1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2009 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_PREFLOW_H |
---|
20 | #define LEMON_PREFLOW_H |
---|
21 | |
---|
22 | #include <lemon/tolerance.h> |
---|
23 | #include <lemon/elevator.h> |
---|
24 | |
---|
25 | /// \file |
---|
26 | /// \ingroup max_flow |
---|
27 | /// \brief Implementation of the preflow algorithm. |
---|
28 | |
---|
29 | namespace lemon { |
---|
30 | |
---|
31 | /// \brief Default traits class of Preflow class. |
---|
32 | /// |
---|
33 | /// Default traits class of Preflow class. |
---|
34 | /// \tparam GR Digraph type. |
---|
35 | /// \tparam CM Capacity map type. |
---|
36 | template <typename GR, typename CM> |
---|
37 | struct PreflowDefaultTraits { |
---|
38 | |
---|
39 | /// \brief The type of the digraph the algorithm runs on. |
---|
40 | typedef GR Digraph; |
---|
41 | |
---|
42 | /// \brief The type of the map that stores the arc capacities. |
---|
43 | /// |
---|
44 | /// The type of the map that stores the arc capacities. |
---|
45 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
---|
46 | typedef CM CapacityMap; |
---|
47 | |
---|
48 | /// \brief The type of the flow values. |
---|
49 | typedef typename CapacityMap::Value Value; |
---|
50 | |
---|
51 | /// \brief The type of the map that stores the flow values. |
---|
52 | /// |
---|
53 | /// The type of the map that stores the flow values. |
---|
54 | /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
---|
55 | typedef typename Digraph::template ArcMap<Value> FlowMap; |
---|
56 | |
---|
57 | /// \brief Instantiates a FlowMap. |
---|
58 | /// |
---|
59 | /// This function instantiates a \ref FlowMap. |
---|
60 | /// \param digraph The digraph, to which we would like to define |
---|
61 | /// the flow map. |
---|
62 | static FlowMap* createFlowMap(const Digraph& digraph) { |
---|
63 | return new FlowMap(digraph); |
---|
64 | } |
---|
65 | |
---|
66 | /// \brief The elevator type used by Preflow algorithm. |
---|
67 | /// |
---|
68 | /// The elevator type used by Preflow algorithm. |
---|
69 | /// |
---|
70 | /// \sa Elevator |
---|
71 | /// \sa LinkedElevator |
---|
72 | typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator; |
---|
73 | |
---|
74 | /// \brief Instantiates an Elevator. |
---|
75 | /// |
---|
76 | /// This function instantiates an \ref Elevator. |
---|
77 | /// \param digraph The digraph, to which we would like to define |
---|
78 | /// the elevator. |
---|
79 | /// \param max_level The maximum level of the elevator. |
---|
80 | static Elevator* createElevator(const Digraph& digraph, int max_level) { |
---|
81 | return new Elevator(digraph, max_level); |
---|
82 | } |
---|
83 | |
---|
84 | /// \brief The tolerance used by the algorithm |
---|
85 | /// |
---|
86 | /// The tolerance used by the algorithm to handle inexact computation. |
---|
87 | typedef lemon::Tolerance<Value> Tolerance; |
---|
88 | |
---|
89 | }; |
---|
90 | |
---|
91 | |
---|
92 | /// \ingroup max_flow |
---|
93 | /// |
---|
94 | /// \brief %Preflow algorithm class. |
---|
95 | /// |
---|
96 | /// This class provides an implementation of Goldberg-Tarjan's \e preflow |
---|
97 | /// \e push-relabel algorithm producing a flow of maximum value in a |
---|
98 | /// digraph. The preflow algorithms are the fastest known maximum |
---|
99 | /// flow algorithms. The current implementation use a mixture of the |
---|
100 | /// \e "highest label" and the \e "bound decrease" heuristics. |
---|
101 | /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$. |
---|
102 | /// |
---|
103 | /// The algorithm consists of two phases. After the first phase |
---|
104 | /// the maximum flow value and the minimum cut is obtained. The |
---|
105 | /// second phase constructs a feasible maximum flow on each arc. |
---|
106 | /// |
---|
107 | /// \tparam GR The type of the digraph the algorithm runs on. |
---|
108 | /// \tparam CM The type of the capacity map. The default map |
---|
109 | /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
---|
110 | #ifdef DOXYGEN |
---|
111 | template <typename GR, typename CM, typename TR> |
---|
112 | #else |
---|
113 | template <typename GR, |
---|
114 | typename CM = typename GR::template ArcMap<int>, |
---|
115 | typename TR = PreflowDefaultTraits<GR, CM> > |
---|
116 | #endif |
---|
117 | class Preflow { |
---|
118 | public: |
---|
119 | |
---|
120 | ///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
---|
121 | typedef TR Traits; |
---|
