1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2015 |
---|
6 | * EMAXA Kutato-fejleszto Kft. (EMAXA Research Ltd.) |
---|
7 | * |
---|
8 | * Permission to use, modify and distribute this software is granted |
---|
9 | * provided that this copyright notice appears in all copies. For |
---|
10 | * precise terms see the accompanying LICENSE file. |
---|
11 | * |
---|
12 | * This software is provided "AS IS" with no warranty of any kind, |
---|
13 | * express or implied, and with no claim as to its suitability for any |
---|
14 | * purpose. |
---|
15 | * |
---|
16 | */ |
---|
17 | |
---|
18 | #ifndef LEMON_VF2_H |
---|
19 | #define LEMON_VF2_H |
---|
20 | |
---|
21 | ///\ingroup graph_properties |
---|
22 | ///\file |
---|
23 | ///\brief VF2 algorithm \cite cordella2004sub. |
---|
24 | |
---|
25 | #include <lemon/core.h> |
---|
26 | #include <lemon/concepts/graph.h> |
---|
27 | #include <lemon/dfs.h> |
---|
28 | #include <lemon/bfs.h> |
---|
29 | #include <test/test_tools.h> |
---|
30 | |
---|
31 | #include <vector> |
---|
32 | #include <set> |
---|
33 | |
---|
34 | namespace lemon |
---|
35 | { |
---|
36 | namespace bits |
---|
37 | { |
---|
38 | namespace vf2 |
---|
39 | { |
---|
40 | class AlwaysEq |
---|
41 | { |
---|
42 | public: |
---|
43 | template<class T1, class T2> |
---|
44 | bool operator()(T1, T2) const |
---|
45 | { |
---|
46 | return true; |
---|
47 | } |
---|
48 | }; |
---|
49 | |
---|
50 | template<class M1, class M2> |
---|
51 | class MapEq |
---|
52 | { |
---|
53 | const M1 &_m1; |
---|
54 | const M2 &_m2; |
---|
55 | public: |
---|
56 | MapEq(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
---|
57 | bool operator()(typename M1::Key k1, typename M2::Key k2) const |
---|
58 | { |
---|
59 | return _m1[k1] == _m2[k2]; |
---|
60 | } |
---|
61 | }; |
---|
62 | |
---|
63 | template <class G> |
---|
64 | class DfsLeaveOrder : public DfsVisitor<G> |
---|
65 | { |
---|
66 | const G &_g; |
---|
67 | std::vector<typename G::Node> &_order; |
---|
68 | int i; |
---|
69 | public: |
---|
70 | DfsLeaveOrder(const G &g, std::vector<typename G::Node> &order) |
---|
71 | : i(countNodes(g)), _g(g), _order(order) |
---|
72 | {} |
---|
73 | void leave(const typename G::Node &node) |
---|
74 | { |
---|
75 | _order[--i]=node; |
---|
76 | } |
---|
77 | }; |
---|
78 | |
---|
79 | template <class G> |
---|
80 | class BfsLeaveOrder : public BfsVisitor<G> |
---|
81 | { |
---|
82 | int i; |
---|
83 | const G &_g; |
---|
84 | std::vector<typename G::Node> &_order; |
---|
85 | public: |
---|
86 | BfsLeaveOrder(const G &g, std::vector<typename G::Node> &order) |
---|
87 | : i(0), _g(g), _order(order) |
---|
88 | {} |
---|
89 | void process(const typename G::Node &node) |
---|
90 | { |
---|
91 | _order[i++]=node; |
---|
92 | } |
---|
93 | }; |
---|
94 | } |
---|
95 | } |
---|
96 | |
---|
97 | ///Graph mapping types. |
---|
98 | |
---|
99 | ///\ingroup graph_isomorphism |
---|
100 | ///The \ref Vf2 "VF2" algorithm is capable of finding different kind of |
---|
101 | ///embeddings, this enum specifies its type. |
---|
102 | /// |
---|
