | /// Default constructor |
---|
327 | ArcIt() {} |
---|
328 | /// Invalid constructor |
---|
329 | ArcIt(Invalid) : path(0), idx(-1) {} |
---|
330 | /// \brief Initializate the constructor to the first arc of path |
---|
331 | ArcIt(const SimplePath &_path) |
---|
332 | : path(&_path), idx(_path.empty() ? -1 : 0) {} |
---|
333 | |
---|
334 | private: |
---|
335 | |
---|
336 | /// Constructor with starting point |
---|
337 | ArcIt(const SimplePath &_path, int _idx) |
---|
338 | : path(&_path), idx(_idx) {} |
---|
339 | |
---|
340 | public: |
---|
341 | |
---|
342 | ///Conversion to Digraph::Arc |
---|
343 | operator const Arc&() const { |
---|
344 | return path->nth(idx); |
---|
345 | } |
---|
346 | |
---|
347 | /// Next arc |
---|
348 | ArcIt& operator++() { |
---|
349 | ++idx; |
---|
350 | if (idx >= path->length()) idx = -1; |
---|
351 | return *this; |
---|
352 | } |
---|
353 | |
---|
354 | /// Comparison operator |
---|
355 | bool operator==(const ArcIt& e) const { return idx==e.idx; } |
---|
356 | /// Comparison operator |
---|
357 | bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
---|
358 | /// Comparison operator |
---|
359 | bool operator<(const ArcIt& e) const { return idx<e.idx; } |
---|
360 | |
---|
361 | private: |
---|
362 | const SimplePath *path; |
---|
363 | int idx; |
---|
364 | }; |
---|
365 | |
---|
366 | /// \brief Gets the collection of the arcs of the path. |
---|
367 | /// |
---|
368 | /// This function can be used for iterating on the |
---|
369 | /// arcs of the path. It returns a wrapped |
---|
370 | /// ArcIt, which looks like an STL container |
---|
371 | /// (by having begin() and end()) which you can use in range-based |
---|
372 | /// for loops, STL algorithms, etc. |
---|
373 | /// For example you can write: |
---|
374 | ///\code |
---|
375 | /// for(auto a: p.arcs()) |
---|
376 | /// doSomething(a); |
---|
377 | ///\endcode |
---|
378 | LemonRangeWrapper1<ArcIt, SimplePath> arcs() const { |
---|
379 | return LemonRangeWrapper1<ArcIt, SimplePath>(*this); |
---|
380 | } |
---|
381 | |
---|
382 | |
---|
383 | /// \brief Length of the path. |
---|
384 | int length() const { return data.size(); } |
---|
385 | /// \brief Return true if the path is empty. |
---|
386 | bool empty() const { return data.empty(); } |
---|
387 | |
---|
388 | /// \brief Reset the path to an empty one. |
---|
389 | void clear() { data.clear(); } |
---|
390 | |
---|
391 | /// \brief The n-th arc. |
---|
392 | /// |
---|
393 | /// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
---|
394 | const Arc& nth(int n) const { |
---|
395 | return data[n]; |
---|
396 | } |
---|
397 | |
---|
398 | /// \brief Initializes arc iterator to point to the n-th arc. |
---|
399 | ArcIt nthIt(int n) const { |
---|
400 | return ArcIt(*this, n); |
---|
401 | } |
---|
402 | |
---|
403 | /// \brief The first arc of the path. |
---|
404 | const Arc& front() const { |
---|
405 | return data.front(); |
---|
406 | } |
---|
407 | |
---|
408 | /// \brief The last arc of the path. |
---|
409 | const Arc& back() const { |
---|
410 | return data.back(); |
---|
411 | } |
---|
412 | |
---|
413 | /// \brief Add a new arc behind the current path. |
---|
414 | void addBack(const Arc& arc) { |
---|
415 | data.push_back(arc); |
---|
416 | } |
---|
417 | |
---|
418 | /// \brief Erase the last arc of the path |
---|
419 | void eraseBack() { |
---|
420 | data.pop_back(); |
---|
421 | } |
---|
422 | |
---|
423 | typedef True BuildTag; |
---|
424 | |
---|
425 | template <typename CPath> |
---|
426 | void build(const CPath& path) { |
---|
427 | int len = path.length(); |
---|
428 | data.resize(len); |
---|
429 | int index = 0; |
---|
430 | for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
---|
431 | data[index] = it;; |
---|
432 | ++index; |
---|
433 | } |
---|
434 | } |
---|
435 | |
---|
436 | template <typename CPath> |
---|
437 | void buildRev(const CPath& path) { |
---|
438 | int len = path.length(); |
---|
439 | data.resize(len); |
---|
440 | int index = len; |
---|
441 | for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
---|
442 | --index; |
---|
443 | data[index] = it;; |
---|
444 | } |
---|
445 | } |