122 | ///The type of the digraph the algorithm runs on. |
---|
123 | typedef typename Traits::Digraph Digraph; |
---|
124 | ///The type of the capacity map. |
---|
125 | typedef typename Traits::CapacityMap CapacityMap; |
---|
126 | ///The type of the flow values. |
---|
127 | typedef typename Traits::Value Value; |
---|
128 | |
---|
129 | ///The type of the flow map. |
---|
130 | typedef typename Traits::FlowMap FlowMap; |
---|
131 | ///The type of the elevator. |
---|
132 | typedef typename Traits::Elevator Elevator; |
---|
133 | ///The type of the tolerance. |
---|
134 | typedef typename Traits::Tolerance Tolerance; |
---|
135 | |
---|
136 | private: |
---|
137 | |
---|
138 | TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
---|
139 | |
---|
140 | const Digraph& _graph; |
---|
141 | const CapacityMap* _capacity; |
---|
142 | |
---|
143 | int _node_num; |
---|
144 | |
---|
145 | Node _source, _target; |
---|
146 | |
---|
147 | FlowMap* _flow; |
---|
148 | bool _local_flow; |
---|
149 | |
---|
150 | Elevator* _level; |
---|
151 | bool _local_level; |
---|
152 | |
---|
153 | typedef typename Digraph::template NodeMap<Value> ExcessMap; |
---|
154 | ExcessMap* _excess; |
---|
155 | |
---|
156 | Tolerance _tolerance; |
---|
157 | |
---|
158 | bool _phase; |
---|
159 | |
---|
160 | |
---|
161 | void createStructures() { |
---|
162 | _node_num = countNodes(_graph); |
---|
163 | |
---|
164 | if (!_flow) { |
---|
165 | _flow = Traits::createFlowMap(_graph); |
---|
166 | _local_flow = true; |
---|
167 | } |
---|
168 | if (!_level) { |
---|
169 | _level = Traits::createElevator(_graph, _node_num); |
---|
170 | _local_level = true; |
---|
171 | } |
---|
172 | if (!_excess) { |
---|
173 | _excess = new ExcessMap(_graph); |
---|
174 | } |
---|
175 | } |
---|
176 | |
---|
177 | void destroyStructures() { |
---|
178 | if (_local_flow) { |
---|
179 | delete _flow; |
---|
180 | } |
---|
181 | if (_local_level) { |
---|
182 | delete _level; |
---|
183 | } |
---|
184 | if (_excess) { |
---|
185 | delete _excess; |
---|
186 | } |
---|
187 | } |
---|
188 | |
---|
189 | public: |
---|
190 | |
---|
191 | typedef Preflow Create; |
---|
192 | |
---|
193 | ///\name Named Template Parameters |
---|
194 | |
---|
195 | ///@{ |
---|
196 | |
---|
197 | template <typename _FlowMap> |
---|
198 | struct SetFlowMapTraits : public Traits { |
---|
199 | typedef _FlowMap FlowMap; |
---|
200 | static FlowMap *createFlowMap(const Digraph&) { |
---|
201 | LEMON_ASSERT(false, "FlowMap is not initialized"); |
---|
202 | return 0; // ignore warnings |
---|
203 | } |
---|
204 | }; |
---|
205 | |
---|
206 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
207 | /// FlowMap type |
---|
208 | /// |
---|
209 | /// \ref named-templ-param "Named parameter" for setting FlowMap |
---|
210 | /// type. |
---|
211 | template <typename _FlowMap> |
---|
212 | struct SetFlowMap |
---|
213 | : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<_FlowMap> > { |
---|
214 | typedef Preflow<Digraph, CapacityMap, |
---|
215 | SetFlowMapTraits<_FlowMap> > Create; |
---|
216 | }; |
---|
217 | |
---|
218 | template <typename _Elevator> |
---|
219 | struct SetElevatorTraits : public Traits { |
---|
220 | typedef _Elevator Elevator; |
---|
221 | static Elevator *createElevator(const Digraph&, int) { |
---|
222 | LEMON_ASSERT(false, "Elevator is not initialized"); |
---|
223 | return 0; // ignore warnings |
---|
224 | } |
---|
225 | }; |
---|
226 | |
---|
227 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
228 | /// Elevator type |
---|
229 | /// |
---|
230 | /// \ref named-templ-param "Named parameter" for setting Elevator |
---|
231 | /// type. If this named parameter is used, then an external |
---|
232 | /// elevator object must be passed to the algorithm using the |
---|
233 | /// \ref elevator(Elevator&) "elevator()" function before calling |
---|
234 | /// \ref run() or \ref init(). |
---|
235 | /// \sa SetStandardElevator |
---|
236 | template <typename _Elevator> |
---|
237 | struct SetElevator |
---|
238 | : public Preflow<Digraph, CapacityMap, SetElevatorTraits<_Elevator> > { |
---|
239 | typedef Preflow<Digraph, CapacityMap, |
---|
240 | SetElevatorTraits<_Elevator> > Create; |
---|
241 | }; |
---|
242 | |
---|
243 | template <typename _Elevator> |
---|
244 | struct SetStandardElevatorTraits : public Traits { |
---|
245 | typedef _Elevator Elevator; |
---|
246 | static Elevator *createElevator(const Digraph& digraph, int max_level) { |
---|
247 | return new Elevator(digraph, max_level); |