103 | ///See \ref graph_isomorphism for a more detailed description. |
---|
104 | enum Vf2MappingType { |
---|
105 | /// Subgraph isomorphism |
---|
106 | SUBGRAPH = 0, |
---|
107 | /// Induced subgraph isomorphism |
---|
108 | INDUCED = 1, |
---|
109 | /// Graph isomorphism |
---|
110 | |
---|
111 | /// If the two graph has the same number of nodes, than it is |
---|
112 | /// equivalent to \ref INDUCED, and if they also have the same |
---|
113 | /// number of edges, then it is also equivalent to \ref SUBGRAPH. |
---|
114 | /// |
---|
115 | /// However, using this setting is faster than the other two |
---|
116 | /// options. |
---|
117 | ISOMORPH = 2 |
---|
118 | }; |
---|
119 | |
---|
120 | ///%VF2 algorithm class. |
---|
121 | |
---|
122 | ///\ingroup graph_isomorphism This class provides an efficient |
---|
123 | ///implementation of the %VF2 algorithm \cite cordella2004sub |
---|
124 | ///for variants of the (Sub)graph Isomorphism problem. |
---|
125 | /// |
---|
126 | ///There is also a \ref vf2() "function-type interface" called \ref vf2() |
---|
127 | ///for the %VF2 algorithm, which is probably more convenient in most |
---|
128 | ///use-cases. |
---|
129 | /// |
---|
130 | ///\tparam G1 The type of the graph to be embedded. |
---|
131 | ///The default type is \ref ListDigraph. |
---|
132 | ///\tparam G2 The type of the graph g1 will be embedded into. |
---|
133 | ///The default type is \ref ListDigraph. |
---|
134 | ///\tparam M The type of the NodeMap storing the mapping. |
---|
135 | ///By default, it is G1::NodeMap<G2::Node> |
---|
136 | ///\tparam NEQ A bool-valued binary functor determinining whether a node is |
---|
137 | ///mappable to another. By default it is an always true operator. |
---|
138 | /// |
---|
139 | ///\sa vf2() |
---|
140 | #ifdef DOXYGEN |
---|
141 | template<class G1, class G2, class M, class NEQ > |
---|
142 | #else |
---|
143 | template<class G1=ListDigraph, |
---|
144 | class G2=ListDigraph, |
---|
145 | class M = typename G1::template NodeMap<G2::Node>, |
---|
146 | class NEQ = bits::vf2::AlwaysEq > |
---|
147 | #endif |
---|
148 | class Vf2 |
---|
149 | { |
---|
150 | //Current depth in the DFS tree. |
---|
151 | int _depth; |
---|
152 | //Functor with bool operator()(G1::Node,G2::Node), which returns 1 |
---|
153 | //if and only if the 2 nodes are equivalent. |
---|
154 | NEQ _nEq; |
---|
155 | |
---|
156 | typename G2::template NodeMap<int> _conn; |
---|
157 | //Current mapping. We index it by the nodes of g1, and match[v] is |
---|
158 | //a node of g2. |
---|
159 | M &_mapping; |
---|
160 | //order[i] is the node of g1, for which we find a pair if depth=i |
---|
161 | std::vector<typename G1::Node> order; |
---|
162 | //currEdgeIts[i] is an edge iterator, witch is last used in the ith |
---|
163 | //depth to find a pair for order[i]. |
---|
164 | std::vector<typename G2::IncEdgeIt> currEdgeIts; |
---|
165 | //The small graph. |
---|
166 | const G1 &_g1; |
---|
167 | //The big graph. |
---|
168 | const G2 &_g2; |
---|
169 | //lookup tables for cut the searchtree |
---|