---|
446 | |
---|
447 | protected: |
---|
448 | typedef std::vector<Arc> Container; |
---|
449 | Container data; |
---|
450 | |
---|
451 | }; |
---|
452 | |
---|
453 | /// \brief A structure for representing directed paths in a digraph. |
---|
454 | /// |
---|
455 | /// A structure for representing directed path in a digraph. |
---|
456 | /// \tparam GR The digraph type in which the path is. |
---|
457 | /// |
---|
458 | /// In a sense, the path can be treated as a list of arcs. The |
---|
459 | /// LEMON path type stores just this list. As a consequence it |
---|
460 | /// cannot enumerate the nodes in the path and the zero length paths |
---|
461 | /// cannot store the source. |
---|
462 | /// |
---|
463 | /// This implementation is a back and front insertable and erasable |
---|
464 | /// path type. It can be indexed in O(k) time, where k is the rank |
---|
465 | /// of the arc in the path. The length can be computed in O(n) |
---|
466 | /// time. The front and back insertion and erasure is O(1) time |
---|
467 | /// and it can be splited and spliced in O(1) time. |
---|
468 | template <typename GR> |
---|
469 | class ListPath { |
---|
470 | public: |
---|
471 | |
---|
472 | typedef GR Digraph; |
---|
473 | typedef typename Digraph::Arc Arc; |
---|
474 | |
---|
475 | protected: |
---|
476 | |
---|
477 | // the std::list<> is incompatible |
---|
478 | // hard to create invalid iterator |
---|
479 | struct Node { |
---|
480 | Arc arc; |
---|
481 | Node *next, *prev; |
---|
482 | }; |
---|
483 | |
---|
484 | Node *first, *last; |
---|
485 | |
---|
486 | std::allocator<Node> alloc; |
---|
487 | |
---|
488 | public: |
---|
489 | |
---|
490 | /// \brief Default constructor |
---|
491 | /// |
---|
492 | /// Default constructor |
---|
493 | ListPath() : first(0), last(0) {} |
---|
494 | |
---|
495 | /// \brief Copy constructor |
---|
496 | /// |
---|
497 | ListPath(const ListPath& cpath) : first(0), last(0) { |
---|
498 | pathCopy(cpath, *this); |
---|
499 | } |
---|
500 | |
---|
501 | /// \brief Template copy constructor |
---|
502 | /// |
---|
503 | /// This path can be initialized with any other path type. It just |
---|
504 | /// makes a copy of the given path. |
---|
505 | template <typename CPath> |
---|
506 | ListPath(const CPath& cpath) : first(0), last(0) { |
---|
507 | pathCopy(cpath, *this); |
---|
508 | } |
---|
509 | |
---|
510 | /// \brief Destructor of the path |
---|
511 | /// |
---|
512 | /// Destructor of the path |
---|
513 | ~ListPath() { |
---|
514 | clear(); |
---|
515 | } |
---|
516 | |
---|
517 | /// \brief Copy assignment |
---|
518 | /// |
---|
519 | ListPath& operator=(const ListPath& cpath) { |
---|
520 | pathCopy(cpath, *this); |
---|
521 | return *this; |
---|
522 | } |
---|
523 | |
---|
524 | /// \brief Template copy assignment |
---|
525 | /// |
---|
526 | /// This path can be initialized with any other path type. It just |
---|
527 | /// makes a copy of the given path. |
---|
528 | template <typename CPath> |
---|
529 | ListPath& operator=(const CPath& cpath) { |
---|
530 | pathCopy(cpath, *this); |
---|
531 | return *this; |
---|
532 | } |
---|
533 | |
---|
534 | /// \brief Iterator class to iterate on the arcs of the paths |
---|
535 | /// |
---|
536 | /// This class is used to iterate on the arcs of the paths |
---|
537 | /// |
---|
538 | /// Of course it converts to Digraph::Arc |
---|
539 | class ArcIt { |
---|
540 | friend class ListPath; |
---|
541 | public: |
---|
542 | /// Default constructor |
---|
543 | ArcIt() {} |
---|
544 | /// Invalid constructor |
---|
545 | ArcIt(Invalid) : path(0), node(0) {} |
---|
546 | /// \brief Initializate the constructor to the first arc of path |
---|
547 | ArcIt(const ListPath &_path) |
---|
548 | : path(&_path), node(_path.first) {} |
---|
549 | |
---|
550 | protected: |
---|
551 | |
---|
552 | ArcIt(const ListPath &_path, Node *_node) |
---|
553 | : path(&_path), node(_node) {} |
---|
554 | |
---|
555 | |
---|
556 | public: |
---|
557 | |
---|
558 | ///Conversion to Digraph::Arc |
---|
559 | operator const Arc&() const { |
---|
560 | return node->arc; |
---|
561 | } |
---|
562 | |
---|
563 | /// Next arc |
---|
