COIN-OR::LEMON - Graph Library

source: lemon/lemon/suurballe.h @ 926:ec0b1b423b8b

Last change on this file since 926:ec0b1b423b8b was 926:ec0b1b423b8b, checked in by Peter Kovacs <kpeter@…>, 15 years ago

Rework and improve Suurballe (#323)

  • Improve the implementation: use a specific, faster variant of residual Dijkstra for the first search.
  • Some reorganizatiopn to make the code simpler.
  • Small doc improvements.
File size: 16.8 KB
Line 
1/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library.
4 *
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
19#ifndef LEMON_SUURBALLE_H
20#define LEMON_SUURBALLE_H
21
22///\ingroup shortest_path
23///\file
24///\brief An algorithm for finding arc-disjoint paths between two
25/// nodes having minimum total length.
26
27#include <vector>
28#include <limits>
29#include <lemon/bin_heap.h>
30#include <lemon/path.h>
31#include <lemon/list_graph.h>
32#include <lemon/maps.h>
33
34namespace lemon {
35
36  /// \addtogroup shortest_path
37  /// @{
38
39  /// \brief Algorithm for finding arc-disjoint paths between two nodes
40  /// having minimum total length.
41  ///
42  /// \ref lemon::Suurballe "Suurballe" implements an algorithm for
43  /// finding arc-disjoint paths having minimum total length (cost)
44  /// from a given source node to a given target node in a digraph.
45  ///
46  /// Note that this problem is a special case of the \ref min_cost_flow
47  /// "minimum cost flow problem". This implementation is actually an
48  /// efficient specialized version of the \ref CapacityScaling
49  /// "successive shortest path" algorithm directly for this problem.
50  /// Therefore this class provides query functions for flow values and
51  /// node potentials (the dual solution) just like the minimum cost flow
52  /// algorithms.
53  ///
54  /// \tparam GR The digraph type the algorithm runs on.
55  /// \tparam LEN The type of the length map.
56  /// The default value is <tt>GR::ArcMap<int></tt>.
57  ///
58  /// \warning Length values should be \e non-negative.
59  ///
60  /// \note For finding \e node-disjoint paths, this algorithm can be used
61  /// along with the \ref SplitNodes adaptor.
62#ifdef DOXYGEN
63  template <typename GR, typename LEN>
64#else
65  template < typename GR,
66             typename LEN = typename GR::template ArcMap<int> >
67#endif
68  class Suurballe
69  {
70    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
71
72    typedef ConstMap<Arc, int> ConstArcMap;
73    typedef typename GR::template NodeMap<Arc> PredMap;
74
75  public:
76
77    /// The type of the digraph the algorithm runs on.
78    typedef GR Digraph;
79    /// The type of the length map.
80    typedef LEN LengthMap;
81    /// The type of the lengths.
82    typedef typename LengthMap::Value Length;
83#ifdef DOXYGEN
84    /// The type of the flow map.
85    typedef GR::ArcMap<int> FlowMap;
86    /// The type of the potential map.
87    typedef GR::NodeMap<Length> PotentialMap;
88#else
89    /// The type of the flow map.
90    typedef typename Digraph::template ArcMap<int> FlowMap;
91    /// The type of the potential map.
92    typedef typename Digraph::template NodeMap<Length> PotentialMap;
93#endif
94
95    /// The type of the path structures.
96    typedef SimplePath<GR> Path;
97
98  private:
99
100    // ResidualDijkstra is a special implementation of the
101    // Dijkstra algorithm for finding shortest paths in the
102    // residual network with respect to the reduced arc lengths
103    // and modifying the node potentials according to the
104    // distance of the nodes.
105    class ResidualDijkstra
106    {
107      typedef typename Digraph::template NodeMap<int> HeapCrossRef;
108      typedef BinHeap<Length, HeapCrossRef> Heap;
109
110    private:
111
112      const Digraph &_graph;
113      const LengthMap &_length;
114      const FlowMap &_flow;
115      PotentialMap &_pi;
116      PredMap &_pred;
117      Node _s;
118      Node _t;
119     
120      PotentialMap _dist;
121      std::vector<Node> _proc_nodes;
122
123    public:
124
125      // Constructor
126      ResidualDijkstra(Suurballe &srb) :
127        _graph(srb._graph), _length(srb._length),
128        _flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred),
129        _s(srb._s), _t(srb._t), _dist(_graph) {}
130       
131      // Run the algorithm and return true if a path is found
132      // from the source node to the target node.