170 | typename G1::template NodeMap<int> rNew1t,rInOut1t; |
---|
171 | |
---|
172 | Vf2MappingType _mapping_type; |
---|
173 | |
---|
174 | //cut the search tree |
---|
175 | template<Vf2MappingType MT> |
---|
176 | bool cut(const typename G1::Node n1,const typename G2::Node n2) const |
---|
177 | { |
---|
178 | int rNew2=0,rInOut2=0; |
---|
179 | for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2) |
---|
180 | { |
---|
181 | const typename G2::Node currNode=_g2.oppositeNode(n2,e2); |
---|
182 | if(_conn[currNode]>0) |
---|
183 | ++rInOut2; |
---|
184 | else if(MT!=SUBGRAPH&&_conn[currNode]==0) |
---|
185 | ++rNew2; |
---|
186 | } |
---|
187 | switch(MT) |
---|
188 | { |
---|
189 | case INDUCED: |
---|
190 | return rInOut1t[n1]<=rInOut2&&rNew1t[n1]<=rNew2; |
---|
191 | case SUBGRAPH: |
---|
192 | return rInOut1t[n1]<=rInOut2; |
---|
193 | case ISOMORPH: |
---|
194 | return rInOut1t[n1]==rInOut2&&rNew1t[n1]==rNew2; |
---|
195 | default: |
---|
196 | return false; |
---|
197 | } |
---|
198 | } |
---|
199 | |
---|
200 | template<Vf2MappingType MT> |
---|
201 | bool feas(const typename G1::Node n1,const typename G2::Node n2) |
---|
202 | { |
---|
203 | if(!_nEq(n1,n2)) |
---|
204 | return 0; |
---|
205 | |
---|
206 | for(typename G1::IncEdgeIt e1(_g1,n1); e1!=INVALID; ++e1) |
---|
207 | { |
---|
208 | const typename G1::Node currNode=_g1.oppositeNode(n1,e1); |
---|
209 | if(_mapping[currNode]!=INVALID) |
---|
210 | --_conn[_mapping[currNode]]; |
---|
211 | } |
---|
212 | bool isIso=1; |
---|
213 | for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2) |
---|
214 | { |
---|
215 | const typename G2::Node currNode=_g2.oppositeNode(n2,e2); |
---|
216 | if(_conn[currNode]<-1) |
---|
217 | ++_conn[currNode]; |
---|
218 | else if(MT!=SUBGRAPH&&_conn[currNode]==-1) |
---|
219 | { |
---|
220 | isIso=0; |
---|
221 | break; |
---|
222 | } |
---|
223 | } |
---|
224 | |
---|
225 | for(typename G1::IncEdgeIt e1(_g1,n1); e1!=INVALID; ++e1) |
---|
226 | { |
---|
227 | const typename G1::Node currNode=_g1.oppositeNode(n1,e1); |
---|
228 | if(_mapping[currNode]!=INVALID&&_conn[_mapping[currNode]]!=-1) |
---|
229 | { |
---|
230 | switch(MT) |
---|
231 | { |
---|
232 | case INDUCED: |
---|
233 | case ISOMORPH: |
---|
234 | isIso=0; |
---|
235 | break; |
---|
236 | case SUBGRAPH: |
---|
237 | if(_conn[_mapping[currNode]]<-1) |
---|
238 | isIso=0; |
---|
239 | break; |
---|
240 | } |
---|
241 | _conn[_mapping[currNode]]=-1; |
---|
242 | } |
---|
243 | } |
---|
244 | return isIso&&cut<MT>(n1,n2); |
---|
245 | } |
---|
246 | |
---|
247 | void addPair(const typename G1::Node n1,const typename G2::Node n2) |
---|
248 | { |
---|
249 | _conn[n2]=-1; |
---|
250 | _mapping.set(n1,n2); |
---|
251 | for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2) |
---|
252 | if(_conn[_g2.oppositeNode(n2,e2)]!=-1) |
---|
253 | ++_conn[_g2.oppositeNode(n2,e2)]; |
---|
254 | } |
---|
255 | |
---|
256 | void subPair(const typename G1::Node n1,const typename G2::Node n2) |
---|
257 | { |
---|
258 | _conn[n2]=0; |
---|
259 | _mapping.set(n1,INVALID); |
---|
