COIN-OR::LEMON - Graph Library

source: lemon/lemon/vf2pp.h @ 1407:76349d8212d3

Last change on this file since 1407:76349d8212d3 was 1407:76349d8212d3, checked in by Peter Kovacs <kpeter@…>, 7 years ago

Improve and unify comments and API docs of VF2 algorithms (#597)

File size: 28.8 KB
Line 
1/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 *
3 * This file is a part of LEMON, a generic C++ optimization library.
4 *
5 * Copyright (C) 2015-2017
6 * EMAXA Kutato-fejleszto Kft. (EMAXA Research Ltd.)
7 *
8 * Permission to use, modify and distribute this software is granted
9 * provided that this copyright notice appears in all copies. For
10 * precise terms see the accompanying LICENSE file.
11 *
12 * This software is provided "AS IS" with no warranty of any kind,
13 * express or implied, and with no claim as to its suitability for any
14 * purpose.
15 *
16 */
17
18#ifndef LEMON_VF2PP_H
19#define LEMON_VF2PP_H
20
21///\ingroup graph_properties
22///\file
23///\brief VF2 Plus Plus algorithm.
24
25#include <lemon/core.h>
26#include <lemon/concepts/graph.h>
27#include <lemon/dfs.h>
28#include <lemon/bfs.h>
29#include <lemon/bits/vf2_internals.h>
30
31
32#include <vector>
33#include <algorithm>
34#include <utility>
35
36
37namespace lemon {
38  namespace bits {
39    namespace vf2pp {
40
41      template <class G>
42      class DfsLeaveOrder : public DfsVisitor<G> {
43        int i;
44        const G &_g;
45        std::vector<typename G::Node> &_order;
46      public:
47        DfsLeaveOrder(const G &g, std::vector<typename G::Node> &order)
48          : i(countNodes(g)), _g(g), _order(order) {
49        }
50        void leave(const typename G::Node &node) {
51          _order[--i]=node;
52        }
53      };
54
55      template <class G>
56      class BfsLeaveOrder : public BfsVisitor<G> {
57        int i;
58        const G &_g;
59        std::vector<typename G::Node> &_order;
60      public:
61        BfsLeaveOrder(const G &g, std::vector<typename G::Node> &order) { }
62        void process(const typename G::Node &node) {
63          _order[i++]=node;
64        }
65      };
66    }
67  }
68
69
70  ///%VF2 Plus Plus algorithm class.
71
72  ///\ingroup graph_isomorphism This class provides an efficient
73  ///implementation of the %VF2 Plus Plus algorithm
74  ///for variants of the (Sub)graph Isomorphism problem.
75  ///
76  ///There is also a \ref vf2pp() "function-type interface" called
77  ///\ref vf2pp() for the %VF2 Plus Plus algorithm, which is probably
78  ///more convenient in most use cases.
79  ///
80  ///\tparam G1 The type of the graph to be embedded.
81  ///The default type is \ref ListDigraph.
82  ///\tparam G2 The type of the graph g1 will be embedded into.
83  ///The default type is \ref ListDigraph.
84  ///\tparam M The type of the NodeMap storing the mapping.
85  ///By default, it is G1::NodeMap<G2::Node>
86  ///\tparam M1 The type of the NodeMap storing the integer node labels of G1.
87  ///The labels must be the numbers {0,1,2,..,K-1}, where K is the number of
88  ///different labels. By default, it is G1::NodeMap<int>.
89  ///\tparam M2 The type of the NodeMap storing the integer node labels of G2.
90  ///The labels must be the numbers {0,1,2,..,K-1}, where K is the number of
91  ///different labels. By default, it is G2::NodeMap<int>.
92  ///
93  ///\sa vf2pp()
94#ifdef DOXYGEN
95  template<class G1, class G2, class M, class M1, class M2 >
96#else
97  template<class G1=ListDigraph,
98           class G2=ListDigraph,
99           class M = typename G1::template NodeMap<G2::Node>,
100           class M1 = typename G1::template NodeMap<int>,
101           class M2 = typename G2::template NodeMap<int> >
102#endif
103  class Vf2pp {
104    //Current depth in the search tree.