564 | ArcIt& operator++() { |
---|
565 | node = node->next; |
---|
566 | return *this; |
---|
567 | } |
---|
568 | |
---|
569 | /// Comparison operator |
---|
570 | bool operator==(const ArcIt& e) const { return node==e.node; } |
---|
571 | /// Comparison operator |
---|
572 | bool operator!=(const ArcIt& e) const { return node!=e.node; } |
---|
573 | /// Comparison operator |
---|
574 | bool operator<(const ArcIt& e) const { return node<e.node; } |
---|
575 | |
---|
576 | private: |
---|
577 | const ListPath *path; |
---|
578 | Node *node; |
---|
579 | }; |
---|
580 | |
---|
581 | /// \brief Gets the collection of the arcs of the path. |
---|
582 | /// |
---|
583 | /// This function can be used for iterating on the |
---|
584 | /// arcs of the path. It returns a wrapped |
---|
585 | /// ArcIt, which looks like an STL container |
---|
586 | /// (by having begin() and end()) which you can use in range-based |
---|
587 | /// for loops, STL algorithms, etc. |
---|
588 | /// For example you can write: |
---|
589 | ///\code |
---|
590 | /// for(auto a: p.arcs()) |
---|
591 | /// doSomething(a); |
---|
592 | ///\endcode |
---|
593 | LemonRangeWrapper1<ArcIt, ListPath> arcs() const { |
---|
594 | return LemonRangeWrapper1<ArcIt, ListPath>(*this); |
---|
595 | } |
---|
596 | |
---|
597 | |
---|
598 | /// \brief The n-th arc. |
---|
599 | /// |
---|
600 | /// This function looks for the n-th arc in O(n) time. |
---|
601 | /// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
---|
602 | const Arc& nth(int n) const { |
---|
603 | Node *node = first; |
---|
604 | for (int i = 0; i < n; ++i) { |
---|
605 | node = node->next; |
---|
606 | } |
---|
607 | return node->arc; |
---|
608 | } |
---|
609 | |
---|
610 | /// \brief Initializes arc iterator to point to the n-th arc. |
---|
611 | ArcIt nthIt(int n) const { |
---|
612 | Node *node = first; |
---|
613 | for (int i = 0; i < n; ++i) { |
---|
614 | node = node->next; |
---|
615 | } |
---|
616 | return ArcIt(*this, node); |
---|
617 | } |
---|
618 | |
---|
619 | /// \brief Length of the path. |
---|
620 | int length() const { |
---|
621 | int len = 0; |
---|
622 | Node *node = first; |
---|
623 | while (node != 0) { |
---|
624 | node = node->next; |
---|
625 | ++len; |
---|
626 | } |
---|
627 | return len; |
---|
628 | } |
---|
629 | |
---|
630 | /// \brief Return true if the path is empty. |
---|
631 | bool empty() const { return first == 0; } |
---|
632 | |
---|
633 | /// \brief Reset the path to an empty one. |
---|
634 | void clear() { |
---|
635 | while (first != 0) { |
---|
636 | last = first->next; |
---|
637 | alloc.destroy(first); |
---|
638 | alloc.deallocate(first, 1); |
---|
639 | first = last; |
---|
640 | } |
---|
641 | } |
---|
642 | |
---|
643 | /// \brief The first arc of the path |
---|
644 | const Arc& front() const { |
---|
645 | return first->arc; |
---|
646 | } |
---|
647 | |
---|
648 | /// \brief Add a new arc before the current path |
---|
649 | void addFront(const Arc& arc) { |
---|
650 | Node *node = alloc.allocate(1); |
---|
651 | alloc.construct(node, Node()); |
---|
652 | node->prev = 0; |
---|
653 | node->next = first; |
---|
654 | node->arc = arc; |
---|
655 | if (first) { |
---|
656 | first->prev = node; |
---|
657 | first = node; |
---|
658 | } else { |
---|
659 | first = last = node; |
---|
660 | } |
---|
661 | } |
---|
662 | |
---|
663 | /// \brief Erase the first arc of the path |
---|
664 | void eraseFront() { |
---|
665 | Node *node = first; |
---|
666 | first = first->next; |
---|
667 | if (first) { |
---|
668 | first->prev = 0; |
---|
669 | } else { |
---|
670 | last = 0; |
---|
671 | } |
---|
672 | alloc.destroy(node); |
---|
673 | alloc.deallocate(node, 1); |
---|
674 | } |
---|
675 | |
---|
676 | /// \brief The last arc of the path. |
---|
677 | const Arc& back() const { |
---|
678 | return last->arc; |
---|
679 | } |
---|
680 | |
---|
681 | /// \brief Add a new arc behind the current path. |
---|
682 | void addBack(const Arc& arc) { |
---|
683 | Node *node = alloc.allocate(1); |
---|
684 | alloc.construct(node, Node()); |
---|
685 | node->next = 0; |
---|
686 | node->prev = last; |
---|
687 | node->arc = arc; |