260 | for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2) |
---|
261 | { |
---|
262 | const typename G2::Node currNode=_g2.oppositeNode(n2,e2); |
---|
263 | if(_conn[currNode]>0) |
---|
264 | --_conn[currNode]; |
---|
265 | else if(_conn[currNode]==-1) |
---|
266 | ++_conn[n2]; |
---|
267 | } |
---|
268 | } |
---|
269 | |
---|
270 | void setOrder()//we will find pairs for the nodes of g1 in this order |
---|
271 | { |
---|
272 | // bits::vf2::DfsLeaveOrder<G1> v(_g1,order); |
---|
273 | // DfsVisit<G1,bits::vf2::DfsLeaveOrder<G1> >dfs(_g1, v); |
---|
274 | // dfs.run(); |
---|
275 | |
---|
276 | //it is more efficient in practice than DFS |
---|
277 | bits::vf2::BfsLeaveOrder<G1> v(_g1,order); |
---|
278 | BfsVisit<G1,bits::vf2::BfsLeaveOrder<G1> >bfs(_g1, v); |
---|
279 | bfs.run(); |
---|
280 | } |
---|
281 | |
---|
282 | template<Vf2MappingType MT> |
---|
283 | bool extMatch() |
---|
284 | { |
---|
285 | while(_depth>=0) |
---|
286 | { |
---|
287 | //there are not nodes in g1, which has not pair in g2. |
---|
288 | if(_depth==static_cast<int>(order.size())) |
---|
289 | { |
---|
290 | --_depth; |
---|
291 | return true; |
---|
292 | } |
---|
293 | //the node of g2, which neighbours are the candidates for |
---|
294 | //the pair of order[_depth] |
---|
295 | typename G2::Node currPNode; |
---|
296 | if(currEdgeIts[_depth]==INVALID) |
---|
297 | { |
---|
298 | typename G1::IncEdgeIt fstMatchedE(_g1,order[_depth]); |
---|
299 | //if _mapping[order[_depth]]!=INVALID, we dont use |
---|
300 | //fstMatchedE |
---|
301 | if(_mapping[order[_depth]]==INVALID) |
---|
302 | for(; fstMatchedE!=INVALID && |
---|
303 | _mapping[_g1.oppositeNode(order[_depth], |
---|
304 | fstMatchedE)]==INVALID; |
---|
305 | ++fstMatchedE) ; //find fstMatchedE |
---|
306 | if(fstMatchedE==INVALID||_mapping[order[_depth]]!=INVALID) |
---|
307 | { |
---|
308 | //We did not find an covered neighbour, this means |
---|
309 | //the graph is not connected(or _depth==0). Every |
---|
310 | //uncovered(and there are some other properties due |
---|
311 | //to the spec. problem types) node of g2 is |
---|
312 | //candidate. We can read the iterator of the last |
---|
313 | //tryed node from the match if it is not the first |
---|
314 | //try(match[order[_depth]]!=INVALID) |
---|
315 | typename G2::NodeIt n2(_g2); |
---|
316 | //if its not the first try |
---|
317 | if(_mapping[order[_depth]]!=INVALID) |
---|
318 | { |
---|
319 | n2=++typename G2::NodeIt(_g2,_mapping[order[_depth]]); |
---|
320 | subPair(order[_depth],_mapping[order[_depth]]); |
---|
321 | } |
---|
322 | for(; n2!=INVALID; ++n2) |
---|
323 | if(MT!=SUBGRAPH&&_conn[n2]==0) |
---|
324 | { |
---|
325 | if(feas<MT>(order[_depth],n2)) |
---|
326 | break; |
---|
327 | } |
---|
328 | else if(MT==SUBGRAPH&&_conn[n2]>=0) |
---|
329 | if(feas<MT>(order[_depth],n2)) |
---|
330 | break; |
---|
331 | // n2 is the next candidate |
---|
332 | if(n2!=INVALID) |
---|
333 | { |
---|
334 | addPair(order[_depth],n2); |
---|
335 | ++_depth; |
---|
336 | } |
---|
337 | else // there is no more candidate |
---|
338 | --_depth; |
---|
