/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2010 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_PLANARITY_H #define LEMON_PLANARITY_H /// \ingroup planar /// \file /// \brief Planarity checking, embedding, drawing and coloring #include #include #include #include #include #include #include #include #include #include #include #include namespace lemon { namespace _planarity_bits { template struct PlanarityVisitor : DfsVisitor { TEMPLATE_GRAPH_TYPEDEFS(Graph); typedef typename Graph::template NodeMap PredMap; typedef typename Graph::template EdgeMap TreeMap; typedef typename Graph::template NodeMap OrderMap; typedef std::vector OrderList; typedef typename Graph::template NodeMap LowMap; typedef typename Graph::template NodeMap AncestorMap; PlanarityVisitor(const Graph& graph, PredMap& pred_map, TreeMap& tree_map, OrderMap& order_map, OrderList& order_list, AncestorMap& ancestor_map, LowMap& low_map) : _graph(graph), _pred_map(pred_map), _tree_map(tree_map), _order_map(order_map), _order_list(order_list), _ancestor_map(ancestor_map), _low_map(low_map) {} void reach(const Node& node) { _order_map[node] = _order_list.size(); _low_map[node] = _order_list.size(); _ancestor_map[node] = _order_list.size(); _order_list.push_back(node); } void discover(const Arc& arc) { Node source = _graph.source(arc); Node target = _graph.target(arc); _tree_map[arc] = true; _pred_map[target] = arc; } void examine(const Arc& arc) { Node source = _graph.source(arc); Node target = _graph.target(arc); if (_order_map[target] < _order_map[source] && !_tree_map[arc]) { if (_low_map[source] > _order_map[target]) { _low_map[source] = _order_map[target]; } if (_ancestor_map[source] > _order_map[target]) { _ancestor_map[source] = _order_map[target]; } } } void backtrack(const Arc& arc) { Node source = _graph.source(arc); Node target = _graph.target(arc); if (_low_map[source] > _low_map[target]) { _low_map[source] = _low_map[target]; } } const Graph& _graph; PredMap& _pred_map; TreeMap& _tree_map; OrderMap& _order_map; OrderList& _order_list; AncestorMap& _ancestor_map; LowMap& _low_map; }; template struct NodeDataNode { int prev, next; int visited; typename Graph::Arc first; bool inverted; }; template struct NodeDataNode { int prev, next; int visited; }; template struct ChildListNode { typedef typename Graph::Node Node; Node first; Node prev, next; }; template struct ArcListNode { typename Graph::Arc prev, next; }; template class PlanarityChecking { private: TEMPLATE_GRAPH_TYPEDEFS(Graph); const Graph& _graph; private: typedef typename Graph::template NodeMap PredMap; typedef typename Graph::template EdgeMap TreeMap; typedef typename Graph::template NodeMap OrderMap; typedef std::vector OrderList; typedef typename Graph::template NodeMap LowMap; typedef typename Graph::template NodeMap AncestorMap; typedef _planarity_bits::NodeDataNode NodeDataNode; typedef std::vector NodeData; typedef _planarity_bits::ChildListNode ChildListNode; typedef typename Graph::template NodeMap ChildLists; typedef typename Graph::template NodeMap > MergeRoots; typedef typename Graph::template NodeMap EmbedArc; public: PlanarityChecking(const Graph& graph) : _graph(graph) {} bool run() { typedef _planarity_bits::PlanarityVisitor Visitor; PredMap pred_map(_graph, INVALID); TreeMap tree_map(_graph, false); OrderMap order_map(_graph, -1); OrderList order_list; AncestorMap ancestor_map(_graph, -1); LowMap low_map(_graph, -1); Visitor visitor(_graph, pred_map, tree_map, order_map, order_list, ancestor_map, low_map); DfsVisit visit(_graph, visitor); visit.run(); ChildLists child_lists(_graph); createChildLists(tree_map, order_map, low_map, child_lists); NodeData node_data(2 * order_list.size()); EmbedArc embed_arc(_graph, false); MergeRoots merge_roots(_graph); for (int i = order_list.size() - 1; i >= 0; --i) { Node node = order_list[i]; Node source = node; for (OutArcIt e(_graph, node); e != INVALID; ++e) { Node target = _graph.target(e); if (order_map[source] < order_map[target] && tree_map[e]) { initFace(target, node_data, order_map, order_list); } } for (OutArcIt e(_graph, node); e != INVALID; ++e) { Node target = _graph.target(e); if (order_map[source] < order_map[target] && !tree_map[e]) { embed_arc[target] = true; walkUp(target, source, i, pred_map, low_map, order_map, order_list, node_data, merge_roots); } } for (typename MergeRoots::Value::iterator it = merge_roots[node].begin(); it != merge_roots[node].end(); ++it) { int rn = *it; walkDown(rn, i, node_data, order_list, child_lists, ancestor_map, low_map, embed_arc, merge_roots); } merge_roots[node].clear(); for (OutArcIt e(_graph, node); e != INVALID; ++e) { Node target = _graph.target(e); if (order_map[source] < order_map[target] && !tree_map[e]) { if (embed_arc[target]) { return false; } } } } return true; } private: void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, const LowMap& low_map, ChildLists& child_lists) { for (NodeIt n(_graph); n != INVALID; ++n) { Node source = n; std::vector targets; for (OutArcIt e(_graph, n); e != INVALID; ++e) { Node target = _graph.target(e); if (order_map[source] < order_map[target] && tree_map[e]) { targets.push_back(target); } } if (targets.size() == 0) { child_lists[source].first = INVALID; } else if (targets.size() == 1) { child_lists[source].first = targets[0]; child_lists[targets[0]].prev = INVALID; child_lists[targets[0]].next = INVALID; } else { radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); for (int i = 1; i < int(targets.size()); ++i) { child_lists[targets[i]].prev = targets[i - 1]; child_lists[targets[i - 1]].next = targets[i]; } child_lists[targets.back()].next = INVALID; child_lists[targets.front()].prev = INVALID; child_lists[source].first = targets.front(); } } } void walkUp(const Node& node, Node root, int rorder, const PredMap& pred_map, const LowMap& low_map, const OrderMap& order_map, const OrderList& order_list, NodeData& node_data, MergeRoots& merge_roots) { int na, nb; bool da, db; na = nb = order_map[node]; da = true; db = false; while (true) { if (node_data[na].visited == rorder) break; if (node_data[nb].visited == rorder) break; node_data[na].visited = rorder; node_data[nb].visited = rorder; int rn = -1; if (na >= int(order_list.size())) { rn = na; } else if (nb >= int(order_list.size())) { rn = nb; } if (rn == -1) { int nn; nn = da ? node_data[na].prev : node_data[na].next; da = node_data[nn].prev != na; na = nn; nn = db ? node_data[nb].prev : node_data[nb].next; db = node_data[nn].prev != nb; nb = nn; } else { Node rep = order_list[rn - order_list.size()]; Node parent = _graph.source(pred_map[rep]); if (low_map[rep] < rorder) { merge_roots[parent].push_back(rn); } else { merge_roots[parent].push_front(rn); } if (parent != root) { na = nb = order_map[parent]; da = true; db = false; } else { break; } } } } void walkDown(int rn, int rorder, NodeData& node_data, OrderList& order_list, ChildLists& child_lists, AncestorMap& ancestor_map, LowMap& low_map, EmbedArc& embed_arc, MergeRoots& merge_roots) { std::vector > merge_stack; for (int di = 0; di < 2; ++di) { bool rd = di == 0; int pn = rn; int n = rd ? node_data[rn].next : node_data[rn].prev; while (n != rn) { Node node = order_list[n]; if (embed_arc[node]) { // Merging components on the critical path while (!merge_stack.empty()) { // Component root int cn = merge_stack.back().first; bool cd = merge_stack.back().second; merge_stack.pop_back(); // Parent of component int dn = merge_stack.back().first; bool dd = merge_stack.back().second; merge_stack.pop_back(); Node parent = order_list[dn]; // Erasing from merge_roots merge_roots[parent].pop_front(); Node child = order_list[cn - order_list.size()]; // Erasing from child_lists if (child_lists[child].prev != INVALID) { child_lists[child_lists[child].prev].next = child_lists[child].next; } else { child_lists[parent].first = child_lists[child].next; } if (child_lists[child].next != INVALID) { child_lists[child_lists[child].next].prev = child_lists[child].prev; } // Merging external faces { int en = cn; cn = cd ? node_data[cn].prev : node_data[cn].next; cd = node_data[cn].next == en; } if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; } bool d = pn == node_data[n].prev; if (node_data[n].prev == node_data[n].next && node_data[n].inverted) { d = !d; } // Embedding arc into external face if (rd) node_data[rn].next = n; else node_data[rn].prev = n; if (d) node_data[n].prev = rn; else node_data[n].next = rn; pn = rn; embed_arc[order_list[n]] = false; } if (!merge_roots[node].empty()) { bool d = pn == node_data[n].prev; merge_stack.push_back(std::make_pair(n, d)); int rn = merge_roots[node].front(); int xn = node_data[rn].next; Node xnode = order_list[xn]; int yn = node_data[rn].prev; Node ynode = order_list[yn]; bool rd; if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) { rd = true; } else if (!external(ynode, rorder, child_lists, ancestor_map, low_map)) { rd = false; } else if (pertinent(xnode, embed_arc, merge_roots)) { rd = true; } else { rd = false; } merge_stack.push_back(std::make_pair(rn, rd)); pn = rn; n = rd ? xn : yn; } else if (!external(node, rorder, child_lists, ancestor_map, low_map)) { int nn = (node_data[n].next != pn ? node_data[n].next : node_data[n].prev); bool nd = n == node_data[nn].prev; if (nd) node_data[nn].prev = pn; else node_data[nn].next = pn; if (n == node_data[pn].prev) node_data[pn].prev = nn; else node_data[pn].next = nn; node_data[nn].inverted = (node_data[nn].prev == node_data[nn].next && nd != rd); n = nn; } else break; } if (!merge_stack.empty() || n == rn) { break; } } } void initFace(const Node& node, NodeData& node_data, const OrderMap& order_map, const OrderList& order_list) { int n = order_map[node]; int rn = n + order_list.size(); node_data[n].next = node_data[n].prev = rn; node_data[rn].next = node_data[rn].prev = n; node_data[n].visited = order_list.size(); node_data[rn].visited = order_list.size(); } bool external(const Node& node, int rorder, ChildLists& child_lists, AncestorMap& ancestor_map, LowMap& low_map) { Node child = child_lists[node].first; if (child != INVALID) { if (low_map[child] < rorder) return true; } if (ancestor_map[node] < rorder) return true; return false; } bool pertinent(const Node& node, const EmbedArc& embed_arc, const MergeRoots& merge_roots) { return !merge_roots[node].empty() || embed_arc[node]; } }; } /// \ingroup planar /// /// \brief Planarity checking of an undirected simple graph /// /// This function implements the Boyer-Myrvold algorithm for /// planarity checking of an undirected simple graph. It is a simplified /// version of the PlanarEmbedding algorithm class because neither /// the embedding nor the Kuratowski subdivisons are computed. template bool checkPlanarity(const GR& graph) { _planarity_bits::PlanarityChecking pc(graph); return pc.run(); } /// \ingroup planar /// /// \brief Planar embedding of an undirected simple graph /// /// This class implements the Boyer-Myrvold algorithm for planar /// embedding of an undirected simple graph. The planar embedding is an /// ordering of the outgoing edges of the nodes, which is a possible /// configuration to draw the graph in the plane. If there is not /// such ordering then the graph contains a K5 (full graph /// with 5 nodes) or a K3,3 (complete bipartite graph on /// 3 Red and 3 Blue nodes) subdivision. /// /// The current implementation calculates either an embedding or a /// Kuratowski subdivision. The running time of the algorithm is O(n). /// /// \see PlanarDrawing, checkPlanarity() template class PlanarEmbedding { private: TEMPLATE_GRAPH_TYPEDEFS(Graph); const Graph& _graph; typename Graph::template ArcMap _embedding; typename Graph::template EdgeMap _kuratowski; private: typedef typename Graph::template NodeMap PredMap; typedef typename Graph::template EdgeMap TreeMap; typedef typename Graph::template NodeMap OrderMap; typedef std::vector OrderList; typedef typename Graph::template NodeMap LowMap; typedef typename Graph::template NodeMap AncestorMap; typedef _planarity_bits::NodeDataNode NodeDataNode; typedef std::vector NodeData; typedef _planarity_bits::ChildListNode ChildListNode; typedef typename Graph::template NodeMap ChildLists; typedef typename Graph::template NodeMap > MergeRoots; typedef typename Graph::template NodeMap EmbedArc; typedef _planarity_bits::ArcListNode ArcListNode; typedef typename Graph::template ArcMap ArcLists; typedef typename Graph::template NodeMap FlipMap; typedef typename Graph::template NodeMap TypeMap; enum IsolatorNodeType { HIGHX = 6, LOWX = 7, HIGHY = 8, LOWY = 9, ROOT = 10, PERTINENT = 11, INTERNAL = 12 }; public: /// \brief The map type for storing the embedding /// /// The map type for storing the embedding. /// \see embeddingMap() typedef typename Graph::template ArcMap EmbeddingMap; /// \brief Constructor /// /// Constructor. /// \pre The graph must be simple, i.e. it should not /// contain parallel or loop arcs. PlanarEmbedding(const Graph& graph) : _graph(graph), _embedding(_graph), _kuratowski(graph, false) {} /// \brief Run the algorithm. /// /// This function runs the algorithm. /// \param kuratowski If this parameter is set to \c false, then the /// algorithm does not compute a Kuratowski subdivision. /// \return \c true if the graph is planar. bool run(bool kuratowski = true) { typedef _planarity_bits::PlanarityVisitor Visitor; PredMap pred_map(_graph, INVALID); TreeMap tree_map(_graph, false); OrderMap order_map(_graph, -1); OrderList order_list; AncestorMap ancestor_map(_graph, -1); LowMap low_map(_graph, -1); Visitor visitor(_graph, pred_map, tree_map, order_map, order_list, ancestor_map, low_map); DfsVisit visit(_graph, visitor); visit.run(); ChildLists child_lists(_graph); createChildLists(tree_map, order_map, low_map, child_lists); NodeData node_data(2 * order_list.size()); EmbedArc embed_arc(_graph, INVALID); MergeRoots merge_roots(_graph); ArcLists arc_lists(_graph); FlipMap flip_map(_graph, false); for (int i = order_list.size() - 1; i >= 0; --i) { Node node = order_list[i]; node_data[i].first = INVALID; Node source = node; for (OutArcIt e(_graph, node); e != INVALID; ++e) { Node target = _graph.target(e); if (order_map[source] < order_map[target] && tree_map[e]) { initFace(target, arc_lists, node_data, pred_map, order_map, order_list); } } for (OutArcIt e(_graph, node); e != INVALID; ++e) { Node target = _graph.target(e); if (order_map[source] < order_map[target] && !tree_map[e]) { embed_arc[target] = e; walkUp(target, source, i, pred_map, low_map, order_map, order_list, node_data, merge_roots); } } for (typename MergeRoots::Value::iterator it = merge_roots[node].begin(); it != merge_roots[node].end(); ++it) { int rn = *it; walkDown(rn, i, node_data, arc_lists, flip_map, order_list, child_lists, ancestor_map, low_map, embed_arc, merge_roots); } merge_roots[node].clear(); for (OutArcIt e(_graph, node); e != INVALID; ++e) { Node target = _graph.target(e); if (order_map[source] < order_map[target] && !tree_map[e]) { if (embed_arc[target] != INVALID) { if (kuratowski) { isolateKuratowski(e, node_data, arc_lists, flip_map, order_map, order_list, pred_map, child_lists, ancestor_map, low_map, embed_arc, merge_roots); } return false; } } } } for (int i = 0; i < int(order_list.size()); ++i) { mergeRemainingFaces(order_list[i], node_data, order_list, order_map, child_lists, arc_lists); storeEmbedding(order_list[i], node_data, order_map, pred_map, arc_lists, flip_map); } return true; } /// \brief Give back the successor of an arc /// /// This function gives back the successor of an arc. It makes /// possible to query the cyclic order of the outgoing arcs from /// a node. Arc next(const Arc& arc) const { return _embedding[arc]; } /// \brief Give back