---|
248 | } |
---|
249 | }; |
---|
250 | |
---|
251 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
252 | /// Elevator type with automatic allocation |
---|
253 | /// |
---|
254 | /// \ref named-templ-param "Named parameter" for setting Elevator |
---|
255 | /// type with automatic allocation. |
---|
256 | /// The Elevator should have standard constructor interface to be |
---|
257 | /// able to automatically created by the algorithm (i.e. the |
---|
258 | /// digraph and the maximum level should be passed to it). |
---|
259 | /// However an external elevator object could also be passed to the |
---|
260 | /// algorithm with the \ref elevator(Elevator&) "elevator()" function |
---|
261 | /// before calling \ref run() or \ref init(). |
---|
262 | /// \sa SetElevator |
---|
263 | template <typename _Elevator> |
---|
264 | struct SetStandardElevator |
---|
265 | : public Preflow<Digraph, CapacityMap, |
---|
266 | SetStandardElevatorTraits<_Elevator> > { |
---|
267 | typedef Preflow<Digraph, CapacityMap, |
---|
268 | SetStandardElevatorTraits<_Elevator> > Create; |
---|
269 | }; |
---|
270 | |
---|
271 | /// @} |
---|
272 | |
---|
273 | protected: |
---|
274 | |
---|
275 | Preflow() {} |
---|
276 | |
---|
277 | public: |
---|
278 | |
---|
279 | |
---|
280 | /// \brief The constructor of the class. |
---|
281 | /// |
---|
282 | /// The constructor of the class. |
---|
283 | /// \param digraph The digraph the algorithm runs on. |
---|
284 | /// \param capacity The capacity of the arcs. |
---|
285 | /// \param source The source node. |
---|
286 | /// \param target The target node. |
---|
287 | Preflow(const Digraph& digraph, const CapacityMap& capacity, |
---|
288 | Node source, Node target) |
---|
289 | : _graph(digraph), _capacity(&capacity), |
---|
290 | _node_num(0), _source(source), _target(target), |
---|
291 | _flow(0), _local_flow(false), |
---|
292 | _level(0), _local_level(false), |
---|
293 | _excess(0), _tolerance(), _phase() {} |
---|
294 | |
---|
295 | /// \brief Destructor. |
---|
296 | /// |
---|
297 | /// Destructor. |
---|
298 | ~Preflow() { |
---|
299 | destroyStructures(); |
---|
300 | } |
---|
301 | |
---|
302 | /// \brief Sets the capacity map. |
---|
303 | /// |
---|
304 | /// Sets the capacity map. |
---|
305 | /// \return <tt>(*this)</tt> |
---|
306 | Preflow& capacityMap(const CapacityMap& map) { |
---|
307 | _capacity = ↦ |
---|
308 | return *this; |
---|
309 | } |
---|
310 | |
---|
311 | /// \brief Sets the flow map. |
---|
312 | /// |
---|
313 | /// Sets the flow map. |
---|
314 | /// If you don't use this function before calling \ref run() or |
---|
315 | /// \ref init(), an instance will be allocated automatically. |
---|
316 | /// The destructor deallocates this automatically allocated map, |
---|
317 | /// of course. |
---|
318 | /// \return <tt>(*this)</tt> |
---|
319 | Preflow& flowMap(FlowMap& map) { |
---|
320 | if (_local_flow) { |
---|
321 | delete _flow; |
---|
322 | _local_flow = false; |
---|
323 | } |
---|
324 | _flow = ↦ |
---|
325 | return *this; |
---|
326 | } |
---|
327 | |
---|
328 | /// \brief Sets the source node. |
---|
329 | /// |
---|
330 | /// Sets the source node. |
---|
331 | /// \return <tt>(*this)</tt> |
---|
332 | Preflow& source(const Node& node) { |
---|
333 | _source = node; |
---|
334 | return *this; |
---|
335 | } |
---|
336 | |
---|
337 | /// \brief Sets the target node. |
---|
338 | /// |
---|
339 | /// Sets the target node. |
---|
340 | /// \return <tt>(*this)</tt> |
---|
341 | Preflow& target(const Node& node) { |
---|
342 | _target = node; |
---|
343 | return *this; |
---|
344 | } |
---|
345 | |
---|
346 | /// \brief Sets the elevator used by algorithm. |
---|
347 | /// |
---|
348 | /// Sets the elevator used by algorithm. |
---|
349 | /// If you don't use this function before calling \ref run() or |
---|
350 | /// \ref init(), an instance will be allocated automatically. |
---|
351 | /// The destructor deallocates this automatically allocated elevator, |
---|
352 | /// of course. |
---|
353 | /// \return <tt>(*this)</tt> |
---|
354 | Preflow& elevator(Elevator& elevator) { |
---|
355 | if (_local_level) { |
---|
356 | delete _level; |
---|
357 | _local_level = false; |
---|
358 | } |
---|
359 | _level = &elevator; |
---|
360 | return *this; |
---|
361 | } |
---|
362 | |
---|
363 | /// \brief Returns a const reference to the elevator. |
---|
364 | /// |
---|
365 | /// Returns a const reference to the elevator. |
---|
366 | /// |
---|