339 | continue; |
---|
340 | } |
---|
341 | else |
---|
342 | { |
---|
343 | currPNode=_mapping[_g1.oppositeNode(order[_depth], |
---|
344 | fstMatchedE)]; |
---|
345 | currEdgeIts[_depth]=typename G2::IncEdgeIt(_g2,currPNode); |
---|
346 | } |
---|
347 | } |
---|
348 | else |
---|
349 | { |
---|
350 | currPNode=_g2.oppositeNode(_mapping[order[_depth]], |
---|
351 | currEdgeIts[_depth]); |
---|
352 | subPair(order[_depth],_mapping[order[_depth]]); |
---|
353 | ++currEdgeIts[_depth]; |
---|
354 | } |
---|
355 | for(; currEdgeIts[_depth]!=INVALID; ++currEdgeIts[_depth]) |
---|
356 | { |
---|
357 | const typename G2::Node currNode = |
---|
358 | _g2.oppositeNode(currPNode, currEdgeIts[_depth]); |
---|
359 | //if currNode is uncovered |
---|
360 | if(_conn[currNode]>0&&feas<MT>(order[_depth],currNode)) |
---|
361 | { |
---|
362 | addPair(order[_depth],currNode); |
---|
363 | break; |
---|
364 | } |
---|
365 | } |
---|
366 | currEdgeIts[_depth]==INVALID?--_depth:++_depth; |
---|
367 | } |
---|
368 | return false; |
---|
369 | } |
---|
370 | |
---|
371 | //calc. the lookup table for cut the searchtree |
---|
372 | void setRNew1tRInOut1t() |
---|
373 | { |
---|
374 | typename G1::template NodeMap<int> tmp(_g1,0); |
---|
375 | for(unsigned int i=0; i<order.size(); ++i) |
---|
376 | { |
---|
377 | tmp[order[i]]=-1; |
---|
378 | for(typename G1::IncEdgeIt e1(_g1,order[i]); e1!=INVALID; ++e1) |
---|
379 | { |
---|
380 | const typename G1::Node currNode=_g1.oppositeNode(order[i],e1); |
---|
381 | if(tmp[currNode]>0) |
---|
382 | ++rInOut1t[order[i]]; |
---|
383 | else if(tmp[currNode]==0) |
---|
384 | ++rNew1t[order[i]]; |
---|
385 | } |
---|
386 | for(typename G1::IncEdgeIt e1(_g1,order[i]); e1!=INVALID; ++e1) |
---|
387 | { |
---|
388 | const typename G1::Node currNode=_g1.oppositeNode(order[i],e1); |
---|
389 | if(tmp[currNode]!=-1) |
---|
390 | ++tmp[currNode]; |
---|
391 | } |
---|
392 | } |
---|
393 | } |
---|
394 | public: |
---|
395 | ///Constructor |
---|
396 | |
---|
397 | ///Constructor |
---|
398 | |
---|
399 | ///\param g1 The graph to be embedded into \e g2. |
---|
400 | ///\param g2 The graph \e g1 will be embedded into. |
---|
401 | ///\param m \ref concepts::ReadWriteMap "read-write" NodeMap |
---|
402 | ///storing the found mapping. |
---|
403 | ///\param neq A bool-valued binary functor determinining whether a node is |
---|
404 | ///mappable to another. By default it is an always true operator. |
---|
405 | Vf2(const G1 &g1, const G2 &g2,M &m, const NEQ &neq = NEQ() ) : |
---|
406 | _nEq(neq), _conn(g2,0), _mapping(m), order(countNodes(g1)), |
---|
407 | currEdgeIts(countNodes(g1),INVALID), _g1(g1), _g2(g2), rNew1t(g1,0), |
---|
408 | rInOut1t(g1,0), _mapping_type(SUBGRAPH) |
---|
409 | { |
---|
410 | _depth=0; |
---|
411 | setOrder(); |
---|
412 | setRNew1tRInOut1t(); |
---|
413 | for(typename G1::NodeIt n(g1);n!=INVALID;++n) |
---|
414 | m[n]=INVALID; |
---|
415 | } |
---|
416 | |
---|
417 | ///Returns the current mapping type |
---|
418 | |
---|
419 | ///Returns the current mapping type |
---|
420 | /// |
---|