---|
688 | if (last) { |
---|
689 | last->next = node; |
---|
690 | last = node; |
---|
691 | } else { |
---|
692 | last = first = node; |
---|
693 | } |
---|
694 | } |
---|
695 | |
---|
696 | /// \brief Erase the last arc of the path |
---|
697 | void eraseBack() { |
---|
698 | Node *node = last; |
---|
699 | last = last->prev; |
---|
700 | if (last) { |
---|
701 | last->next = 0; |
---|
702 | } else { |
---|
703 | first = 0; |
---|
704 | } |
---|
705 | alloc.destroy(node); |
---|
706 | alloc.deallocate(node, 1); |
---|
707 | } |
---|
708 | |
---|
709 | /// \brief Splice a path to the back of the current path. |
---|
710 | /// |
---|
711 | /// It splices \c tpath to the back of the current path and \c |
---|
712 | /// tpath becomes empty. The time complexity of this function is |
---|
713 | /// O(1). |
---|
714 | void spliceBack(ListPath& tpath) { |
---|
715 | if (first) { |
---|
716 | if (tpath.first) { |
---|
717 | last->next = tpath.first; |
---|
718 | tpath.first->prev = last; |
---|
719 | last = tpath.last; |
---|
720 | } |
---|
721 | } else { |
---|
722 | first = tpath.first; |
---|
723 | last = tpath.last; |
---|
724 | } |
---|
725 | tpath.first = tpath.last = 0; |
---|
726 | } |
---|
727 | |
---|
728 | /// \brief Splice a path to the front of the current path. |
---|
729 | /// |
---|
730 | /// It splices \c tpath before the current path and \c tpath |
---|
731 | /// becomes empty. The time complexity of this function |
---|
732 | /// is O(1). |
---|
733 | void spliceFront(ListPath& tpath) { |
---|
734 | if (first) { |
---|
735 | if (tpath.first) { |
---|
736 | first->prev = tpath.last; |
---|
737 | tpath.last->next = first; |
---|
738 | first = tpath.first; |
---|
739 | } |
---|
740 | } else { |
---|
741 | first = tpath.first; |
---|
742 | last = tpath.last; |
---|
743 | } |
---|
744 | tpath.first = tpath.last = 0; |
---|
745 | } |
---|
746 | |
---|
747 | /// \brief Splice a path into the current path. |
---|
748 | /// |
---|
749 | /// It splices the \c tpath into the current path before the |
---|
750 | /// position of \c it iterator and \c tpath becomes empty. The |
---|
751 | /// time complexity of this function is O(1). If the \c it is |
---|
752 | /// \c INVALID then it will splice behind the current path. |
---|
753 | void splice(ArcIt it, ListPath& tpath) { |
---|
754 | if (it.node) { |
---|
755 | if (tpath.first) { |
---|
756 | tpath.first->prev = it.node->prev; |
---|
757 | if (it.node->prev) { |
---|
758 | it.node->prev->next = tpath.first; |
---|
759 | } else { |
---|
760 | first = tpath.first; |
---|
761 | } |
---|
762 | it.node->prev = tpath.last; |
---|
763 | tpath.last->next = it.node; |
---|
764 | } |
---|
765 | } else { |
---|
766 | if (first) { |
---|
767 | if (tpath.first) { |
---|
768 | last->next = tpath.first; |
---|
769 | tpath.first->prev = last; |
---|
770 | last = tpath.last; |
---|
771 | } |
---|
772 | } else { |
---|
773 | first = tpath.first; |
---|
774 | last = tpath.last; |
---|
775 | } |
---|
776 | } |
---|
777 | tpath.first = tpath.last = 0; |
---|
778 | } |
---|
779 | |
---|
780 | /// \brief Split the current path. |
---|
781 | /// |
---|
782 | /// It splits the current path into two parts. The part before |
---|
783 | /// the iterator \c it will remain in the current path and the part |
---|
784 | /// starting with |
---|
785 | /// \c it will put into \c tpath. If \c tpath have arcs |
---|
786 | /// before the operation they are removed first. The time |
---|
787 | /// complexity of this function is O(1) plus the the time of emtying |
---|
788 | /// \c tpath. If \c it is \c INVALID then it just clears \c tpath |
---|
789 | void split(ArcIt it, ListPath& tpath) { |
---|
790 | tpath.clear(); |
---|
791 | if (it.node) { |
---|
792 | tpath.first = it.node; |
---|
793 | tpath.last = last; |
---|
794 | if (it.node->prev) { |
---|
795 | last = it.node->prev; |
---|
796 | last->next = 0; |
---|
797 | } else { |
---|
798 | first = last = 0; |
---|
799 | } |
---|
800 | it.node->prev = 0; |
---|
801 | } |
---|
802 | } |
---|
803 | |
---|
804 | |
---|
805 | typedef True BuildTag; |
---|
806 | |
---|
807 | template <typename CPath> |
---|