the calculated embedding map /// /// This function gives back the calculated embedding map, which /// contains the successor of each arc in the cyclic order of the /// outgoing arcs of its source node. const EmbeddingMap& embeddingMap() const { return _embedding; } /// \brief Give back \c true if the given edge is in the Kuratowski /// subdivision /// /// This function gives back \c true if the given edge is in the found /// Kuratowski subdivision. /// \pre The \c run() function must be called with \c true parameter /// before using this function. bool kuratowski(const Edge& edge) const { return _kuratowski[edge]; } private: void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, const LowMap& low_map, ChildLists& child_lists) { for (NodeIt n(_graph); n != INVALID; ++n) { Node source = n; std::vector targets; for (OutArcIt e(_graph, n); e != INVALID; ++e) { Node target = _graph.target(e); if (order_map[source] < order_map[target] && tree_map[e]) { targets.push_back(target); } } if (targets.size() == 0) { child_lists[source].first = INVALID; } else if (targets.size() == 1) { child_lists[source].first = targets[0]; child_lists[targets[0]].prev = INVALID; child_lists[targets[0]].next = INVALID; } else { radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); for (int i = 1; i < int(targets.size()); ++i) { child_lists[targets[i]].prev = targets[i - 1]; child_lists[targets[i - 1]].next = targets[i]; } child_lists[targets.back()].next = INVALID; child_lists[targets.front()].prev = INVALID; child_lists[source].first = targets.front(); } } } void walkUp(const Node& node, Node root, int rorder, const PredMap& pred_map, const LowMap& low_map, const OrderMap& order_map, const OrderList& order_list, NodeData& node_data, MergeRoots& merge_roots) { int na, nb; bool da, db; na = nb = order_map[node]; da = true; db = false; while (true) { if (node_data[na].visited == rorder) break; if (node_data[nb].visited == rorder) break; node_data[na].visited = rorder; node_data[nb].visited = rorder; int rn = -1; if (na >= int(order_list.size())) { rn = na; } else if (nb >= int(order_list.size())) { rn = nb; } if (rn == -1) { int nn; nn = da ? node_data[na].prev : node_data[na].next; da = node_data[nn].prev != na; na = nn; nn = db ? node_data[nb].prev : node_data[nb].next; db = node_data[nn].prev != nb; nb = nn; } else { Node rep = order_list[rn - order_list.size()]; Node parent = _graph.source(pred_map[rep]); if (low_map[rep] < rorder) { merge_roots[parent].push_back(rn); } else { merge_roots[parent].push_front(rn); } if (parent != root) { na = nb = order_map[parent]; da = true; db = false; } else { break; } } } } void walkDown(int rn, int rorder, NodeData& node_data, ArcLists& arc_lists, FlipMap& flip_map, OrderList& order_list, ChildLists& child_lists, AncestorMap& ancestor_map, LowMap& low_map, EmbedArc& embed_arc, MergeRoots& merge_roots) { std::vector > merge_stack; for (int di = 0; di < 2; ++di) { bool rd = di == 0; int pn = rn; int n = rd ? node_data[rn].next : node_data[rn].prev; while (n != rn) { Node node = order_list[n]; if (embed_arc[node] != INVALID) { // Merging components on the critical path while (!merge_stack.empty()) { // Component root int cn = merge_stack.back().first; bool cd = merge_stack.back().second; merge_stack.pop_back(); // Parent of component int dn = merge_stack.back().first; bool dd = merge_stack.back().second; merge_stack.pop_back(); Node parent = order_list[dn]; // Erasing from merge_roots merge_roots[parent].pop_front(); Node child = order_list[cn - order_list.size()]; // Erasing from child_lists if (child_lists[child].prev != INVALID) { child_lists[child_lists[child].prev].next = child_lists[child].next; } else { child_lists[parent].first = child_lists[child].next; } if (child_lists[child].next != INVALID) { child_lists[child_lists[child].next].prev = child_lists[child].prev; } // Merging arcs + flipping Arc de = node_data[dn].first; Arc ce = node_data[cn].first; flip_map[order_list[cn - order_list.size()]] = cd != dd; if (cd != dd) { std::swap(arc_lists[ce].prev, arc_lists[ce].next); ce = arc_lists[ce].prev; std::swap(arc_lists[ce].prev, arc_lists[ce].next); } { Arc dne = arc_lists[de].next; Arc cne = arc_lists[ce].next; arc_lists[de].next = cne; arc_lists[ce].next = dne; arc_lists[dne].prev = ce; arc_lists[cne].prev = de; } if (dd) { node_data[dn].first = ce; } // Merging external faces { int en = cn; cn = cd ? node_data[cn].prev : node_data[cn].next; cd = node_data[cn].next == en; if (node_data[cn].prev == node_data[cn].next && node_data[cn].inverted) { cd = !cd; } } if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; } bool d = pn == node_data[n].prev; if (node_data[n].prev == node_data[n].next && node_data[n].inverted) { d = !d; } // Add new arc { Arc arc = embed_arc[node]; Arc re = node_data[rn].first; arc_lists[arc_lists[re].next].prev = arc; arc_lists[arc].next = arc_lists[re].next; arc_lists[arc].prev = re; arc_lists[re].next = arc; if (!rd) { node_data[rn].first = arc; } Arc rev = _graph.oppositeArc(arc); Arc e = node_data[n].first; arc_lists[arc_lists[e].next].prev = rev; arc_lists[rev].next = arc_lists[e].next; arc_lists[rev].prev = e; arc_lists[e].next = rev; if (d) { node_data[n].first = rev; } } // Embedding arc into external face if (rd) node_data[rn].next = n; else node_data[rn].prev = n; if (d) node_data[n].prev = rn; else node_data[n].next = rn; pn = rn; embed_arc[order_list[n]] = INVALID; } if (!merge_roots[node].empty()) { bool d = pn == node_data[n].prev; if (node_data[n].prev == node_data[n].next && node_data[n].inverted) { d = !d; } merge_stack.push_back(std::make_pair(n, d)); int rn = merge_roots[node].front(); int xn = node_data[rn].next; Node xnode = order_list[xn]; int yn = node_data[rn].prev; Node ynode = order_list[yn]; bool rd; if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) { rd = true; } else if (!external(ynode, rorder, child_lists, ancestor_map, low_map)) { rd = false; } else if (pertinent(xnode, embed_arc, merge_roots)) { rd = true; } else { rd = false; } merge_stack.push_back(std::make_pair(rn, rd)); pn = rn; n = rd ? xn : yn; } else if (!external(node, rorder, child_lists, ancestor_map, low_map)) { int nn = (node_data[n].next != pn ? node_data[n].next : node_data[n].prev); bool nd = n == node_data[nn].prev; if (nd) node_data[nn].prev = pn; else node_data[nn].next = pn; if (n == node_data[pn].prev) node_data[pn].prev = nn; else node_data[pn].next = nn; node_data[nn].inverted = (node_data[nn].prev == node_data[nn].next && nd != rd); n = nn; } else break; } if (!merge_stack.empty() || n == rn) { break; } } } void initFace(const Node& node, ArcLists& arc_lists, NodeData& node_data, const PredMap& pred_map, const OrderMap& order_map, const OrderList& order_list) { int n = order_map[node]; int rn = n + order_list.size(); node_data[n].next = node_data[n].prev = rn; node_data[rn].next = node_data[rn].prev = n; node_data[n].visited = order_list.size(); node_data[rn].visited = order_list.size(); node_data[n].inverted = false; node_data[rn].inverted = false; Arc arc = pred_map[node]; Arc rev = _graph.oppositeArc(arc); node_data[rn].first = arc; node_data[n].first = rev; arc_lists[arc].prev = arc; arc_lists[arc].next = arc; arc_lists[rev].prev = rev; arc_lists[rev].next = rev; } void mergeRemainingFaces(const Node& node, NodeData& node_data, OrderList& order_list, OrderMap& order_map, ChildLists& child_lists, ArcLists& arc_lists) { while (child_lists[node].first != INVALID) { int dd = order_map[node]; Node child = child_lists[node].first; int cd = order_map[child] + order_list.size(); child_lists[node].first = child_lists[child].next; Arc de = node_data[dd].first; Arc ce = node_data[cd].first; if (de != INVALID) { Arc dne = arc_lists[de].next; Arc cne = arc_lists[ce].next; arc_lists[de].next = cne; arc_lists[ce].next = dne; arc_lists[dne].prev = ce; arc_lists[cne].prev = de; } node_data[dd].first = ce; } } void storeEmbedding(const Node& node, NodeData& node_data, OrderMap& order_map, PredMap& pred_map, ArcLists& arc_lists, FlipMap& flip_map) { if (node_data[order_map[node]].first == INVALID) return; if (pred_map[node] != INVALID) { Node source = _graph.source(pred_map[node]); flip_map[node] = flip_map[node] != flip_map[source]; } Arc first = node_data[order_map[node]].first; Arc prev = first; Arc arc = flip_map[node] ? arc_lists[prev].prev : arc_lists[prev].next; _embedding[prev] = arc; while (arc != first) { Arc next = arc_lists[arc].prev == prev ? arc_lists[arc].next : arc_lists[arc].prev; prev = arc; arc = next; _embedding[prev] = arc; } } bool external(const Node& node, int rorder, ChildLists& child_lists, AncestorMap& ancestor_map, LowMap& low_map) { Node child = child_lists[node].first; if (child != INVALID) { if (low_map[child] < rorder) return true; } if (ancestor_map[node] < rorder) return true; return false; } bool pertinent(const Node& node, const EmbedArc& embed_arc, const MergeRoots& merge_roots) { return !merge_roots[node].empty() || embed_arc[node] != INVALID; } int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists, AncestorMap& ancestor_map, LowMap& low_map) { int low_point; Node child = child_lists[node].first; if (child != INVALID) { low_point = low_map[child]; } else { low_point = order_map[node]; } if (low_point > ancestor_map[node]) { low_point = ancestor_map[node]; } return low_point; } int findComponentRoot(Node root, Node node, ChildLists& child_lists, OrderMap& order_map, OrderList& order_list) { int order = order_map[root]; int norder = order_map[node]; Node child = child_lists[root].first; while (child != INVALID) { int corder = order_map[child]; if (corder > order && corder < norder) { order = corder; } child = child_lists[child].next; } return order + order_list.size(); } Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data, EmbedArc& embed_arc, MergeRoots& merge_roots) { Node wnode =_graph.target(node_data[order_map[node]].first); while (!pertinent(wnode, embed_arc, merge_roots)) { wnode = _graph.target(node_data[order_map[wnode]].first); } return wnode; } Node findExternal(Node node, int rorder, OrderMap& order_map, ChildLists& child_lists, AncestorMap& ancestor_map, LowMap& low_map, NodeData& node_data) { Node wnode =_graph.target(node_data[order_map[node]].first); while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) { wnode = _graph.target(node_data[order_map[wnode]].first); } return wnode; } void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, OrderList& order_list, OrderMap& order_map, NodeData& node_data, ArcLists& arc_lists, EmbedArc& embed_arc, MergeRoots& merge_roots, ChildLists& child_lists, AncestorMap& ancestor_map, LowMap& low_map) { Node cnode = node; Node pred = INVALID; while (true) { bool pert = pertinent(cnode, embed_arc, merge_roots); bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map); if (pert && ext) { if (!merge_roots[cnode].empty()) { int cn = merge_roots[cnode].back(); if (low_map[order_list[cn - order_list.size()]] < rorder) { Arc arc = node_data[cn].first; _kuratowski.set(arc, true); pred = cnode; cnode = _graph.target(arc); continue; } } wnode = znode = cnode; return; } else if (pert) { wnode = cnode; while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) { Arc arc = node_data[order_map[cnode]].first; if (_graph.target(arc) == pred) { arc = arc_lists[arc].next; } _kuratowski.set(arc, true); Node next = _graph.target(arc); pred = cnode; cnode = next; } znode = cnode; return; } else if (ext) { znode = cnode; while (!pertinent(cnode, embed_arc, merge_roots)) { Arc arc = node_data[order_map[cnode]].first; if (_graph.target(arc) == pred) { arc = arc_lists[arc].next; } _kuratowski.set(arc, true); Node next = _graph.target(arc); pred = cnode; cnode = next; } wnode = cnode; return; } else { Arc arc = node_data[order_map[cnode]].first; if (_graph.target(arc) == pred) { arc = arc_lists[arc].next; } _kuratowski.set(arc, true); Node next = _graph.target(arc); pred = cnode; cnode = next; } } } void orientComponent(Node root, int rn, OrderMap& order_map, PredMap& pred_map, NodeData& node_data, ArcLists& arc_lists, FlipMap& flip_map, TypeMap& type_map) { node_data[order_map[root]].first = node_data[rn].first; type_map[root] = 1; std::vector st, qu; st.push_back(root); while (!st.empty()) { Node node = st.back(); st.pop_back(); qu.push_back(node); Arc arc = node_data[order_map[node]].first; if (type_map[_graph.target(arc)] == 0) { st.push_back(_graph.target(arc)); type_map[_graph.target(arc)] = 1; } Arc last = arc, pred = arc; arc = arc_lists[arc].next; while (arc != last) { if (type_map[_graph.target(arc)] == 0) { st.push_back(_graph.target(arc)); type_map[_graph.target(arc)] = 1; } Arc next = arc_lists[arc].next != pred ? arc_lists[arc].next : arc_lists[arc].prev; pred = arc; arc = next; } } type_map[root] = 2; flip_map[root] = false; for (int i = 1; i < int(qu.size()); ++i) { Node node = qu[i]; while (type_map[node] != 2) { st.push_back(node); type_map[node] = 2; node = _graph.source(pred_map[node]); } bool flip = flip_map[node]; while (!st.empty()) { node = st.back(); st.pop_back(); flip_map[node] = flip != flip_map[node]; flip = flip_map[node]; if (flip) { Arc arc = node_data[order_map[node]].first; std::swap(arc_lists[arc].prev, arc_lists[arc].next); arc = arc_lists[arc].prev; std::swap(arc_lists[arc].prev, arc_lists[arc].next); node_data[order_map[node]].first = arc; } } } for (int i = 0; i < int(qu.size()); ++i) { Arc arc = node_data[order_map[qu[i]]].first; Arc last = arc, pred = arc; arc = arc_lists[arc].next; while (arc != last) { if (arc_lists[arc].next == pred) { std::swap(arc_lists[arc].next, arc_lists[arc].prev); } pred = arc; arc = arc_lists[arc].next; } } } void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode, OrderMap& order_map, NodeData& node_data, TypeMap& type_map) { Node node = _graph.target(node_data[order_map[root]].first); while (node != ynode) { type_map[node] = HIGHY; node = _graph.target(node_data[order_map[node]].first); } while (node != wnode) { type_map[node] = LOWY; node = _graph.target(node_data[order_map[node]].first); } node = _graph.target(node_data[order_map[wnode]].first); while (node != xnode) { type_map[node] = LOWX; node = _graph.target(node_data[order_map[node]].first); } type_map[node] = LOWX; node = _graph.target(node_data[order_map[xnode]].first); while (node != root) { type_map[node] = HIGHX; node = _graph.target(node_data[order_map[node]].first); } type_map[wnode] = PERTINENT; type_map[root] = ROOT; } void findInternalPath(std::vector& ipath, Node wnode, Node root, TypeMap& type_map, OrderMap& order_map, NodeData& node_data, ArcLists& arc_lists) { std::vector st; Node node = wnode; while (node != root) { Arc arc = arc_lists[node_data[order_map[node]].first].next; st.push_back(arc); node = _graph.target(arc); } while (true) { Arc arc = st.back(); if (type_map[_graph.target(arc)] == LOWX || type_map[_graph.target(arc)] == HIGHX) { break; } if (type_map[_graph.target(arc)] == 2) { type_map[_graph.target(arc)] = 3; arc = arc_lists[_graph.oppositeArc(arc)].next; st.push_back(arc); } else { st.pop_back(); arc = arc_lists[arc].next; while (_graph.oppositeArc(arc) == st.back()) { arc = st.back(); st.pop_back(); arc = arc_lists[arc].next; } st.push_back(arc); } } for (int i = 0; i < int(st.size()); ++i) { if (type_map[_graph.target(st[i])] != LOWY && type_map[_graph.target(st[i])] != HIGHY) { for (; i < int(st.size()); ++i) { ipath.push_back(st[i]); } } } } void setInternalFlags(std::vector& ipath, TypeMap& type_map) { for (int i = 1; i < int(ipath.size()); ++i) { type_map[_graph.source(ipath[i])] = INTERNAL; } } void findPilePath(std::vector& ppath, Node root, TypeMap& type_map, OrderMap& order_map, NodeData& node_data, ArcLists& arc_lists) { std::vector