421 | Vf2MappingType mappingType() const { return _mapping_type; } |
---|
422 | ///Sets mapping type |
---|
423 | |
---|
424 | ///Sets mapping type. |
---|
425 | /// |
---|
426 | ///The mapping type is set to \ref SUBGRAPH by default. |
---|
427 | /// |
---|
428 | ///\sa See \ref Vf2MappingType for the possible values. |
---|
429 | void mappingType(Vf2MappingType m_type) { _mapping_type = m_type; } |
---|
430 | |
---|
431 | ///Finds a mapping |
---|
432 | |
---|
433 | ///It finds a mapping between from g1 into g2 according to the mapping |
---|
434 | ///type set by \ref mappingType(Vf2MappingType) "mappingType()". |
---|
435 | /// |
---|
436 | ///By subsequent calls, it returns all possible mappings one-by-one. |
---|
437 | /// |
---|
438 | ///\retval true if a mapping is found. |
---|
439 | ///\retval false if there is no (more) mapping. |
---|
440 | bool find() |
---|
441 | { |
---|
442 | switch(_mapping_type) |
---|
443 | { |
---|
444 | case SUBGRAPH: |
---|
445 | return extMatch<SUBGRAPH>(); |
---|
446 | case INDUCED: |
---|
447 | return extMatch<INDUCED>(); |
---|
448 | case ISOMORPH: |
---|
449 | return extMatch<ISOMORPH>(); |
---|
450 | default: |
---|
451 | return false; |
---|
452 | } |
---|
453 | } |
---|
454 | }; |
---|
455 | |
---|
456 | template<class G1, class G2> |
---|
457 | class Vf2WizardBase |
---|
458 | { |
---|
459 | protected: |
---|
460 | typedef G1 Graph1; |
---|
461 | typedef G2 Graph2; |
---|
462 | |
---|
463 | const G1 &_g1; |
---|
464 | const G2 &_g2; |
---|
465 | |
---|
466 | Vf2MappingType _mapping_type; |
---|
467 | |
---|
468 | typedef typename G1::template NodeMap<typename G2::Node> Mapping; |
---|
469 | bool _local_mapping; |
---|
470 | void *_mapping; |
---|
471 | void createMapping() |
---|
472 | { |
---|
473 | _mapping = new Mapping(_g1); |
---|
474 | } |
---|
475 | |
---|
476 | typedef bits::vf2::AlwaysEq NodeEq; |
---|
477 | NodeEq _node_eq; |
---|
478 | |
---|
479 | Vf2WizardBase(const G1 &g1,const G2 &g2) |
---|
480 | : _g1(g1), _g2(g2), _mapping_type(SUBGRAPH), _local_mapping(true) {} |
---|
481 | }; |
---|
482 | |
---|
483 | /// Auxiliary class for the function-type interface of %VF2 algorithm. |
---|
484 | |
---|
485 | /// This auxiliary class implements the named parameters of |
---|
486 | /// \ref vf2() "function-type interface" of \ref Vf2 algorithm. |
---|
487 | /// |
---|
488 | /// \warning This class should only be used through the function \ref vf2(). |
---|
489 | /// |
---|
490 | /// \tparam TR The traits class that defines various types used by the |
---|
491 | /// algorithm. |
---|
492 | template<class TR> |
---|
493 | class Vf2Wizard : public TR |
---|
494 | { |
---|
495 | typedef TR Base; |
---|
496 | typedef typename TR::Graph1 Graph1; |
---|
497 | typedef typename TR::Graph2 Graph2; |
---|
498 | |
---|
499 | typedef typename TR::Mapping Mapping; |
---|
500 | typedef typename TR::NodeEq NodeEq; |
---|
501 | |
---|
502 | using TR::_g1; |
---|
503 | using TR::_g2; |
---|
504 | using TR::_mapping_type; |
---|
505 | using TR::_mapping; |
---|
506 | using TR::_node_eq; |
---|
507 | |
---|