367 | /// \pre Either \ref run() or \ref init() must be called before |
---|
368 | /// using this function. |
---|
369 | const Elevator& elevator() const { |
---|
370 | return *_level; |
---|
371 | } |
---|
372 | |
---|
373 | /// \brief Sets the tolerance used by algorithm. |
---|
374 | /// |
---|
375 | /// Sets the tolerance used by algorithm. |
---|
376 | Preflow& tolerance(const Tolerance& tolerance) const { |
---|
377 | _tolerance = tolerance; |
---|
378 | return *this; |
---|
379 | } |
---|
380 | |
---|
381 | /// \brief Returns a const reference to the tolerance. |
---|
382 | /// |
---|
383 | /// Returns a const reference to the tolerance. |
---|
384 | const Tolerance& tolerance() const { |
---|
385 | return tolerance; |
---|
386 | } |
---|
387 | |
---|
388 | /// \name Execution Control |
---|
389 | /// The simplest way to execute the preflow algorithm is to use |
---|
390 | /// \ref run() or \ref runMinCut().\n |
---|
391 | /// If you need more control on the initial solution or the execution, |
---|
392 | /// first you have to call one of the \ref init() functions, then |
---|
393 | /// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
---|
394 | |
---|
395 | ///@{ |
---|
396 | |
---|
397 | /// \brief Initializes the internal data structures. |
---|
398 | /// |
---|
399 | /// Initializes the internal data structures and sets the initial |
---|
400 | /// flow to zero on each arc. |
---|
401 | void init() { |
---|
402 | createStructures(); |
---|
403 | |
---|
404 | _phase = true; |
---|
405 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
406 | _excess->set(n, 0); |
---|
407 | } |
---|
408 | |
---|
409 | for (ArcIt e(_graph); e != INVALID; ++e) { |
---|
410 | _flow->set(e, 0); |
---|
411 | } |
---|
412 | |
---|
413 | typename Digraph::template NodeMap<bool> reached(_graph, false); |
---|
414 | |
---|
415 | _level->initStart(); |
---|
416 | _level->initAddItem(_target); |
---|
417 | |
---|
418 | std::vector<Node> queue; |
---|
419 | reached.set(_source, true); |
---|
420 | |
---|
421 | queue.push_back(_target); |
---|
422 | reached.set(_target, true); |
---|
423 | while (!queue.empty()) { |
---|
424 | _level->initNewLevel(); |
---|
425 | std::vector<Node> nqueue; |
---|
426 | for (int i = 0; i < int(queue.size()); ++i) { |
---|
427 | Node n = queue[i]; |
---|
428 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
429 | Node u = _graph.source(e); |
---|
430 | if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
---|
431 | reached.set(u, true); |
---|
432 | _level->initAddItem(u); |
---|
433 | nqueue.push_back(u); |
---|
434 | } |
---|
435 | } |
---|
436 | } |
---|
437 | queue.swap(nqueue); |
---|
438 | } |
---|
439 | _level->initFinish(); |
---|
440 | |
---|
441 | for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
---|
442 | if (_tolerance.positive((*_capacity)[e])) { |
---|
443 | Node u = _graph.target(e); |
---|
444 | if ((*_level)[u] == _level->maxLevel()) continue; |
---|
445 | _flow->set(e, (*_capacity)[e]); |
---|
446 | _excess->set(u, (*_excess)[u] + (*_capacity)[e]); |
---|
447 | if (u != _target && !_level->active(u)) { |
---|
448 | _level->activate(u); |
---|
449 | } |
---|
450 | } |
---|
451 | } |
---|
452 | } |
---|
453 | |
---|
454 | /// \brief Initializes the internal data structures using the |
---|
455 | /// given flow map. |
---|
456 | /// |
---|
457 | /// Initializes the internal data structures and sets the initial |
---|
458 | /// flow to the given \c flowMap. The \c flowMap should contain a |
---|
459 | /// flow or at least a preflow, i.e. at each node excluding the |
---|
460 | /// source node the incoming flow should greater or equal to the |
---|
461 | /// outgoing flow. |
---|
462 | /// \return \c false if the given \c flowMap is not a preflow. |
---|
463 | template <typename FlowMap> |
---|
464 | bool init(const FlowMap& flowMap) { |
---|
465 | createStructures(); |
---|
466 | |
---|
467 | for (ArcIt e(_graph); e != INVALID; ++e) { |
---|
468 | _flow->set(e, flowMap[e]); |
---|
469 | } |
---|
470 | |
---|
471 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
472 | Value excess = 0; |
---|
473 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
474 | excess += (*_flow)[e]; |
---|
475 | } |
---|
476 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
477 | excess -= (*_flow)[e]; |
---|
478 | } |
---|
479 | if (excess < 0 && n != _source) return false; |
---|
480 | _excess->set(n, excess); |
---|
481 | } |
---|
482 | |
---|
483 | typename Digraph::template NodeMap<bool> reached(_graph, false); |