133      bool run(int cnt) {
134        return cnt == 0 ? startFirst() : start();
135      }
136
137    private:
138   
139      // Execute the algorithm for the first time (the flow and potential
140      // functions have to be identically zero).
141      bool startFirst() {
142        HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
143        Heap heap(heap_cross_ref);
144        heap.push(_s, 0);
145        _pred[_s] = INVALID;
146        _proc_nodes.clear();
147
148        // Process nodes
149        while (!heap.empty() && heap.top() != _t) {
150          Node u = heap.top(), v;
151          Length d = heap.prio(), dn;
152          _dist[u] = heap.prio();
153          _proc_nodes.push_back(u);
154          heap.pop();
155
156          // Traverse outgoing arcs
157          for (OutArcIt e(_graph, u); e != INVALID; ++e) {
158            v = _graph.target(e);
159            switch(heap.state(v)) {
160              case Heap::PRE_HEAP:
161                heap.push(v, d + _length[e]);
162                _pred[v] = e;
163                break;
164              case Heap::IN_HEAP:
165                dn = d + _length[e];
166                if (dn < heap[v]) {
167                  heap.decrease(v, dn);
168                  _pred[v] = e;
169                }
170                break;
171              case Heap::POST_HEAP:
172                break;
173            }
174          }
175        }
176        if (heap.empty()) return false;
177
178        // Update potentials of processed nodes
179        Length t_dist = heap.prio();
180        for (int i = 0; i < int(_proc_nodes.size()); ++i)
181          _pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist;
182        return true;
183      }
184
185      // Execute the algorithm.
186      bool start() {
187        HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
188        Heap heap(heap_cross_ref);
189        heap.push(_s, 0);
190        _pred[_s] = INVALID;
191        _proc_nodes.clear();
192
193        // Process nodes
194        while (!heap.empty() && heap.top() != _t) {
195          Node u = heap.top(), v;
196          Length d = heap.prio() + _pi[u], dn;
197          _dist[u] = heap.prio();
198          _proc_nodes.push_back(u);
199          heap.pop();
200
201          // Traverse outgoing arcs
202          for (OutArcIt e(_graph, u); e != INVALID; ++e) {
203            if (_flow[e] == 0) {
204              v = _graph.target(e);
205              switch(heap.state(v)) {
206                case Heap::PRE_HEAP:
207                  heap.push(v, d + _length[e] - _pi[v]);
208                  _pred[v] = e;
209                  break;
210                case Heap::IN_HEAP:
211                  dn = d + _length[e] - _pi[v];
212                  if (dn < heap[v]) {
213                    heap.decrease(v, dn);
214                    _pred[v] = e;
215                  }
216                  break;
217                case Heap::POST_HEAP:
218                  break;
219              }
220            }
221          }
222
223          // Traverse incoming arcs
224          for (InArcIt e(_graph, u); e != INVALID; ++e) {
225            if (_flow[e] == 1) {
226              v = _graph.source(e);
227              switch(heap.state(v)) {
228                case Heap::PRE_HEAP:
229                  heap.push(v, d - _length[e] - _pi[v]);
230                  _pred[v] = e;
231                  break;
232                case Heap::IN_HEAP:
233                  dn = d - _length[e] - _pi[v];
234                  if (dn < heap[v]) {
235                    heap.decrease(v, dn);
236                    _pred[v] = e;
237                  }
238                  break;
239                case Heap::POST_HEAP:
240                  break;
241              }
242            }
243          }
244        }
245        if (heap.empty()) return false;
246
247        // Update potentials of processed nodes
248        Length t_dist = heap.prio();
249        for (int i = 0; i < int(_proc_nodes.size()); ++i)
250          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
251        return true;
252      }
253
254    }; //class ResidualDijkstra
255
256  private:
257
258    // The digraph the algorithm runs on
259    const Digraph &_graph;
260    // The length map
261    const LengthMap &_length;
262
263    // Arc map of the current flow
264    FlowMap *_flow;
265    bool _local_flow;
266    // Node map of the current potentials
267    PotentialMap *_potential;
268    bool _local_potential;
269
270    // The source node
271    Node _s;
272    // The target node
273    Node _t;
274
275    // Container to store the found paths
276    std::vector<Path> _paths;
277    int _path_num;
278
279    // The pred arc map
280    PredMap _pred;
281
282  public:
283
284    /// \brief Constructor.