105    int _depth;
106
107    //_conn[v2] = number of covered neighbours of v2
108    typename G2::template NodeMap<int> _conn;
109
110    //The current mapping. _mapping[v1]=v2 iff v1 has been mapped to v2,
111    //where v1 is a node of G1 and v2 is a node of G2
112    M &_mapping;
113
114    //order[i] is a node of g1 for which a pair is searched if depth=i
115    std::vector<typename G1::Node> order;
116
117    //currEdgeIts[i] is the last used edge iterator in the i-th
118    //depth to find a pair for node order[i]
119    std::vector<typename G2::IncEdgeIt> currEdgeIts;
120 
121    //The graph to be embedded
122    const G1 &_g1;
123
124    //The graph into which g1 is to be embedded
125    const G2 &_g2;
126
127    //rNewLabels1[v] is a pair of form
128    //(label; num. of uncov. nodes with such label and no covered neighbours)
129    typename G1::template NodeMap<std::vector<std::pair<int,int> > >
130    rNewLabels1;
131
132    //rInOutLabels1[v] is the number of covered neighbours of v for each label
133    //in form (label,number of such labels)
134    typename G1::template NodeMap<std::vector<std::pair<int,int> > >
135    rInOutLabels1;
136
137    //_intLabels1[v]==i means that node v has label i in _g1
138    //(i is in {0,1,2,..,K-1}, where K is the number of diff. labels)
139    M1 &_intLabels1;
140
141    //_intLabels2[v]==i means that node v has label i in _g2
142    //(i is in {0,1,2,..,K-1}, where K is the number of diff. labels)
143    M2 &_intLabels2;
144
145    //largest label
146    const int maxLabel;
147
148    //lookup tables for manipulating with label class cardinalities
149    //(after use they have to be reset to 0..0)
150    std::vector<int> labelTmp1,labelTmp2;
151
152    MappingType _mapping_type;
153
154    //indicates whether the mapping or the labels must be deleted in the destructor
155    bool _deallocMappingAfterUse,_deallocLabelsAfterUse;
156
157
158    //improved cutting function
159    template<MappingType MT>
160    bool cutByLabels(const typename G1::Node n1,const typename G2::Node n2) {
161      for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2) {
162        const typename G2::Node currNode=_g2.oppositeNode(n2,e2);
163        if(_conn[currNode]>0)
164          --labelTmp1[_intLabels2[currNode]];
165        else if(MT!=SUBGRAPH&&_conn[currNode]==0)
166          --labelTmp2[_intLabels2[currNode]];
167      }
168
169      bool ret=1;
170      if(ret) {
171        for(unsigned int i = 0; i < rInOutLabels1[n1].size(); ++i)
172          labelTmp1[rInOutLabels1[n1][i].first]+=rInOutLabels1[n1][i].second;
173
174        if(MT!=SUBGRAPH)
175          for(unsigned int i = 0; i < rNewLabels1[n1].size(); ++i)
176            labelTmp2[rNewLabels1[n1][i].first]+=rNewLabels1[n1][i].second;
177
178        switch(MT) {
179        case INDUCED:
180          for(unsigned int i = 0; i < rInOutLabels1[n1].size(); ++i)
181            if(labelTmp1[rInOutLabels1[n1][i].first]>0) {
182              ret=0;
183              break;
184            }
185          if(ret)
186            for(unsigned int i = 0; i < rNewLabels1[n1].size(); ++i)
187              if(labelTmp2[rNewLabels1[n1][i].first]>0) {
188                ret=0;
189                break;
190              }
191          break;
192        case SUBGRAPH:
193          for(unsigned int i = 0; i < rInOutLabels1[n1].size(); ++i)
194            if(labelTmp1[rInOutLabels1[n1][i].first]>0) {
195              ret=0;
196              break;
197            }
198          break;
199        case ISOMORPH:
200          for(unsigned int i = 0; i < rInOutLabels1[n1].size(); ++i)
201            if(labelTmp1[rInOutLabels1[n1][i].first]!=0) {
202              ret=0;
203              break;
204            }
205          if(ret)
206            for(unsigned int i = 0; i < rNewLabels1[n1].size(); ++i)
207              if(labelTmp2[rNewLabels1[n1][i].first]!=0) {
208                ret=0;
209                break;
210              }
211          break;