808 | void build(const CPath& path) { |
---|
809 | for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
---|
810 | addBack(it); |
---|
811 | } |
---|
812 | } |
---|
813 | |
---|
814 | template <typename CPath> |
---|
815 | void buildRev(const CPath& path) { |
---|
816 | for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
---|
817 | addFront(it); |
---|
818 | } |
---|
819 | } |
---|
820 | |
---|
821 | }; |
---|
822 | |
---|
823 | /// \brief A structure for representing directed paths in a digraph. |
---|
824 | /// |
---|
825 | /// A structure for representing directed path in a digraph. |
---|
826 | /// \tparam GR The digraph type in which the path is. |
---|
827 | /// |
---|
828 | /// In a sense, the path can be treated as a list of arcs. The |
---|
829 | /// LEMON path type stores just this list. As a consequence it |
---|
830 | /// cannot enumerate the nodes in the path and the source node of |
---|
831 | /// a zero length path is undefined. |
---|
832 | /// |
---|
833 | /// This implementation is completly static, i.e. it can be copy constucted |
---|
834 | /// or copy assigned from another path, but otherwise it cannot be |
---|
835 | /// modified. |
---|
836 | /// |
---|
837 | /// Being the the most memory efficient path type in LEMON, |
---|
838 | /// it is intented to be |
---|
839 | /// used when you want to store a large number of paths. |
---|
840 | template <typename GR> |
---|
841 | class StaticPath { |
---|
842 | public: |
---|
843 | |
---|
844 | typedef GR Digraph; |
---|
845 | typedef typename Digraph::Arc Arc; |
---|
846 | |
---|
847 | /// \brief Default constructor |
---|
848 | /// |
---|
849 | /// Default constructor |
---|
850 | StaticPath() : len(0), _arcs(0) {} |
---|
851 | |
---|
852 | /// \brief Copy constructor |
---|
853 | /// |
---|
854 | StaticPath(const StaticPath& cpath) : _arcs(0) { |
---|
855 | pathCopy(cpath, *this); |
---|
856 | } |
---|
857 | |
---|
858 | /// \brief Template copy constructor |
---|
859 | /// |
---|
860 | /// This path can be initialized from any other path type. |
---|
861 | template <typename CPath> |
---|
862 | StaticPath(const CPath& cpath) : _arcs(0) { |
---|
863 | pathCopy(cpath, *this); |
---|
864 | } |
---|
865 | |
---|
866 | /// \brief Destructor of the path |
---|
867 | /// |
---|
868 | /// Destructor of the path |
---|
869 | ~StaticPath() { |
---|
870 | if (_arcs) delete[] _arcs; |
---|
871 | } |
---|
872 | |
---|
873 | /// \brief Copy assignment |
---|
874 | /// |
---|
875 | StaticPath& operator=(const StaticPath& cpath) { |
---|
876 | pathCopy(cpath, *this); |
---|
877 | return *this; |
---|
878 | } |
---|
879 | |
---|
880 | /// \brief Template copy assignment |
---|
881 | /// |
---|
882 | /// This path can be made equal to any other path type. It simply |
---|
883 | /// makes a copy of the given path. |
---|
884 | template <typename CPath> |
---|
885 | StaticPath& operator=(const CPath& cpath) { |
---|
886 | pathCopy(cpath, *this); |
---|
887 | return *this; |
---|
888 | } |
---|
889 | |
---|
890 | /// \brief Iterator class to iterate on the arcs of the paths |
---|
891 | /// |
---|
892 | /// This class is used to iterate on the arcs of the paths |
---|
893 | /// |
---|
894 | /// Of course it converts to Digraph::Arc |
---|
895 | class ArcIt { |
---|
896 | friend class StaticPath; |
---|
897 | public: |
---|
898 | /// Default constructor |
---|
899 | ArcIt() {} |
---|
900 | /// Invalid constructor |
---|
901 | ArcIt(Invalid) : path(0), idx(-1) {} |
---|
902 | /// Initializate the constructor to the first arc of path |
---|
903 | ArcIt(const StaticPath &_path) |
---|
904 | : path(&_path), idx(_path.empty() ? -1 : 0) {} |
---|
905 | |
---|
906 | private: |
---|
907 | |
---|
908 | /// Constructor with starting point |
---|
909 | ArcIt(const StaticPath &_path, int _idx) |
---|
910 | : idx(_idx), path(&_path) {} |
---|
911 | |
---|
912 | public: |
---|
913 | |
---|
914 | ///Conversion to Digraph::Arc |
---|
915 | operator const Arc&() const { |
---|
916 | return path->nth(idx); |
---|
917 | } |
---|
918 | |
---|
919 | /// Next arc |
---|
920 | ArcIt& operator++() { |
---|
921 | ++idx; |
---|
922 | if (idx >= path->length()) idx = -1; |
---|