285    ///
286    /// Constructor.
287    ///
288    /// \param graph The digraph the algorithm runs on.
289    /// \param length The length (cost) values of the arcs.
290    Suurballe( const Digraph &graph,
291               const LengthMap &length ) :
292      _graph(graph), _length(length), _flow(0), _local_flow(false),
293      _potential(0), _local_potential(false), _pred(graph)
294    {}
295
296    /// Destructor.
297    ~Suurballe() {
298      if (_local_flow) delete _flow;
299      if (_local_potential) delete _potential;
300    }
301
302    /// \brief Set the flow map.
303    ///
304    /// This function sets the flow map.
305    /// If it is not used before calling \ref run() or \ref init(),
306    /// an instance will be allocated automatically. The destructor
307    /// deallocates this automatically allocated map, of course.
308    ///
309    /// The found flow contains only 0 and 1 values, since it is the
310    /// union of the found arc-disjoint paths.
311    ///
312    /// \return <tt>(*this)</tt>
313    Suurballe& flowMap(FlowMap &map) {
314      if (_local_flow) {
315        delete _flow;
316        _local_flow = false;
317      }
318      _flow = &map;
319      return *this;
320    }
321
322    /// \brief Set the potential map.
323    ///
324    /// This function sets the potential map.
325    /// If it is not used before calling \ref run() or \ref init(),
326    /// an instance will be allocated automatically. The destructor
327    /// deallocates this automatically allocated map, of course.
328    ///
329    /// The node potentials provide the dual solution of the underlying
330    /// \ref min_cost_flow "minimum cost flow problem".
331    ///
332    /// \return <tt>(*this)</tt>
333    Suurballe& potentialMap(PotentialMap &map) {
334      if (_local_potential) {
335        delete _potential;
336        _local_potential = false;
337      }
338      _potential = &map;
339      return *this;
340    }
341
342    /// \name Execution Control
343    /// The simplest way to execute the algorithm is to call the run()
344    /// function.
345    /// \n
346    /// If you only need the flow that is the union of the found
347    /// arc-disjoint paths, you may call init() and findFlow().
348
349    /// @{
350
351    /// \brief Run the algorithm.
352    ///
353    /// This function runs the algorithm.
354    ///
355    /// \param s The source node.
356    /// \param t The target node.
357    /// \param k The number of paths to be found.
358    ///
359    /// \return \c k if there are at least \c k arc-disjoint paths from
360    /// \c s to \c t in the digraph. Otherwise it returns the number of
361    /// arc-disjoint paths found.
362    ///
363    /// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
364    /// just a shortcut of the following code.
365    /// \code
366    ///   s.init(s);
367    ///   s.findFlow(t, k);
368    ///   s.findPaths();
369    /// \endcode
370    int run(const Node& s, const Node& t, int k = 2) {
371      init(s);
372      findFlow(t, k);
373      findPaths();
374      return _path_num;
375    }
376
377    /// \brief Initialize the algorithm.
378    ///
379    /// This function initializes the algorithm.
380    ///
381    /// \param s The source node.
382    void init(const Node& s) {
383      _s = s;
384
385      // Initialize maps
386      if (!_flow) {
387        _flow = new FlowMap(_graph);
388        _local_flow = true;
389      }
390      if (!_potential) {
391        _potential = new PotentialMap(_graph);
392        _local_potential = true;
393      }
394      for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
395      for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
396    }
397
398    /// \brief Execute the algorithm to find an optimal flow.
399    ///
400    /// This function executes the successive shortest path algorithm to
401    /// find a minimum cost flow, which is the union of \c k (or less)
402    /// arc-disjoint paths.
403    ///
404    /// \param t The target node.
405    /// \param k The number of paths to be found.
406    ///
407    /// \return \c k if there are at least \c k arc-disjoint paths from
408    /// the source node to the given node \c t in the digraph.
409    /// Otherwise it returns the number of arc-disjoint paths found.
410    ///
411    /// \pre \ref init() must be called before using this function.