st; st.push_back(_graph.oppositeArc(node_data[order_map[root]].first)); st.push_back(node_data[order_map[root]].first); while (st.size() > 1) { Arc arc = st.back(); if (type_map[_graph.target(arc)] == INTERNAL) { break; } if (type_map[_graph.target(arc)] == 3) { type_map[_graph.target(arc)] = 4; arc = arc_lists[_graph.oppositeArc(arc)].next; st.push_back(arc); } else { st.pop_back(); arc = arc_lists[arc].next; while (!st.empty() && _graph.oppositeArc(arc) == st.back()) { arc = st.back(); st.pop_back(); arc = arc_lists[arc].next; } st.push_back(arc); } } for (int i = 1; i < int(st.size()); ++i) { ppath.push_back(st[i]); } } int markExternalPath(Node node, OrderMap& order_map, ChildLists& child_lists, PredMap& pred_map, AncestorMap& ancestor_map, LowMap& low_map) { int lp = lowPoint(node, order_map, child_lists, ancestor_map, low_map); if (ancestor_map[node] != lp) { node = child_lists[node].first; _kuratowski[pred_map[node]] = true; while (ancestor_map[node] != lp) { for (OutArcIt e(_graph, node); e != INVALID; ++e) { Node tnode = _graph.target(e); if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) { node = tnode; _kuratowski[e] = true; break; } } } } for (OutArcIt e(_graph, node); e != INVALID; ++e) { if (order_map[_graph.target(e)] == lp) { _kuratowski[e] = true; break; } } return lp; } void markPertinentPath(Node node, OrderMap& order_map, NodeData& node_data, ArcLists& arc_lists, EmbedArc& embed_arc, MergeRoots& merge_roots) { while (embed_arc[node] == INVALID) { int n = merge_roots[node].front(); Arc arc = node_data[n].first; _kuratowski.set(arc, true); Node pred = node; node = _graph.target(arc); while (!pertinent(node, embed_arc, merge_roots)) { arc = node_data[order_map[node]].first; if (_graph.target(arc) == pred) { arc = arc_lists[arc].next; } _kuratowski.set(arc, true); pred = node; node = _graph.target(arc); } } _kuratowski.set(embed_arc[node], true); } void markPredPath(Node node, Node snode, PredMap& pred_map) { while (node != snode) { _kuratowski.set(pred_map[node], true); node = _graph.source(pred_map[node]); } } void markFacePath(Node ynode, Node xnode, OrderMap& order_map, NodeData& node_data) { Arc arc = node_data[order_map[ynode]].first; Node node = _graph.target(arc); _kuratowski.set(arc, true); while (node != xnode) { arc = node_data[order_map[node]].first; _kuratowski.set(arc, true); node = _graph.target(arc); } } void markInternalPath(std::vector& path) { for (int i = 0; i < int(path.size()); ++i) { _kuratowski.set(path[i], true); } } void markPilePath(std::vector& path) { for (int i = 0; i < int(path.size()); ++i) { _kuratowski.set(path[i], true); } } void isolateKuratowski(Arc arc, NodeData& node_data, ArcLists& arc_lists, FlipMap& flip_map, OrderMap& order_map, OrderList& order_list, PredMap& pred_map, ChildLists& child_lists, AncestorMap& ancestor_map, LowMap& low_map, EmbedArc& embed_arc, MergeRoots& merge_roots) { Node root = _graph.source(arc); Node enode = _graph.target(arc); int rorder = order_map[root]; TypeMap type_map(_graph, 0); int rn = findComponentRoot(root, enode, child_lists, order_map, order_list); Node xnode = order_list[node_data[rn].next]; Node ynode = order_list[node_data[rn].prev]; // Minor-A { while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) { if (!merge_roots[xnode].empty()) { root = xnode; rn = merge_roots[xnode].front(); } else { root = ynode; rn = merge_roots[ynode].front(); } xnode = order_list[node_data[rn].next]; ynode = order_list[node_data[rn].prev]; } if (root != _graph.source(arc)) { orientComponent(root, rn, order_map, pred_map, node_data, arc_lists, flip_map, type_map); markFacePath(root, root, order_map, node_data); int xlp = markExternalPath(xnode, order_map, child_lists, pred_map, ancestor_map, low_map); int ylp = markExternalPath(ynode, order_map, child_lists, pred_map, ancestor_map, low_map); markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); Node lwnode = findPertinent(ynode, order_map, node_data, embed_arc, merge_roots); markPertinentPath(lwnode, order_map, node_data, arc_lists, embed_arc, merge_roots); return; } } orientComponent(root, rn, order_map, pred_map, node_data, arc_lists, flip_map, type_map); Node wnode = findPertinent(ynode, order_map, node_data, embed_arc, merge_roots); setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map); //Minor-B if (!merge_roots[wnode].empty()) { int cn = merge_roots[wnode].back(); Node rep = order_list[cn - order_list.size()]; if (low_map[rep] < rorder) { markFacePath(root, root, order_map, node_data); int xlp = markExternalPath(xnode, order_map, child_lists, pred_map, ancestor_map, low_map); int ylp = markExternalPath(ynode, order_map, child_lists, pred_map, ancestor_map, low_map); Node lwnode, lznode; markCommonPath(wnode, rorder, lwnode, lznode, order_list, order_map, node_data, arc_lists, embed_arc, merge_roots, child_lists, ancestor_map, low_map); markPertinentPath(lwnode, order_map, node_data, arc_lists, embed_arc, merge_roots); int zlp = markExternalPath(lznode, order_map, child_lists, pred_map, ancestor_map, low_map); int minlp = xlp < ylp ? xlp : ylp; if (zlp < minlp) minlp = zlp; int maxlp = xlp > ylp ? xlp : ylp; if (zlp > maxlp) maxlp = zlp; markPredPath(order_list[maxlp], order_list[minlp], pred_map); return; } } Node pxnode, pynode; std::vector ipath; findInternalPath(ipath, wnode, root, type_map, order_map, node_data, arc_lists); setInternalFlags(ipath, type_map); pynode = _graph.source(ipath.front()); pxnode = _graph.target(ipath.back()); wnode = findPertinent(pynode, order_map, node_data, embed_arc, merge_roots); // Minor-C { if (type_map[_graph.source(ipath.front())] == HIGHY) { if (type_map[_graph.target(ipath.back())] == HIGHX) { markFacePath(xnode, pxnode, order_map, node_data); } markFacePath(root, xnode, order_map, node_data); markPertinentPath(wnode, order_map, node_data, arc_lists, embed_arc, merge_roots); markInternalPath(ipath); int xlp = markExternalPath(xnode, order_map, child_lists, pred_map, ancestor_map, low_map); int ylp = markExternalPath(ynode, order_map, child_lists, pred_map, ancestor_map, low_map); markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); return; } if (type_map[_graph.target(ipath.back())] == HIGHX) { markFacePath(ynode, root, order_map, node_data); markPertinentPath(wnode, order_map, node_data, arc_lists, embed_arc, merge_roots); markInternalPath(ipath); int xlp = markExternalPath(xnode, order_map, child_lists, pred_map, ancestor_map, low_map); int ylp = markExternalPath(ynode, order_map, child_lists, pred_map, ancestor_map, low_map); markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); return; } } std::vector ppath; findPilePath(ppath, root, type_map, order_map, node_data, arc_lists); // Minor-D if (!ppath.empty()) { markFacePath(ynode, xnode, order_map, node_data); markPertinentPath(wnode, order_map, node_data, arc_lists, embed_arc, merge_roots); markPilePath(ppath); markInternalPath(ipath); int xlp = markExternalPath(xnode, order_map, child_lists, pred_map, ancestor_map, low_map); int ylp = markExternalPath(ynode, order_map, child_lists, pred_map, ancestor_map, low_map); markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); return; } // Minor-E* { if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) { Node znode = findExternal(pynode, rorder, order_map, child_lists, ancestor_map, low_map, node_data); if (type_map[znode] == LOWY) { markFacePath(root, xnode, order_map, node_data); markPertinentPath(wnode, order_map, node_data, arc_lists, embed_arc, merge_roots); markInternalPath(ipath); int xlp = markExternalPath(xnode, order_map, child_lists, pred_map, ancestor_map, low_map); int zlp = markExternalPath(znode, order_map, child_lists, pred_map, ancestor_map, low_map); markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map); } else { markFacePath(ynode, root, order_map, node_data); markPertinentPath(wnode, order_map, node_data, arc_lists, embed_arc, merge_roots); markInternalPath(ipath); int ylp = markExternalPath(ynode, order_map, child_lists, pred_map, ancestor_map, low_map); int zlp = markExternalPath(znode, order_map, child_lists, pred_map, ancestor_map, low_map); markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map); } return; } int xlp = markExternalPath(xnode, order_map, child_lists, pred_map, ancestor_map, low_map); int ylp = markExternalPath(ynode, order_map, child_lists, pred_map, ancestor_map, low_map); int wlp = markExternalPath(wnode, order_map, child_lists, pred_map, ancestor_map, low_map); if (wlp > xlp && wlp > ylp) { markFacePath(root, root, order_map, node_data); markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); return; } markInternalPath(ipath); markPertinentPath(wnode, order_map, node_data, arc_lists, embed_arc, merge_roots); if (xlp > ylp && xlp > wlp) { markFacePath(root, pynode, order_map, node_data); markFacePath(wnode, xnode, order_map, node_data); markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map); return; } if (ylp > xlp && ylp > wlp) { markFacePath(pxnode, root, order_map, node_data); markFacePath(ynode, wnode, order_map, node_data); markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map); return; } if (pynode != ynode) { markFacePath(pxnode, wnode, order_map, node_data); int minlp = xlp < ylp ? xlp : ylp; if (wlp < minlp) minlp = wlp; int maxlp = xlp > ylp ? xlp : ylp; if (wlp > maxlp) maxlp = wlp; markPredPath(order_list[maxlp], order_list[minlp], pred_map); return; } if (pxnode != xnode) { markFacePath(wnode, pynode, order_map, node_data); int minlp = xlp < ylp ? xlp : ylp; if (wlp < minlp) minlp = wlp; int maxlp = xlp > ylp ? xlp : ylp; if (wlp > maxlp) maxlp = wlp; markPredPath(order_list[maxlp], order_list[minlp], pred_map); return; } markFacePath(root, root, order_map, node_data); int minlp = xlp < ylp ? xlp : ylp; if (wlp < minlp) minlp = wlp; markPredPath(root, order_list[minlp], pred_map); return; } } }; namespace _planarity_bits { template void makeConnected(Graph& graph, EmbeddingMap& embedding) { DfsVisitor null_visitor; DfsVisit > dfs(graph, null_visitor); dfs.init(); typename Graph::Node u = INVALID; for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { if (!dfs.reached(n)) { dfs.addSource(n); dfs.start(); if (u == INVALID) { u = n; } else { typename Graph::Node v = n; typename Graph::Arc ue = typename Graph::OutArcIt(graph, u); typename Graph::Arc ve = typename Graph::OutArcIt(graph, v); typename Graph::Arc e = graph.direct(graph.addEdge(u, v), true); if (ue != INVALID) { embedding[e] = embedding[ue]; embedding[ue] = e; } else { embedding[e] = e; } if (ve != INVALID) { embedding[graph.oppositeArc(e)] = embedding[ve]; embedding[ve] = graph.oppositeArc(e); } else { embedding[graph.oppositeArc(e)] = graph.oppositeArc(e); } } } } } template void makeBiNodeConnected(Graph& graph, EmbeddingMap& embedding) { typename Graph::template ArcMap processed(graph); std::vector arcs; for (typename Graph::ArcIt e(graph); e != INVALID; ++e) { arcs.push_back(e); } IterableBoolMap visited(graph, false); for (int i = 0; i < int(arcs.size()); ++i) { typename Graph::Arc pp = arcs[i]; if (processed[pp]) continue; typename Graph::Arc e = embedding[graph.oppositeArc(pp)]; processed[e] = true; visited.set(graph.source(e), true); typename Graph::Arc p = e, l = e; e = embedding[graph.oppositeArc(e)]; while (e != l) { processed[e] = true; if (visited[graph.source(e)]) { typename Graph::Arc n = graph.direct(graph.addEdge(graph.source(p), graph.target(e)), true); embedding[n] = p; embedding[graph.oppositeArc(pp)] = n; embedding[graph.oppositeArc(n)] = embedding[graph.oppositeArc(e)]; embedding[graph.oppositeArc(e)] = graph.oppositeArc(n); p = n; e = embedding[graph.oppositeArc(n)]; } else { visited.set(graph.source(e), true); pp = p; p = e; e = embedding[graph.oppositeArc(e)]; } } visited.setAll(false); } } template void makeMaxPlanar(Graph& graph, EmbeddingMap& embedding) { typename Graph::template NodeMap degree(graph); for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { degree[n] = countIncEdges(graph, n); } typename Graph::template ArcMap processed(graph); IterableBoolMap visited(graph, false); std::vector arcs; for (typename Graph::ArcIt e(graph); e != INVALID; ++e) { arcs.push_back(e); } for (int i = 0; i < int(arcs.size()); ++i) { typename Graph::Arc e = arcs[i]; if (processed[e]) continue; processed[e] = true; typename Graph::Arc mine = e; int mind = degree[graph.source(e)]; int face_size = 1; typename Graph::Arc l = e; e = embedding[graph.oppositeArc(e)]; while (l != e) { processed[e] = true; ++face_size; if (degree[graph.source(e)] < mind) { mine = e; mind = degree[graph.source(e)]; } e = embedding[graph.oppositeArc(e)]; } if (face_size < 4) { continue; } typename Graph::Node s = graph.source(mine); for (typename Graph::OutArcIt e(graph, s); e != INVALID; ++e) { visited.set(graph.target(e), true); } typename Graph::Arc oppe = INVALID; e = embedding[graph.oppositeArc(mine)]; e = embedding[graph.oppositeArc(e)]; while (graph.target(e) != s) { if (visited[graph.source(e)]) { oppe = e; break; } e = embedding[graph.oppositeArc(e)]; } visited.setAll(false); if (oppe == INVALID) { e = embedding[graph.oppositeArc(mine)]; typename Graph::Arc pn = mine, p = e; e = embedding[graph.oppositeArc(e)]; while (graph.target(e) != s) { typename Graph::Arc n = graph.direct(graph.addEdge(s, graph.source(e)), true); embedding[n] = pn; embedding[graph.oppositeArc(n)] = e; embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); pn = n; p = e; e = embedding[graph.oppositeArc(e)]; } embedding[graph.oppositeArc(e)] = pn; } else { mine = embedding[graph.oppositeArc(mine)]; s = graph.source(mine); oppe = embedding[graph.oppositeArc(oppe)]; typename Graph::Node t = graph.source(oppe); typename Graph::Arc ce = graph.direct(graph.addEdge(s, t), true); embedding[ce] = mine; embedding[graph.oppositeArc(ce)] = oppe; typename Graph::Arc pn = ce, p = oppe; e = embedding[graph.oppositeArc(oppe)]; while (graph.target(e) != s) { typename Graph::Arc n = graph.direct(graph.addEdge(s, graph.source(e)), true); embedding[n] = pn; embedding[graph.oppositeArc(n)] = e; embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); pn = n; p = e; e = embedding[graph.oppositeArc(e)]; } embedding[graph.oppositeArc(e)] = pn; pn = graph.oppositeArc(ce), p = mine; e = embedding[graph.oppositeArc(mine)]; while (graph.target(e) != t) { typename Graph::Arc n = graph.direct(graph.addEdge(t, graph.source(e)), true); embedding[n] = pn; embedding[graph.oppositeArc(n)] = e; embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); pn = n; p = e; e = embedding[graph.oppositeArc(e)]; } embedding[graph.oppositeArc(e)] = pn; } } } } /// \ingroup planar /// /// \brief Schnyder's planar drawing algorithm /// /// The planar drawing algorithm calculates positions for the nodes /// in the plane. These coordinates satisfy that if the edges are /// represented with straight lines, then they will not intersect /// each other. /// /// Scnyder's algorithm embeds the graph on an \c (n-2)x(n-2) size grid, /// i.e. each node will be located in the \c [0..n-2]x[0..n-2] square. /// The time complexity of the algorithm is O(n). /// /// \see PlanarEmbedding template class PlanarDrawing { public: TEMPLATE_GRAPH_TYPEDEFS(Graph); /// \brief The point type for storing coordinates typedef dim2::Point Point; /// \brief The map type for storing the coordinates of the nodes typedef typename Graph::template NodeMap PointMap; /// \brief Constructor /// /// Constructor /// \pre The graph must be simple, i.e. it should not /// contain parallel or loop arcs. PlanarDrawing(const Graph& graph) : _graph(graph), _point_map(graph) {} private: template void drawing(const AuxGraph& graph, const