508 | public: |
---|
509 | ///Constructor |
---|
510 | Vf2Wizard(const Graph1 &g1,const Graph2 &g2) : Base(g1,g2) {} |
---|
511 | |
---|
512 | ///Copy constructor |
---|
513 | Vf2Wizard(const Base &b) : Base(b) {} |
---|
514 | |
---|
515 | |
---|
516 | template<class T> |
---|
517 | struct SetMappingBase : public Base { |
---|
518 | typedef T Mapping; |
---|
519 | SetMappingBase(const Base &b) : Base(b) {} |
---|
520 | }; |
---|
521 | |
---|
522 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
523 | ///the mapping. |
---|
524 | /// |
---|
525 | ///\ref named-templ-param "Named parameter" function for setting |
---|
526 | ///the map that stores the found embedding. |
---|
527 | template<class T> |
---|
528 | Vf2Wizard< SetMappingBase<T> > mapping(const T &t) |
---|
529 | { |
---|
530 | Base::_mapping=reinterpret_cast<void*>(const_cast<T*>(&t)); |
---|
531 | Base::_local_mapping = false; |
---|
532 | return Vf2Wizard<SetMappingBase<T> >(*this); |
---|
533 | } |
---|
534 | |
---|
535 | template<class NE> |
---|
536 | struct SetNodeEqBase : public Base { |
---|
537 | typedef NE NodeEq; |
---|
538 | NodeEq _node_eq; |
---|
539 | SetNodeEqBase(const Base &b, const NE &node_eq) |
---|
540 | : Base(b), _node_eq(node_eq) {} |
---|
541 | }; |
---|
542 | |
---|
543 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
544 | ///the node equivalence relation. |
---|
545 | /// |
---|
546 | ///\ref named-templ-param "Named parameter" function for setting |
---|
547 | ///the equivalence relation between the nodes. |
---|
548 | /// |
---|
549 | ///\param node_eq A bool-valued binary functor determinining |
---|
550 | ///whether a node is mappable to another. By default it is an |
---|
551 | ///always true operator. |
---|
552 | template<class T> |
---|
553 | Vf2Wizard< SetNodeEqBase<T> > nodeEq(const T &node_eq) |
---|
554 | { |
---|
555 | return Vf2Wizard<SetNodeEqBase<T> >(SetNodeEqBase<T>(*this,node_eq)); |
---|
556 | } |
---|
557 | |
---|
558 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
559 | ///the node labels. |
---|
560 | /// |
---|
561 | ///\ref named-templ-param "Named parameter" function for setting |
---|
562 | ///the node labels defining equivalence relation between them. |
---|
563 | /// |
---|
564 | ///\param m1 It is arbitrary \ref concepts::ReadMap "readable node map" |
---|
565 | ///of g1. |
---|
566 | ///\param m2 It is arbitrary \ref concepts::ReadMap "readable node map" |
---|
567 | ///of g2. |
---|
568 | /// |
---|
569 | ///The value type of these maps must be equal comparable. |
---|
570 | template<class M1, class M2> |
---|
571 | Vf2Wizard< SetNodeEqBase<bits::vf2::MapEq<M1,M2> > > |
---|
572 | nodeLabels(const M1 &m1,const M2 &m2) |
---|
573 | { |
---|
574 | return nodeEq(bits::vf2::MapEq<M1,M2>(m1,m2)); |
---|
575 | } |
---|
576 | |
---|
577 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
578 | ///the mapping type. |
---|
579 | /// |
---|
580 | ///\ref named-templ-param "Named parameter" for setting |
---|
581 | ///the mapping type. |
---|
582 | /// |
---|
583 | ///The mapping type is set to \ref SUBGRAPH by default. |