412    int findFlow(const Node& t, int k = 2) {
413      _t = t;
414      ResidualDijkstra dijkstra(*this);
415
416      // Find shortest paths
417      _path_num = 0;
418      while (_path_num < k) {
419        // Run Dijkstra
420        if (!dijkstra.run(_path_num)) break;
421        ++_path_num;
422
423        // Set the flow along the found shortest path
424        Node u = _t;
425        Arc e;
426        while ((e = _pred[u]) != INVALID) {
427          if (u == _graph.target(e)) {
428            (*_flow)[e] = 1;
429            u = _graph.source(e);
430          } else {
431            (*_flow)[e] = 0;
432            u = _graph.target(e);
433          }
434        }
435      }
436      return _path_num;
437    }
438
439    /// \brief Compute the paths from the flow.
440    ///
441    /// This function computes arc-disjoint paths from the found minimum
442    /// cost flow, which is the union of them.
443    ///
444    /// \pre \ref init() and \ref findFlow() must be called before using
445    /// this function.
446    void findPaths() {
447      FlowMap res_flow(_graph);
448      for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
449
450      _paths.clear();
451      _paths.resize(_path_num);
452      for (int i = 0; i < _path_num; ++i) {
453        Node n = _s;
454        while (n != _t) {
455          OutArcIt e(_graph, n);
456          for ( ; res_flow[e] == 0; ++e) ;
457          n = _graph.target(e);
458          _paths[i].addBack(e);
459          res_flow[e] = 0;
460        }
461      }
462    }
463
464    /// @}
465
466    /// \name Query Functions
467    /// The results of the algorithm can be obtained using these
468    /// functions.
469    /// \n The algorithm should be executed before using them.
470
471    /// @{
472
473    /// \brief Return the total length of the found paths.
474    ///
475    /// This function returns the total length of the found paths, i.e.
476    /// the total cost of the found flow.
477    /// The complexity of the function is O(e).
478    ///
479    /// \pre \ref run() or \ref findFlow() must be called before using
480    /// this function.
481    Length totalLength() const {
482      Length c = 0;
483      for (ArcIt e(_graph); e != INVALID; ++e)
484        c += (*_flow)[e] * _length[e];
485      return c;
486    }
487
488    /// \brief Return the flow value on the given arc.
489    ///
490    /// This function returns the flow value on the given arc.
491    /// It is \c 1 if the arc is involved in one of the found arc-disjoint
492    /// paths, otherwise it is \c 0.
493    ///
494    /// \pre \ref run() or \ref findFlow() must be called before using
495    /// this function.
496    int flow(const Arc& arc) const {
497      return (*_flow)[arc];
498    }
499
500    /// \brief Return a const reference to an arc map storing the
501    /// found flow.
502    ///
503    /// This function returns a const reference to an arc map storing
504    /// the flow that is the union of the found arc-disjoint paths.
505    ///
506    /// \pre \ref run() or \ref findFlow() must be called before using
507    /// this function.
508    const FlowMap& flowMap() const {
509      return *_flow;
510    }
511
512    /// \brief Return the potential of the given node.
513    ///
514    /// This function returns the potential of the given node.
515    /// The node potentials provide the dual solution of the
516    /// underlying \ref min_cost_flow "minimum cost flow problem".
517    ///
518    /// \pre \ref run() or \ref findFlow() must be called before using
519    /// this function.
520    Length potential(const Node& node) const {
521      return (*_potential)[node];
522    }
523
524    /// \brief Return a const reference to a node map storing the
525    /// found potentials (the dual solution).
526    ///
527    /// This function returns a const reference to a node map storing
528    /// the found potentials that provide the dual solution of the
529    /// underlying \ref min_cost_flow "minimum cost flow problem".
530    ///
531    /// \pre \ref run() or \ref findFlow() must be called before using
532    /// this function.
533    const PotentialMap& potentialMap() const {
534      return *_potential;
535    }
536
537    /// \brief Return the number of the found paths.
538    ///
539    /// This function returns the number of the found paths.
540    ///
541    /// \pre \ref run() or \ref findFlow() must be called before using
542    /// this function.
543    int pathNum() const {
544      return _path_num;
545    }
546
547    /// \brief Return a const reference to the specified path.
548    ///
549    /// This function returns a const reference to the specified path.
550    ///
551    /// \param i The function returns the <tt>i</tt>-th path.
552    /// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
553    ///
554    /// \pre \ref run() or \ref findPaths() must be called before using
555    /// this function.
556    const Path& path(int i) const {
557      return _paths[i];
558    }
559
560    /// @}
561
562  }; //class Suurballe
563
564  ///@}
565
566} //namespace lemon
567
568#endif //LEMON_SUURBALLE_H
Note: See TracBrowser for help on using the repository browser.