---|
484 | |
---|
485 | _level->initStart(); |
---|
486 | _level->initAddItem(_target); |
---|
487 | |
---|
488 | std::vector<Node> queue; |
---|
489 | reached.set(_source, true); |
---|
490 | |
---|
491 | queue.push_back(_target); |
---|
492 | reached.set(_target, true); |
---|
493 | while (!queue.empty()) { |
---|
494 | _level->initNewLevel(); |
---|
495 | std::vector<Node> nqueue; |
---|
496 | for (int i = 0; i < int(queue.size()); ++i) { |
---|
497 | Node n = queue[i]; |
---|
498 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
499 | Node u = _graph.source(e); |
---|
500 | if (!reached[u] && |
---|
501 | _tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
---|
502 | reached.set(u, true); |
---|
503 | _level->initAddItem(u); |
---|
504 | nqueue.push_back(u); |
---|
505 | } |
---|
506 | } |
---|
507 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
508 | Node v = _graph.target(e); |
---|
509 | if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
---|
510 | reached.set(v, true); |
---|
511 | _level->initAddItem(v); |
---|
512 | nqueue.push_back(v); |
---|
513 | } |
---|
514 | } |
---|
515 | } |
---|
516 | queue.swap(nqueue); |
---|
517 | } |
---|
518 | _level->initFinish(); |
---|
519 | |
---|
520 | for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
---|
521 | Value rem = (*_capacity)[e] - (*_flow)[e]; |
---|
522 | if (_tolerance.positive(rem)) { |
---|
523 | Node u = _graph.target(e); |
---|
524 | if ((*_level)[u] == _level->maxLevel()) continue; |
---|
525 | _flow->set(e, (*_capacity)[e]); |
---|
526 | _excess->set(u, (*_excess)[u] + rem); |
---|
527 | if (u != _target && !_level->active(u)) { |
---|
528 | _level->activate(u); |
---|
529 | } |
---|
530 | } |
---|
531 | } |
---|
532 | for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
---|
533 | Value rem = (*_flow)[e]; |
---|
534 | if (_tolerance.positive(rem)) { |
---|
535 | Node v = _graph.source(e); |
---|
536 | if ((*_level)[v] == _level->maxLevel()) continue; |
---|
537 | _flow->set(e, 0); |
---|
538 | _excess->set(v, (*_excess)[v] + rem); |
---|
539 | if (v != _target && !_level->active(v)) { |
---|
540 | _level->activate(v); |
---|
541 | } |
---|
542 | } |
---|
543 | } |
---|
544 | return true; |
---|
545 | } |
---|
546 | |
---|
547 | /// \brief Starts the first phase of the preflow algorithm. |
---|
548 | /// |
---|
549 | /// The preflow algorithm consists of two phases, this method runs |
---|
550 | /// the first phase. After the first phase the maximum flow value |
---|
551 | /// and a minimum value cut can already be computed, although a |
---|
552 | /// maximum flow is not yet obtained. So after calling this method |
---|
553 | /// \ref flowValue() returns the value of a maximum flow and \ref |
---|
554 | /// minCut() returns a minimum cut. |
---|
555 | /// \pre One of the \ref init() functions must be called before |
---|
556 | /// using this function. |
---|
557 | void startFirstPhase() { |
---|
558 | _phase = true; |
---|
559 | |
---|
560 | Node n = _level->highestActive(); |
---|
561 | int level = _level->highestActiveLevel(); |
---|
562 | while (n != INVALID) { |
---|
563 | int num = _node_num; |
---|
564 | |
---|
565 | while (num > 0 && n != INVALID) { |
---|
566 | Value excess = (*_excess)[n]; |
---|
567 | int new_level = _level->maxLevel(); |
---|
568 | |
---|
569 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
570 | Value rem = (*_capacity)[e] - (*_flow)[e]; |
---|
571 | if (!_tolerance.positive(rem)) continue; |
---|
572 | Node v = _graph.target(e); |
---|
573 | if ((*_level)[v] < level) { |
---|
574 | if (!_level->active(v) && v != _target) { |
---|
575 | _level->activate(v); |
---|
576 | } |
---|
577 | if (!_tolerance.less(rem, excess)) { |
---|
578 | _flow->set(e, (*_flow)[e] + excess); |
---|
579 | _excess->set(v, (*_excess)[v] + excess); |
---|
580 | excess = 0; |
---|
581 | goto no_more_push_1; |
---|
582 | } else { |
---|
583 | excess -= rem; |
---|
584 | _excess->set(v, (*_excess)[v] + rem); |
---|
585 | _flow->set(e, (*_capacity)[e]); |
---|
586 | } |
---|
587 | } else if (new_level > (*_level)[v]) { |
---|
588 | new_level = (*_level)[v]; |
---|
589 | } |
---|
590 | } |
---|
591 | |
---|
592 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
593 | Value rem = (*_flow)[e]; |
---|
594 | if (!_tolerance.positive(rem)) continue; |
---|
595 | Node v = _graph.source(e); |
---|
596 | if ((*_level)[v] < level) { |
---|
597 | if (!_level->active(v) && v != _target) { |
---|