923 | return *this; |
---|
924 | } |
---|
925 | |
---|
926 | /// Comparison operator |
---|
927 | bool operator==(const ArcIt& e) const { return idx==e.idx; } |
---|
928 | /// Comparison operator |
---|
929 | bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
---|
930 | /// Comparison operator |
---|
931 | bool operator<(const ArcIt& e) const { return idx<e.idx; } |
---|
932 | |
---|
933 | private: |
---|
934 | const StaticPath *path; |
---|
935 | int idx; |
---|
936 | }; |
---|
937 | |
---|
938 | /// \brief Gets the collection of the arcs of the path. |
---|
939 | /// |
---|
940 | /// This function can be used for iterating on the |
---|
941 | /// arcs of the path. It returns a wrapped |
---|
942 | /// ArcIt, which looks like an STL container |
---|
943 | /// (by having begin() and end()) which you can use in range-based |
---|
944 | /// for loops, STL algorithms, etc. |
---|
945 | /// For example you can write: |
---|
946 | ///\code |
---|
947 | /// for(auto a: p.arcs()) |
---|
948 | /// doSomething(a); |
---|
949 | ///\endcode |
---|
950 | LemonRangeWrapper1<ArcIt, StaticPath> arcs() const { |
---|
951 | return LemonRangeWrapper1<ArcIt, StaticPath>(*this); |
---|
952 | } |
---|
953 | |
---|
954 | |
---|
955 | /// \brief The n-th arc. |
---|
956 | /// |
---|
957 | /// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
---|
958 | const Arc& nth(int n) const { |
---|
959 | return _arcs[n]; |
---|
960 | } |
---|
961 | |
---|
962 | /// \brief The arc iterator pointing to the n-th arc. |
---|
963 | ArcIt nthIt(int n) const { |
---|
964 | return ArcIt(*this, n); |
---|
965 | } |
---|
966 | |
---|
967 | /// \brief The length of the path. |
---|
968 | int length() const { return len; } |
---|
969 | |
---|
970 | /// \brief Return true when the path is empty. |
---|
971 | int empty() const { return len == 0; } |
---|
972 | |
---|
973 | /// \brief Erase all arcs in the digraph. |
---|
974 | void clear() { |
---|
975 | len = 0; |
---|
976 | if (_arcs) delete[] _arcs; |
---|
977 | _arcs = 0; |
---|
978 | } |
---|
979 | |
---|
980 | /// \brief The first arc of the path. |
---|
981 | const Arc& front() const { |
---|
982 | return _arcs[0]; |
---|
983 | } |
---|
984 | |
---|
985 | /// \brief The last arc of the path. |
---|
986 | const Arc& back() const { |
---|
987 | return _arcs[len - 1]; |
---|
988 | } |
---|
989 | |
---|
990 | |
---|
991 | typedef True BuildTag; |
---|
992 | |
---|
993 | template <typename CPath> |
---|
994 | void build(const CPath& path) { |
---|
995 | len = path.length(); |
---|
996 | _arcs = new Arc[len]; |
---|
997 | int index = 0; |
---|
998 | for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
---|
999 | _arcs[index] = it; |
---|
1000 | ++index; |
---|
1001 | } |
---|
1002 | } |
---|
1003 | |
---|
1004 | template <typename CPath> |
---|
1005 | void buildRev(const CPath& path) { |
---|
1006 | len = path.length(); |
---|
1007 | _arcs = new Arc[len]; |
---|
1008 | int index = len; |
---|
1009 | for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
---|
1010 | --index; |
---|
1011 | _arcs[index] = it; |
---|
1012 | } |
---|
1013 | } |
---|
1014 | |
---|
1015 | private: |
---|
1016 | int len; |
---|
1017 | Arc* _arcs; |
---|
1018 | }; |
---|
1019 | |
---|
1020 | /////////////////////////////////////////////////////////////////////// |
---|
1021 | // Additional utilities |
---|
1022 | /////////////////////////////////////////////////////////////////////// |
---|
1023 | |
---|
1024 | namespace _path_bits { |
---|
1025 | |
---|
1026 | template <typename Path, typename Enable = void> |
---|
1027 | struct RevPathTagIndicator { |
---|
1028 | static const bool value = false; |
---|
1029 | }; |
---|
1030 | |
---|
1031 | template <typename Path> |
---|
1032 | struct RevPathTagIndicator< |
---|
1033 | Path, |
---|
1034 | typename enable_if<typename Path::RevPathTag, void>::type |
---|
1035 | > { |
---|
1036 | static const bool value = true; |
---|
1037 | }; |
---|
1038 | |
---|
1039 | template <typename Path, typename Enable = void> |
---|
1040 | struct BuildTagIndicator { |
---|
1041 | static const bool value = false; |
---|
1042 | }; |
---|
1043 | |
---|
1044 | template <typename Path> |