---|
584 | /// |
---|
585 | ///\sa See \ref Vf2MappingType for the possible values. |
---|
586 | Vf2Wizard<Base> &mappingType(Vf2MappingType m_type) |
---|
587 | { |
---|
588 | _mapping_type = m_type; |
---|
589 | return *this; |
---|
590 | } |
---|
591 | |
---|
592 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
593 | ///the mapping type to \ref INDUCED. |
---|
594 | /// |
---|
595 | ///\ref named-templ-param "Named parameter" for setting |
---|
596 | ///the mapping type to \ref INDUCED. |
---|
597 | Vf2Wizard<Base> &induced() |
---|
598 | { |
---|
599 | _mapping_type = INDUCED; |
---|
600 | return *this; |
---|
601 | } |
---|
602 | |
---|
603 | ///\brief \ref named-templ-param "Named parameter" for setting |
---|
604 | ///the mapping type to \ref ISOMORPH. |
---|
605 | /// |
---|
606 | ///\ref named-templ-param "Named parameter" for setting |
---|
607 | ///the mapping type to \ref ISOMORPH. |
---|
608 | Vf2Wizard<Base> &iso() |
---|
609 | { |
---|
610 | _mapping_type = ISOMORPH; |
---|
611 | return *this; |
---|
612 | } |
---|
613 | |
---|
614 | ///Runs VF2 algorithm. |
---|
615 | |
---|
616 | ///This method runs VF2 algorithm. |
---|
617 | /// |
---|
618 | ///\retval true if a mapping is found. |
---|
619 | ///\retval false if there is no (more) mapping. |
---|
620 | bool run() |
---|
621 | { |
---|
622 | if(Base::_local_mapping) |
---|
623 | Base::createMapping(); |
---|
624 | |
---|
625 | Vf2<Graph1, Graph2, Mapping, NodeEq > |
---|
626 | alg(_g1, _g2, *reinterpret_cast<Mapping*>(_mapping), _node_eq); |
---|
627 | |
---|
628 | alg.mappingType(_mapping_type); |
---|
629 | |
---|
630 | bool ret = alg.find(); |
---|
631 | |
---|
632 | if(Base::_local_mapping) |
---|
633 | delete reinterpret_cast<Mapping*>(_mapping); |
---|
634 | |
---|
635 | return ret; |
---|
636 | } |
---|
637 | }; |
---|
638 | |
---|
639 | ///Function-type interface for VF2 algorithm. |
---|
640 | |
---|
641 | /// \ingroup graph_isomorphism |
---|
642 | ///Function-type interface for VF2 algorithm \cite cordella2004sub. |
---|
643 | /// |
---|
644 | ///This function has several \ref named-func-param "named parameters" |
---|
645 | ///declared as the members of class \ref Vf2Wizard. |
---|
646 | ///The following examples show how to use these parameters. |
---|
647 | ///\code |
---|
648 | /// // Find an embedding of graph g into graph h |
---|
649 | /// ListGraph::NodeMap<ListGraph::Node> m(g); |
---|
650 | /// vf2(g,h).mapping(m).run(); |
---|
651 | /// |
---|
652 | /// // Check whether graphs g and h are isomorphic |
---|
653 | /// bool is_iso = vf2(g,h).iso().run(); |
---|
654 | ///\endcode |
---|
655 | ///\warning Don't forget to put the \ref Vf2Wizard::run() "run()" |
---|
656 | ///to the end of the expression. |
---|
657 | ///\sa Vf2Wizard |
---|
658 | ///\sa Vf2 |
---|
659 | template<class G1, class G2> |
---|
660 | Vf2Wizard<Vf2WizardBase<G1,G2> > vf2(const G1 &g1, const G2 &g2) |
---|
661 | { |
---|
662 | return Vf2Wizard<Vf2WizardBase<G1,G2> >(g1,g2); |
---|
663 | } |
---|
664 | |
---|
665 | } |
---|
666 | |
---|
667 | #endif |
---|