598 | _level->activate(v); |
---|
599 | } |
---|
600 | if (!_tolerance.less(rem, excess)) { |
---|
601 | _flow->set(e, (*_flow)[e] - excess); |
---|
602 | _excess->set(v, (*_excess)[v] + excess); |
---|
603 | excess = 0; |
---|
604 | goto no_more_push_1; |
---|
605 | } else { |
---|
606 | excess -= rem; |
---|
607 | _excess->set(v, (*_excess)[v] + rem); |
---|
608 | _flow->set(e, 0); |
---|
609 | } |
---|
610 | } else if (new_level > (*_level)[v]) { |
---|
611 | new_level = (*_level)[v]; |
---|
612 | } |
---|
613 | } |
---|
614 | |
---|
615 | no_more_push_1: |
---|
616 | |
---|
617 | _excess->set(n, excess); |
---|
618 | |
---|
619 | if (excess != 0) { |
---|
620 | if (new_level + 1 < _level->maxLevel()) { |
---|
621 | _level->liftHighestActive(new_level + 1); |
---|
622 | } else { |
---|
623 | _level->liftHighestActiveToTop(); |
---|
624 | } |
---|
625 | if (_level->emptyLevel(level)) { |
---|
626 | _level->liftToTop(level); |
---|
627 | } |
---|
628 | } else { |
---|
629 | _level->deactivate(n); |
---|
630 | } |
---|
631 | |
---|
632 | n = _level->highestActive(); |
---|
633 | level = _level->highestActiveLevel(); |
---|
634 | --num; |
---|
635 | } |
---|
636 | |
---|
637 | num = _node_num * 20; |
---|
638 | while (num > 0 && n != INVALID) { |
---|
639 | Value excess = (*_excess)[n]; |
---|
640 | int new_level = _level->maxLevel(); |
---|
641 | |
---|
642 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
643 | Value rem = (*_capacity)[e] - (*_flow)[e]; |
---|
644 | if (!_tolerance.positive(rem)) continue; |
---|
645 | Node v = _graph.target(e); |
---|
646 | if ((*_level)[v] < level) { |
---|
647 | if (!_level->active(v) && v != _target) { |
---|
648 | _level->activate(v); |
---|
649 | } |
---|
650 | if (!_tolerance.less(rem, excess)) { |
---|
651 | _flow->set(e, (*_flow)[e] + excess); |
---|
652 | _excess->set(v, (*_excess)[v] + excess); |
---|
653 | excess = 0; |
---|
654 | goto no_more_push_2; |
---|
655 | } else { |
---|
656 | excess -= rem; |
---|
657 | _excess->set(v, (*_excess)[v] + rem); |
---|
658 | _flow->set(e, (*_capacity)[e]); |
---|
659 | } |
---|
660 | } else if (new_level > (*_level)[v]) { |
---|
661 | new_level = (*_level)[v]; |
---|
662 | } |
---|
663 | } |
---|
664 | |
---|
665 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
666 | Value rem = (*_flow)[e]; |
---|
667 | if (!_tolerance.positive(rem)) continue; |
---|
668 | Node v = _graph.source(e); |
---|
669 | if ((*_level)[v] < level) { |
---|
670 | if (!_level->active(v) && v != _target) { |
---|
671 | _level->activate(v); |
---|
672 | } |
---|
673 | if (!_tolerance.less(rem, excess)) { |
---|
674 | _flow->set(e, (*_flow)[e] - excess); |
---|
675 | _excess->set(v, (*_excess)[v] + excess); |
---|
676 | excess = 0; |
---|
677 | goto no_more_push_2; |
---|
678 | } else { |
---|
679 | excess -= rem; |
---|
680 | _excess->set(v, (*_excess)[v] + rem); |
---|
681 | _flow->set(e, 0); |
---|
682 | } |
---|
683 | } else if (new_level > (*_level)[v]) { |
---|
684 | new_level = (*_level)[v]; |
---|
685 | } |
---|
686 | } |
---|
687 | |
---|
688 | no_more_push_2: |
---|
689 | |
---|
690 | _excess->set(n, excess); |
---|
691 | |
---|
692 | if (excess != 0) { |
---|
693 | if (new_level + 1 < _level->maxLevel()) { |
---|
694 | _level->liftActiveOn(level, new_level + 1); |
---|
695 | } else { |
---|
696 | _level->liftActiveToTop(level); |
---|
697 | } |
---|
698 | if (_level->emptyLevel(level)) { |
---|
699 | _level->liftToTop(level); |
---|
700 | } |
---|
701 | } else { |
---|
702 | _level->deactivate(n); |
---|
703 | } |
---|
704 | |
---|
705 | while (level >= 0 && _level->activeFree(level)) { |
---|
706 | --level; |
---|
707 | } |
---|
708 | if (level == -1) { |
---|
709 | n = _level->highestActive(); |
---|
710 | level = _level->highestActiveLevel(); |
---|
711 | } else { |
---|
712 | n = _level->activeOn(level); |
---|
713 | } |
---|
714 | --num; |
---|
715 | } |
---|
716 | } |
---|
717 | } |
---|
718 | |
---|
719 | /// \brief Starts the second phase of the preflow algorithm. |
---|
720 | /// |
---|
721 | /// The preflow algorithm consists of two phases, this method runs |
---|
722 | /// the second phase. After calling one of the \ref init() functions |
---|
723 | /// and \ref startFirstPhase() and then \ref startSecondPhase(), |
---|
724 | /// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
---|
725 | /// value of a maximum flow, \ref minCut() returns a minimum cut |
---|
726 | /// \pre One of the \ref init() functions and \ref startFirstPhase() |
---|