---|
1045 | struct BuildTagIndicator< |
---|
1046 | Path, |
---|
1047 | typename enable_if<typename Path::BuildTag, void>::type |
---|
1048 | > { |
---|
1049 | static const bool value = true; |
---|
1050 | }; |
---|
1051 | |
---|
1052 | template <typename From, typename To, |
---|
1053 | bool buildEnable = BuildTagIndicator<To>::value> |
---|
1054 | struct PathCopySelectorForward { |
---|
1055 | static void copy(const From& from, To& to) { |
---|
1056 | to.clear(); |
---|
1057 | for (typename From::ArcIt it(from); it != INVALID; ++it) { |
---|
1058 | to.addBack(it); |
---|
1059 | } |
---|
1060 | } |
---|
1061 | }; |
---|
1062 | |
---|
1063 | template <typename From, typename To> |
---|
1064 | struct PathCopySelectorForward<From, To, true> { |
---|
1065 | static void copy(const From& from, To& to) { |
---|
1066 | to.clear(); |
---|
1067 | to.build(from); |
---|
1068 | } |
---|
1069 | }; |
---|
1070 | |
---|
1071 | template <typename From, typename To, |
---|
1072 | bool buildEnable = BuildTagIndicator<To>::value> |
---|
1073 | struct PathCopySelectorBackward { |
---|
1074 | static void copy(const From& from, To& to) { |
---|
1075 | to.clear(); |
---|
1076 | for (typename From::RevArcIt it(from); it != INVALID; ++it) { |
---|
1077 | to.addFront(it); |
---|
1078 | } |
---|
1079 | } |
---|
1080 | }; |
---|
1081 | |
---|
1082 | template <typename From, typename To> |
---|
1083 | struct PathCopySelectorBackward<From, To, true> { |
---|
1084 | static void copy(const From& from, To& to) { |
---|
1085 | to.clear(); |
---|
1086 | to.buildRev(from); |
---|
1087 | } |
---|
1088 | }; |
---|
1089 | |
---|
1090 | |
---|
1091 | template <typename From, typename To, |
---|
1092 | bool revEnable = RevPathTagIndicator<From>::value> |
---|
1093 | struct PathCopySelector { |
---|
1094 | static void copy(const From& from, To& to) { |
---|
1095 | PathCopySelectorForward<From, To>::copy(from, to); |
---|
1096 | } |
---|
1097 | }; |
---|
1098 | |
---|
1099 | template <typename From, typename To> |
---|
1100 | struct PathCopySelector<From, To, true> { |
---|
1101 | static void copy(const From& from, To& to) { |
---|
1102 | PathCopySelectorBackward<From, To>::copy(from, to); |
---|
1103 | } |
---|
1104 | }; |
---|
1105 | |
---|
1106 | } |
---|
1107 | |
---|
1108 | |
---|
1109 | /// \brief Make a copy of a path. |
---|
1110 | /// |
---|
1111 | /// This function makes a copy of a path. |
---|
1112 | template <typename From, typename To> |
---|
1113 | void pathCopy(const From& from, To& to) { |
---|
1114 | checkConcept<concepts::PathDumper<typename From::Digraph>, From>(); |
---|
1115 | _path_bits::PathCopySelector<From, To>::copy(from, to); |
---|
1116 | } |
---|
1117 | |
---|
1118 | /// \brief Deprecated version of \ref pathCopy(). |
---|
1119 | /// |
---|
1120 | /// Deprecated version of \ref pathCopy() (only for reverse compatibility). |
---|
1121 | template <typename To, typename From> |
---|
1122 | void copyPath(To& to, const From& from) { |
---|
1123 | pathCopy(from, to); |
---|
1124 | } |
---|
1125 | |
---|
1126 | /// \brief Check the consistency of a path. |
---|
1127 | /// |
---|
1128 | /// This function checks that the target of each arc is the same |
---|
1129 | /// as the source of the next one. |
---|
1130 | /// |
---|
1131 | template <typename Digraph, typename Path> |
---|
1132 | bool checkPath(const Digraph& digraph, const Path& path) { |
---|
1133 | typename Path::ArcIt it(path); |
---|
1134 | if (it == INVALID) return true; |
---|
1135 | typename Digraph::Node node = digraph.target(it); |
---|
1136 | ++it; |
---|
1137 | while (it != INVALID) { |
---|
1138 | if (digraph.source(it) != node) return false; |
---|
1139 | node = digraph.target(it); |
---|
1140 | ++it; |
---|
1141 | } |
---|
1142 | return true; |
---|
1143 | } |
---|
1144 | |
---|
1145 | /// \brief The source of a path |
---|
1146 | /// |
---|
1147 | /// This function returns the source node of the given path. |
---|
1148 | /// If the path is empty, then it returns \c INVALID. |
---|
1149 | template <typename Digraph, typename Path> |
---|
1150 | typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) { |
---|