212        default:
213          return false;
214        }
215        for(unsigned int i = 0; i < rInOutLabels1[n1].size(); ++i)
216          labelTmp1[rInOutLabels1[n1][i].first]=0;
217
218        if(MT!=SUBGRAPH)
219          for(unsigned int i = 0; i < rNewLabels1[n1].size(); ++i)
220            labelTmp2[rNewLabels1[n1][i].first]=0;
221      }
222
223      for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2) {
224        const typename G2::Node currNode=_g2.oppositeNode(n2,e2);
225        labelTmp1[_intLabels2[currNode]]=0;
226        if(MT!=SUBGRAPH&&_conn[currNode]==0)
227          labelTmp2[_intLabels2[currNode]]=0;
228      }
229
230      return ret;
231    }
232
233
234    //try to exclude the matching of n1 and n2
235    template<MappingType MT>
236    bool feas(const typename G1::Node n1,const typename G2::Node n2) {
237      if(_intLabels1[n1]!=_intLabels2[n2])
238        return 0;
239
240      for(typename G1::IncEdgeIt e1(_g1,n1); e1!=INVALID; ++e1) {
241        const typename G1::Node& currNode=_g1.oppositeNode(n1,e1);
242        if(_mapping[currNode]!=INVALID)
243          --_conn[_mapping[currNode]];
244      }
245
246      bool isIso=1;
247      for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2) {
248        int& connCurrNode = _conn[_g2.oppositeNode(n2,e2)];
249        if(connCurrNode<-1)
250          ++connCurrNode;
251        else if(MT!=SUBGRAPH&&connCurrNode==-1) {
252          isIso=0;
253          break;
254        }
255      }
256
257      if(isIso)
258        for(typename G1::IncEdgeIt e1(_g1,n1); e1!=INVALID; ++e1) {
259          const typename G2::Node& currNodePair =
260            _mapping[_g1.oppositeNode(n1,e1)];
261          int& connCurrNodePair=_conn[currNodePair];
262          if(currNodePair!=INVALID&&connCurrNodePair!=-1) {
263            switch(MT){
264            case INDUCED:
265            case ISOMORPH:
266              isIso=0;
267              break;
268            case SUBGRAPH:
269              if(connCurrNodePair<-1)
270                isIso=0;
271              break;
272            }
273            connCurrNodePair=-1;
274          }
275        }
276      else
277        for(typename G1::IncEdgeIt e1(_g1,n1); e1!=INVALID; ++e1) {
278          const typename G2::Node currNode=_mapping[_g1.oppositeNode(n1,e1)];
279          if(currNode!=INVALID/*&&_conn[currNode]!=-1*/)
280            _conn[currNode]=-1;
281        }
282
283      return isIso&&cutByLabels<MT>(n1,n2);
284    }
285
286    //maps n1 to n2
287    void addPair(const typename G1::Node n1,const typename G2::Node n2) {
288      _conn[n2]=-1;
289      _mapping.set(n1,n2);
290      for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2) {
291        int& currConn = _conn[_g2.oppositeNode(n2,e2)];
292        if(currConn!=-1)
293          ++currConn;
294      }
295    }
296
297    //removes mapping of n1 to n2
298    void subPair(const typename G1::Node n1,const typename G2::Node n2) {
299      _conn[n2]=0;
300      _mapping.set(n1,INVALID);
301      for(typename G2::IncEdgeIt e2(_g2,n2); e2!=INVALID; ++e2){
302        int& currConn = _conn[_g2.oppositeNode(n2,e2)];
303        if(currConn>0)
304          --currConn;
305        else if(currConn==-1)
306          ++_conn[n2];
307      }
308    }
309
310    void processBFSLevel(typename G1::Node source,unsigned int& orderIndex,
311                         typename G1::template NodeMap<int>& dm1,
312                         typename G1::template NodeMap<bool>& added) {
313      order[orderIndex]=source;
314      added[source]=1;
315
316      unsigned int endPosOfLevel=orderIndex,
317        startPosOfLevel=orderIndex,
318        lastAdded=orderIndex;
319
320      typename G1::template NodeMap<int> currConn(_g1,0);
321
322      while(orderIndex<=lastAdded){
323        typename G1::Node currNode = order[orderIndex];
324        for(typename G1::IncEdgeIt e(_g1,currNode); e!=INVALID; ++e) {
325          typename G1::Node n = _g1.oppositeNode(currNode,e);