727 | /// must be called before using this function. |
---|
728 | void startSecondPhase() { |
---|
729 | _phase = false; |
---|
730 | |
---|
731 | typename Digraph::template NodeMap<bool> reached(_graph); |
---|
732 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
733 | reached.set(n, (*_level)[n] < _level->maxLevel()); |
---|
734 | } |
---|
735 | |
---|
736 | _level->initStart(); |
---|
737 | _level->initAddItem(_source); |
---|
738 | |
---|
739 | std::vector<Node> queue; |
---|
740 | queue.push_back(_source); |
---|
741 | reached.set(_source, true); |
---|
742 | |
---|
743 | while (!queue.empty()) { |
---|
744 | _level->initNewLevel(); |
---|
745 | std::vector<Node> nqueue; |
---|
746 | for (int i = 0; i < int(queue.size()); ++i) { |
---|
747 | Node n = queue[i]; |
---|
748 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
749 | Node v = _graph.target(e); |
---|
750 | if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
---|
751 | reached.set(v, true); |
---|
752 | _level->initAddItem(v); |
---|
753 | nqueue.push_back(v); |
---|
754 | } |
---|
755 | } |
---|
756 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
757 | Node u = _graph.source(e); |
---|
758 | if (!reached[u] && |
---|
759 | _tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
---|
760 | reached.set(u, true); |
---|
761 | _level->initAddItem(u); |
---|
762 | nqueue.push_back(u); |
---|
763 | } |
---|
764 | } |
---|
765 | } |
---|
766 | queue.swap(nqueue); |
---|
767 | } |
---|
768 | _level->initFinish(); |
---|
769 | |
---|
770 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
771 | if (!reached[n]) { |
---|
772 | _level->dirtyTopButOne(n); |
---|
773 | } else if ((*_excess)[n] > 0 && _target != n) { |
---|
774 | _level->activate(n); |
---|
775 | } |
---|
776 | } |
---|
777 | |
---|
778 | Node n; |
---|
779 | while ((n = _level->highestActive()) != INVALID) { |
---|
780 | Value excess = (*_excess)[n]; |
---|
781 | int level = _level->highestActiveLevel(); |
---|
782 | int new_level = _level->maxLevel(); |
---|
783 | |
---|
784 | for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
---|
785 | Value rem = (*_capacity)[e] - (*_flow)[e]; |
---|
786 | if (!_tolerance.positive(rem)) continue; |
---|
787 | Node v = _graph.target(e); |
---|
788 | if ((*_level)[v] < level) { |
---|
789 | if (!_level->active(v) && v != _source) { |
---|
790 | _level->activate(v); |
---|
791 | } |
---|
792 | if (!_tolerance.less(rem, excess)) { |
---|
793 | _flow->set(e, (*_flow)[e] + excess); |
---|
794 | _excess->set(v, (*_excess)[v] + excess); |
---|
795 | excess = 0; |
---|
796 | goto no_more_push; |
---|
797 | } else { |
---|
798 | excess -= rem; |
---|
799 | _excess->set(v, (*_excess)[v] + rem); |
---|
800 | _flow->set(e, (*_capacity)[e]); |
---|
801 | } |
---|
802 | } else if (new_level > (*_level)[v]) { |
---|
803 | new_level = (*_level)[v]; |
---|
804 | } |
---|
805 | } |
---|
806 | |
---|
807 | for (InArcIt e(_graph, n); e != INVALID; ++e) { |
---|
808 | Value rem = (*_flow)[e]; |
---|
809 | if (!_tolerance.positive(rem)) continue; |
---|
810 | Node v = _graph.source(e); |
---|
811 | if ((*_level)[v] < level) { |
---|
812 | if (!_level->active(v) && v != _source) { |
---|
813 | _level->activate(v); |
---|
814 | } |
---|
815 | if (!_tolerance.less(rem, excess)) { |
---|
816 | _flow->set(e, (*_flow)[e] - excess); |
---|
817 | _excess->set(v, (*_excess)[v] + excess); |
---|
818 | excess = 0; |
---|
819 | goto no_more_push; |
---|
820 | } else { |
---|
821 | excess -= rem; |
---|
822 | _excess->set(v, (*_excess)[v] + rem); |
---|
823 | _flow->set(e, 0); |
---|
824 | } |
---|
825 | } else if (new_level > (*_level)[v]) { |
---|
826 | new_level = (*_level)[v]; |
---|
827 | } |
---|
828 | } |
---|
829 | |
---|
830 | no_more_push: |
---|
831 | |
---|
832 | _excess->set(n, excess); |
---|
833 | |
---|
834 | if (excess != 0) { |
---|
835 | if (new_level + 1 < _level->maxLevel()) { |
---|
836 | _level->liftHighestActive(new_level + 1); |
---|
837 | } else { |
---|
838 | // Calculation error |
---|
839 | _level->liftHighestActiveToTop(); |
---|
840 | } |
---|
841 | if (_level->emptyLevel(level)) { |
---|
842 | // Calculation error |
---|
843 | _level->liftToTop(level); |
---|
844 | } |
---|
845 | } else { |
---|
846 | _level->deactivate(n); |
---|
847 | } |
---|
848 | |
---|
849 | } |
---|
850 | } |
---|
851 | |
---|
852 | /// \brief Runs the preflow algorithm. |
---|
853 | /// |
---|
854 | /// Runs the preflow algorithm. |
---|