AuxEmbeddingMap& next, PointMap& point_map) { TEMPLATE_GRAPH_TYPEDEFS(AuxGraph); typename AuxGraph::template ArcMap prev(graph); for (NodeIt n(graph); n != INVALID; ++n) { Arc e = OutArcIt(graph, n); Arc p = e, l = e; e = next[e]; while (e != l) { prev[e] = p; p = e; e = next[e]; } prev[e] = p; } Node anode, bnode, cnode; { Arc e = ArcIt(graph); anode = graph.source(e); bnode = graph.target(e); cnode = graph.target(next[graph.oppositeArc(e)]); } IterableBoolMap proper(graph, false); typename AuxGraph::template NodeMap conn(graph, -1); conn[anode] = conn[bnode] = -2; { for (OutArcIt e(graph, anode); e != INVALID; ++e) { Node m = graph.target(e); if (conn[m] == -1) { conn[m] = 1; } } conn[cnode] = 2; for (OutArcIt e(graph, bnode); e != INVALID; ++e) { Node m = graph.target(e); if (conn[m] == -1) { conn[m] = 1; } else if (conn[m] != -2) { conn[m] += 1; Arc pe = graph.oppositeArc(e); if (conn[graph.target(next[pe])] == -2) { conn[m] -= 1; } if (conn[graph.target(prev[pe])] == -2) { conn[m] -= 1; } proper.set(m, conn[m] == 1); } } } typename AuxGraph::template ArcMap angle(graph, -1); while (proper.trueNum() != 0) { Node n = typename IterableBoolMap::TrueIt(proper); proper.set(n, false); conn[n] = -2; for (OutArcIt e(graph, n); e != INVALID; ++e) { Node m = graph.target(e); if (conn[m] == -1) { conn[m] = 1; } else if (conn[m] != -2) { conn[m] += 1; Arc pe = graph.oppositeArc(e); if (conn[graph.target(next[pe])] == -2) { conn[m] -= 1; } if (conn[graph.target(prev[pe])] == -2) { conn[m] -= 1; } proper.set(m, conn[m] == 1); } } { Arc e = OutArcIt(graph, n); Arc p = e, l = e; e = next[e]; while (e != l) { if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) { Arc f = e; angle[f] = 0; f = next[graph.oppositeArc(f)]; angle[f] = 1; f = next[graph.oppositeArc(f)]; angle[f] = 2; } p = e; e = next[e]; } if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) { Arc f = e; angle[f] = 0; f = next[graph.oppositeArc(f)]; angle[f] = 1; f = next[graph.oppositeArc(f)]; angle[f] = 2; } } } typename AuxGraph::template NodeMap apred(graph, INVALID); typename AuxGraph::template NodeMap bpred(graph, INVALID); typename AuxGraph::template NodeMap cpred(graph, INVALID); typename AuxGraph::template NodeMap apredid(graph, -1); typename AuxGraph::template NodeMap bpredid(graph, -1); typename AuxGraph::template NodeMap cpredid(graph, -1); for (ArcIt e(graph); e != INVALID; ++e) { if (angle[e] == angle[next[e]]) { switch (angle[e]) { case 2: apred[graph.target(e)] = graph.source(e); apredid[graph.target(e)] = graph.id(graph.source(e)); break; case 1: bpred[graph.target(e)] = graph.source(e); bpredid[graph.target(e)] = graph.id(graph.source(e)); break; case 0: cpred[graph.target(e)] = graph.source(e); cpredid[graph.target(e)] = graph.id(graph.source(e)); break; } } } cpred[anode] = INVALID; cpred[bnode] = INVALID; std::vector aorder, border, corder; { typename AuxGraph::template NodeMap processed(graph, false); std::vector st; for (NodeIt n(graph); n != INVALID; ++n) { if (!processed[n] && n != bnode && n != cnode) { st.push_back(n); processed[n] = true; Node m = apred[n]; while (m != INVALID && !processed[m]) { st.push_back(m); processed[m] = true; m = apred[m]; } while (!st.empty()) { aorder.push_back(st.back()); st.pop_back(); } } } } { typename AuxGraph::template NodeMap processed(graph, false); std::vector st; for (NodeIt n(graph); n != INVALID; ++n) { if (!processed[n] && n != cnode && n != anode) { st.push_back(n); processed[n] = true; Node m = bpred[n]; while (m != INVALID && !processed[m]) { st.push_back(m); processed[m] = true; m = bpred[m]; } while (!st.empty()) { border.push_back(st.back()); st.pop_back(); } } } } { typename AuxGraph::template NodeMap processed(graph, false); std::vector st; for (NodeIt n(graph); n != INVALID; ++n) { if (!processed[n] && n != anode && n != bnode) { st.push_back(n); processed[n] = true; Node m = cpred[n]; while (m != INVALID && !processed[m]) { st.push_back(m); processed[m] = true; m = cpred[m]; } while (!st.empty()) { corder.push_back(st.back()); st.pop_back(); } } } } typename AuxGraph::template NodeMap atree(graph, 0); for (int i = aorder.size() - 1; i >= 0; --i) { Node n = aorder[i]; atree[n] = 1; for (OutArcIt e(graph, n); e != INVALID; ++e) { if (apred[graph.target(e)] == n) { atree[n] += atree[graph.target(e)]; } } } typename AuxGraph::template NodeMap btree(graph, 0); for (int i = border.size() - 1; i >= 0; --i) { Node n = border[i]; btree[n] = 1; for (OutArcIt e(graph, n); e != INVALID; ++e) { if (bpred[graph.target(e)] == n) { btree[n] += btree[graph.target(e)]; } } } typename AuxGraph::template NodeMap apath(graph, 0); apath[bnode] = apath[cnode] = 1; typename AuxGraph::template NodeMap apath_btree(graph, 0); apath_btree[bnode] = btree[bnode]; for (int i = 1; i < int(aorder.size()); ++i) { Node n = aorder[i]; apath[n] = apath[apred[n]] + 1; apath_btree[n] = btree[n] + apath_btree[apred[n]]; } typename AuxGraph::template NodeMap bpath_atree(graph, 0); bpath_atree[anode] = atree[anode]; for (int i = 1; i < int(border.size()); ++i) { Node n = border[i]; bpath_atree[n] = atree[n] + bpath_atree[bpred[n]]; } typename AuxGraph::template NodeMap cpath(graph, 0); cpath[anode] = cpath[bnode] = 1; typename AuxGraph::template NodeMap cpath_atree(graph, 0); cpath_atree[anode] = atree[anode]; typename AuxGraph::template NodeMap cpath_btree(graph, 0); cpath_btree[bnode] = btree[bnode]; for (int i = 1; i < int(corder.size()); ++i) { Node n = corder[i]; cpath[n] = cpath[cpred[n]] + 1; cpath_atree[n] = atree[n] + cpath_atree[cpred[n]]; cpath_btree[n] = btree[n] + cpath_btree[cpred[n]]; } typename AuxGraph::template NodeMap third(graph); for (NodeIt n(graph); n != INVALID; ++n) { point_map[n].x = bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1; point_map[n].y = cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1; } } public: /// \brief Calculate the node positions /// /// This function calculates the node positions on the plane. /// \return \c true if the graph is planar. bool run() { PlanarEmbedding pe(_graph); if (!pe.run()) return false; run(pe); return true; } /// \brief Calculate the node positions according to a /// combinatorical embedding /// /// This function calculates the node positions on the plane. /// The given \c embedding map should contain a valid combinatorical /// embedding, i.e. a valid cyclic order of the arcs. /// It can be computed using PlanarEmbedding. template void run(const EmbeddingMap& embedding) { typedef SmartEdgeSet AuxGraph; if (3 * countNodes(_graph) - 6 == countEdges(_graph)) { drawing(_graph, embedding, _point_map); return; } AuxGraph aux_graph(_graph); typename AuxGraph::template ArcMap aux_embedding(aux_graph); { typename Graph::template EdgeMap ref(_graph); for (EdgeIt e(_graph); e != INVALID; ++e) { ref[e] = aux_graph.addEdge(_graph.u(e), _graph.v(e)); } for (EdgeIt e(_graph); e != INVALID; ++e) { Arc ee = embedding[_graph.direct(e, true)]; aux_embedding[aux_graph.direct(ref[e], true)] = aux_graph.direct(ref[ee], _graph.direction(ee)); ee = embedding[_graph.direct(e, false)]; aux_embedding[aux_graph.direct(ref[e], false)] = aux_graph.direct(ref[ee], _graph.direction(ee)); } } _planarity_bits::makeConnected(aux_graph, aux_embedding); _planarity_bits::makeBiNodeConnected(aux_graph, aux_embedding); _planarity_bits::makeMaxPlanar(aux_graph, aux_embedding); drawing(aux_graph, aux_embedding, _point_map); } /// \brief The coordinate of the given node /// /// This function returns the coordinate of the given node. Point operator[](const Node& node) const { return _point_map[node]; } /// \brief Return the grid embedding in a node map /// /// This function returns the grid embedding in a node map of /// \c dim2::Point coordinates. const PointMap& coords() const { return _point_map; } private: const Graph& _graph; PointMap _point_map; }; namespace _planarity_bits { template class KempeFilter { public: typedef typename ColorMap::Key Key; typedef bool Value; KempeFilter(const ColorMap& color_map, const typename ColorMap::Value& first, const typename ColorMap::Value& second) : _color_map(color_map), _first(first), _second(second) {} Value operator[](const Key& key) const { return _color_map[key] == _first || _color_map[key] == _second; } private: const ColorMap& _color_map; typename ColorMap::Value _first, _second; }; } /// \ingroup planar /// /// \brief Coloring planar graphs /// /// The graph coloring problem is the coloring of the graph nodes /// so that there are no adjacent nodes with the same color. The /// planar graphs can always be colored with four colors, which is /// proved by Appel and Haken. Their proofs provide a quadratic /// time algorithm for four coloring, but it could not be used to /// implement an efficient algorithm. The five and six coloring can be /// made in linear time, but in this class, the five coloring has /// quadratic worst case time complexity. The two coloring (if /// possible) is solvable with a graph search algorithm and it is /// implemented in \ref bipartitePartitions() function in LEMON. To /// decide whether a planar graph is three colorable is NP-complete. /// /// This class contains member functions for calculate colorings /// with five and six colors. The six coloring algorithm is a simple /// greedy coloring on the backward minimum outgoing order of nodes. /// This order can be computed by selecting the node with least /// outgoing arcs to unprocessed nodes in each phase. This order /// guarantees that when a node is chosen for coloring it has at /// most five already colored adjacents. The five coloring algorithm /// use the same method, but if the greedy approach fails to color /// with five colors, i.e. the node has five already different /// colored neighbours, it swaps the colors in one of the connected /// two colored sets with the Kempe recoloring method. template class PlanarColoring { public: TEMPLATE_GRAPH_TYPEDEFS(Graph); /// \brief The map type for storing color indices typedef typename Graph::template NodeMap IndexMap; /// \brief The map type for storing colors /// /// The map type for storing colors. /// \see Palette, Color typedef ComposeMap ColorMap; /// \brief Constructor /// /// Constructor. /// \pre The graph must be simple, i.e. it should not /// contain parallel or loop arcs. PlanarColoring(const Graph& graph) : _graph(graph), _color_map(graph), _palette(0) { _palette.add(Color(1,0,0)); _palette.add(Color(0,1,0)); _palette.add(Color(0,0,1)); _palette.add(Color(1,1,0)); _palette.add(Color(1,0,1)); _palette.add(Color(0,1,1)); } /// \brief Return the node map of color indices /// /// This function returns the node map of color indices. The values are /// in the range \c [0..4] or \c [0..5] according to the coloring method. IndexMap colorIndexMap() const { return _color_map; } /// \brief Return the node map of colors /// /// This function returns the node map of colors. The values are among /// five or six distinct \ref lemon::Color "colors". ColorMap colorMap() const { return composeMap(_palette, _color_map); } /// \brief Return the color index of the node /// /// This function returns the color index of the given node. The value is /// in the range \c [0..4] or \c [0..5] according to the coloring method. int colorIndex(const Node& node) const { return _color_map[node]; } /// \brief Return the color of the node /// /// This function returns the color of the given node. The value is among /// five or six distinct \ref lemon::Color "colors". Color color(const Node& node) const { return _palette[_color_map[node]]; } /// \brief Calculate a coloring with at most six colors /// /// This function calculates a coloring with at most six colors. The time /// complexity of this variant is linear in the size of the graph. /// \return \c true if the algorithm could color the graph with six colors. /// If the algorithm fails, then the graph is not planar. /// \note This function can return \c true if the graph is not /// planar, but it can be colored with at most six colors. bool runSixColoring() { typename Graph::template NodeMap heap_index(_graph, -1); BucketHeap > heap(heap_index); for (NodeIt n(_graph); n != INVALID; ++n) { _color_map[n] = -2; heap.push(n, countOutArcs(_graph, n)); } std::vector order; while (!heap.empty()) { Node n = heap.top(); heap.pop(); _color_map[n] = -1; order.push_back(n); for (OutArcIt e(_graph, n); e != INVALID; ++e) { Node t = _graph.runningNode(e); if (_color_map[t] == -2) { heap.decrease(t, heap[t] - 1); } } } for (int i = order.size() - 1; i >= 0; --i) { std::vector forbidden(6, false); for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) { Node t = _graph.runningNode(e); if (_color_map[t] != -1) { forbidden[_color_map[t]] = true; } } for (int k = 0; k < 6; ++k) { if (!forbidden[k]) { _color_map[order[i]] = k; break; } } if (_color_map[order[i]] == -1) { return false; } } return true; } private: bool recolor(const Node& u, const Node& v) { int ucolor = _color_map[u]; int vcolor = _color_map[v]; typedef _planarity_bits::KempeFilter KempeFilter; KempeFilter filter(_color_map, ucolor, vcolor); typedef FilterNodes KempeGraph; KempeGraph kempe_graph(_graph, filter); std::vector comp; Bfs bfs(kempe_graph); bfs.init(); bfs.addSource(u); while (!bfs.emptyQueue()) { Node n = bfs.nextNode(); if (n == v) return false; comp.push_back(n); bfs.processNextNode(); } int scolor = ucolor + vcolor; for (int i = 0; i < static_cast(comp.size()); ++i) { _color_map[comp[i]] = scolor - _color_map[comp[i]]; } return true; } template void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) { std::vector nodes; nodes.reserve(4); for (Arc e = OutArcIt(_graph, node); e != INVALID; e = embedding[e]) { Node t = _graph.target(e); if (_color_map[t] != -1) { nodes.push_back(t); if (nodes.size() == 4) break; } } int color = _color_map[nodes[0]]; if (recolor(nodes[0], nodes[2])) { _color_map[node] = color; } else { color = _color_map[nodes[1]]; recolor(nodes[1], nodes[3]); _color_map[node] = color; } } public: /// \brief Calculate a coloring with at most five colors /// /// This function calculates a coloring with at most five /// colors. The worst case time complexity of this variant is /// quadratic in the size of the graph. /// \param embedding This map should contain a valid combinatorical /// embedding, i.e. a valid cyclic order of the arcs. /// It can be computed using PlanarEmbedding. template void runFiveColoring(const EmbeddingMap& embedding) { typename Graph::template NodeMap heap_index(_graph, -1); BucketHeap > heap(heap_index); for (NodeIt n(_graph); n != INVALID; ++n) { _color_map[n] = -2; heap.push(n, countOutArcs(_graph, n)); } std::vector order; while (!heap.empty()) { Node n = heap.top(); heap.pop(); _color_map[n] = -1; order.push_back(n); for (OutArcIt e(_graph, n); e != INVALID; ++e) { Node t = _graph.runningNode(e); if (_color_map[t] == -2) { heap.decrease(t, heap[t] - 1); } } } for (int i = order.size() - 1; i >= 0; --i) { std::vector forbidden(5, false); for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) { Node t = _graph.runningNode(e); if (_color_map[t] != -1) { forbidden[_color_map[t]] = true; } } for (int k = 0; k < 5; ++k) { if (!forbidden[k]) { _color_map[order[i]] = k; break; } } if (_color_map[order[i]] == -1) { kempeRecoloring(order[i], embedding); } } } /// \brief Calculate a coloring with at most five colors /// /// This function calculates a coloring with at most five /// colors. The worst case time complexity of this variant is /// quadratic in the size of the graph. /// \return \c true if the graph is planar. bool runFiveColoring() { PlanarEmbedding pe(_graph); if (!pe.run()) return false; runFiveColoring(pe.embeddingMap()); return true; } private: const Graph& _graph; IndexMap _color_map; Palette _palette; }; } #endif