1151 | return path.empty() ? INVALID : digraph.source(path.front()); |
---|
1152 | } |
---|
1153 | |
---|
1154 | /// \brief The target of a path |
---|
1155 | /// |
---|
1156 | /// This function returns the target node of the given path. |
---|
1157 | /// If the path is empty, then it returns \c INVALID. |
---|
1158 | template <typename Digraph, typename Path> |
---|
1159 | typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) { |
---|
1160 | return path.empty() ? INVALID : digraph.target(path.back()); |
---|
1161 | } |
---|
1162 | |
---|
1163 | /// \brief Class which helps to iterate through the nodes of a path |
---|
1164 | /// |
---|
1165 | /// In a sense, the path can be treated as a list of arcs. The |
---|
1166 | /// LEMON path type stores only this list. As a consequence, it |
---|
1167 | /// cannot enumerate the nodes in the path and the zero length paths |
---|
1168 | /// cannot have a source node. |
---|
1169 | /// |
---|
1170 | /// This class implements the node iterator of a path structure. To |
---|
1171 | /// provide this feature, the underlying digraph should be passed to |
---|
1172 | /// the constructor of the iterator. |
---|
1173 | template <typename Path> |
---|
1174 | class PathNodeIt { |
---|
1175 | private: |
---|
1176 | const typename Path::Digraph *_digraph; |
---|
1177 | typename Path::ArcIt _it; |
---|
1178 | typename Path::Digraph::Node _nd; |
---|
1179 | |
---|
1180 | public: |
---|
1181 | |
---|
1182 | typedef typename Path::Digraph Digraph; |
---|
1183 | typedef typename Digraph::Node Node; |
---|
1184 | |
---|
1185 | /// Default constructor |
---|
1186 | PathNodeIt() {} |
---|
1187 | /// Invalid constructor |
---|
1188 | PathNodeIt(Invalid) |
---|
1189 | : _digraph(0), _it(INVALID), _nd(INVALID) {} |
---|
1190 | /// Constructor |
---|
1191 | PathNodeIt(const Digraph& digraph, const Path& path) |
---|
1192 | : _digraph(&digraph), _it(path) { |
---|
1193 | _nd = (_it != INVALID ? _digraph->source(_it) : INVALID); |
---|
1194 | } |
---|
1195 | /// Constructor |
---|
1196 | PathNodeIt(const Digraph& digraph, const Path& path, const Node& src) |
---|
1197 | : _digraph(&digraph), _it(path), _nd(src) {} |
---|
1198 | |
---|
1199 | ///Conversion to Digraph::Node |
---|
1200 | operator Node() const { |
---|
1201 | return _nd; |
---|
1202 | } |
---|
1203 | |
---|
1204 | /// Next node |
---|
1205 | PathNodeIt& operator++() { |
---|
1206 | if (_it == INVALID) _nd = INVALID; |
---|
1207 | else { |
---|
1208 | _nd = _digraph->target(_it); |
---|
1209 | ++_it; |
---|
1210 | } |
---|
1211 | return *this; |
---|
1212 | } |
---|
1213 | |
---|
1214 | /// Comparison operator |
---|
1215 | bool operator==(const PathNodeIt& n) const { |
---|
1216 | return _it == n._it && _nd == n._nd; |
---|
1217 | } |
---|
1218 | /// Comparison operator |
---|
1219 | bool operator!=(const PathNodeIt& n) const { |
---|
1220 | return _it != n._it || _nd != n._nd; |
---|
1221 | } |
---|
1222 | /// Comparison operator |
---|
1223 | bool operator<(const PathNodeIt& n) const { |
---|
1224 | return (_it < n._it && _nd != INVALID); |
---|
1225 | } |
---|
1226 | |
---|
1227 | }; |
---|
1228 | |
---|
1229 | /// \brief Gets the collection of the nodes of the path. |
---|
1230 | /// |
---|
1231 | /// This function can be used for iterating on the |
---|
1232 | /// nodes of the path. It returns a wrapped |
---|
1233 | /// PathNodeIt, which looks like an STL container |
---|
1234 | /// (by having begin() and end()) which you can use in range-based |
---|
1235 | /// for loops, STL algorithms, etc. |
---|
1236 | /// For example you can write: |
---|
1237 | ///\code |
---|
1238 | /// for(auto u: pathNodes(g,p)) |
---|
1239 | /// doSomething(u); |
---|
1240 | ///\endcode |
---|
1241 | template<typename Path> |
---|
1242 | LemonRangeWrapper2<PathNodeIt<Path>, typename Path::Digraph, Path> |
---|
1243 | pathNodes(const typename Path::Digraph &g, const Path &p) { |
---|
1244 | return |
---|
1245 | LemonRangeWrapper2<PathNodeIt<Path>, typename Path::Digraph, Path>(g,p); |
---|
1246 | } |
---|
1247 | |
---|
1248 | ///@} |
---|
1249 | |
---|
1250 | } // namespace lemon |
---|
1251 | |
---|
1252 | #endif // LEMON_PATH_H |
---|