855 | /// \note pf.run() is just a shortcut of the following code. |
---|
856 | /// \code |
---|
857 | /// pf.init(); |
---|
858 | /// pf.startFirstPhase(); |
---|
859 | /// pf.startSecondPhase(); |
---|
860 | /// \endcode |
---|
861 | void run() { |
---|
862 | init(); |
---|
863 | startFirstPhase(); |
---|
864 | startSecondPhase(); |
---|
865 | } |
---|
866 | |
---|
867 | /// \brief Runs the preflow algorithm to compute the minimum cut. |
---|
868 | /// |
---|
869 | /// Runs the preflow algorithm to compute the minimum cut. |
---|
870 | /// \note pf.runMinCut() is just a shortcut of the following code. |
---|
871 | /// \code |
---|
872 | /// pf.init(); |
---|
873 | /// pf.startFirstPhase(); |
---|
874 | /// \endcode |
---|
875 | void runMinCut() { |
---|
876 | init(); |
---|
877 | startFirstPhase(); |
---|
878 | } |
---|
879 | |
---|
880 | /// @} |
---|
881 | |
---|
882 | /// \name Query Functions |
---|
883 | /// The results of the preflow algorithm can be obtained using these |
---|
884 | /// functions.\n |
---|
885 | /// Either one of the \ref run() "run*()" functions or one of the |
---|
886 | /// \ref startFirstPhase() "start*()" functions should be called |
---|
887 | /// before using them. |
---|
888 | |
---|
889 | ///@{ |
---|
890 | |
---|
891 | /// \brief Returns the value of the maximum flow. |
---|
892 | /// |
---|
893 | /// Returns the value of the maximum flow by returning the excess |
---|
894 | /// of the target node. This value equals to the value of |
---|
895 | /// the maximum flow already after the first phase of the algorithm. |
---|
896 | /// |
---|
897 | /// \pre Either \ref run() or \ref init() must be called before |
---|
898 | /// using this function. |
---|
899 | Value flowValue() const { |
---|
900 | return (*_excess)[_target]; |
---|
901 | } |
---|
902 | |
---|
903 | /// \brief Returns the flow on the given arc. |
---|
904 | /// |
---|
905 | /// Returns the flow on the given arc. This method can |
---|
906 | /// be called after the second phase of the algorithm. |
---|
907 | /// |
---|
908 | /// \pre Either \ref run() or \ref init() must be called before |
---|
909 | /// using this function. |
---|
910 | Value flow(const Arc& arc) const { |
---|
911 | return (*_flow)[arc]; |
---|
912 | } |
---|
913 | |
---|
914 | /// \brief Returns a const reference to the flow map. |
---|
915 | /// |
---|
916 | /// Returns a const reference to the arc map storing the found flow. |
---|
917 | /// This method can be called after the second phase of the algorithm. |
---|
918 | /// |
---|
919 | /// \pre Either \ref run() or \ref init() must be called before |
---|
920 | /// using this function. |
---|
921 | const FlowMap& flowMap() const { |
---|
922 | return *_flow; |
---|
923 | } |
---|
924 | |
---|
925 | /// \brief Returns \c true when the node is on the source side of the |
---|
926 | /// minimum cut. |
---|
927 | /// |
---|
928 | /// Returns true when the node is on the source side of the found |
---|
929 | /// minimum cut. This method can be called both after running \ref |
---|
930 | /// startFirstPhase() and \ref startSecondPhase(). |
---|
931 | /// |
---|
932 | /// \pre Either \ref run() or \ref init() must be called before |
---|
933 | /// using this function. |
---|
934 | bool minCut(const Node& node) const { |
---|
935 | return ((*_level)[node] == _level->maxLevel()) == _phase; |
---|
936 | } |
---|
937 | |
---|
938 | /// \brief Gives back a minimum value cut. |
---|
939 | /// |
---|
940 | /// Sets \c cutMap to the characteristic vector of a minimum value |
---|
941 | /// cut. \c cutMap should be a \ref concepts::WriteMap "writable" |
---|
942 | /// node map with \c bool (or convertible) value type. |
---|
943 | /// |
---|
944 | /// This method can be called both after running \ref startFirstPhase() |
---|
945 | /// and \ref startSecondPhase(). The result after the second phase |
---|
946 | /// could be slightly different if inexact computation is used. |
---|
947 | /// |
---|
948 | /// \note This function calls \ref minCut() for each node, so it runs in |
---|
949 | /// \f$O(n)\f$ time. |
---|
950 | /// |
---|
951 | /// \pre Either \ref run() or \ref init() must be called before |
---|
952 | /// using this function. |
---|
953 | template <typename CutMap> |
---|
954 | void minCutMap(CutMap& cutMap) const { |
---|
955 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
956 | cutMap.set(n, minCut(n)); |
---|
957 | } |
---|
958 | } |
---|
959 | |
---|
960 | /// @} |
---|
961 | }; |
---|
962 | } |
---|
963 | |
---|
964 | #endif |
---|