326          if(!added[n]) {
327            order[++lastAdded]=n;
328            added[n]=1;
329          }
330        }
331        if(orderIndex>endPosOfLevel){
332          for(unsigned int j = startPosOfLevel; j <= endPosOfLevel; ++j) {
333            int minInd=j;
334            for(unsigned int i = j+1; i <= endPosOfLevel; ++i)
335              if(currConn[order[i]]>currConn[order[minInd]]||
336                 (currConn[order[i]]==currConn[order[minInd]]&&
337                  (dm1[order[i]]>dm1[order[minInd]]||
338                   (dm1[order[i]]==dm1[order[minInd]]&&
339                    labelTmp1[_intLabels1[order[minInd]]]>
340                    labelTmp1[_intLabels1[order[i]]]))))
341                minInd=i;
342
343            --labelTmp1[_intLabels1[order[minInd]]];
344            for(typename G1::IncEdgeIt e(_g1,order[minInd]); e!=INVALID; ++e)
345              ++currConn[_g1.oppositeNode(order[minInd],e)];
346            std::swap(order[j],order[minInd]);
347          }
348          startPosOfLevel=endPosOfLevel+1;
349          endPosOfLevel=lastAdded;
350        }
351        ++orderIndex;
352      }
353    }
354
355
356    //we will find pairs for the nodes of g1 in this order
357    void setOrder(){
358      for(typename G2::NodeIt n2(_g2); n2!=INVALID; ++n2)
359        ++labelTmp1[_intLabels2[n2]];
360
361      typename G1::template NodeMap<int> dm1(_g1,0);
362      for(typename G1::EdgeIt e(_g1); e!=INVALID; ++e) {
363        ++dm1[_g1.u(e)];
364        ++dm1[_g1.v(e)];
365      }
366
367      typename G1::template NodeMap<bool> added(_g1,0);
368      unsigned int orderIndex=0;
369
370      for(typename G1::NodeIt n(_g1); n!=INVALID;) {
371        if(!added[n]){
372          typename G1::Node minNode = n;
373          for(typename G1::NodeIt n1(_g1,minNode); n1!=INVALID; ++n1)
374            if(!added[n1] &&
375               (labelTmp1[_intLabels1[minNode]]>
376                labelTmp1[_intLabels1[n1]]||(dm1[minNode]<dm1[n1]&&
377                                             labelTmp1[_intLabels1[minNode]]==
378                                             labelTmp1[_intLabels1[n1]])))
379              minNode=n1;
380          processBFSLevel(minNode,orderIndex,dm1,added);
381        }
382        else
383          ++n;
384      }
385      for(unsigned int i = 0; i < labelTmp1.size(); ++i)
386        labelTmp1[i]=0;
387    }
388
389
390    template<MappingType MT>
391    bool extMatch(){
392      while(_depth>=0) {
393        if(_depth==static_cast<int>(order.size())) {
394          //all nodes of g1 are mapped to nodes of g2
395          --_depth;
396          return true;
397        }
398        typename G1::Node& nodeOfDepth = order[_depth];
399        const typename G2::Node& pairOfNodeOfDepth = _mapping[nodeOfDepth];
400        typename G2::IncEdgeIt &edgeItOfDepth = currEdgeIts[_depth];
401        //the node of g2 whose neighbours are the candidates for
402        //the pair of order[_depth]
403        typename G2::Node currPNode;
404        if(edgeItOfDepth==INVALID){
405          typename G1::IncEdgeIt fstMatchedE(_g1,nodeOfDepth);
406          //if _mapping[order[_depth]]!=INVALID, we don't need fstMatchedE
407          if(pairOfNodeOfDepth==INVALID) {
408            for(; fstMatchedE!=INVALID &&
409                  _mapping[_g1.oppositeNode(nodeOfDepth,
410                                            fstMatchedE)]==INVALID;
411                ++fstMatchedE); //find fstMatchedE, it could be preprocessed
412          }
413          if(fstMatchedE==INVALID||pairOfNodeOfDepth!=INVALID) {
414            //We found no covered neighbours, this means that
415            //the graph is not connected (or _depth==0). Each
416            //uncovered (and there are some other properties due
417            //to the spec. problem types) node of g2 is
418            //candidate. We can read the iterator of the last
419            //tried node from the match if it is not the first
420            //try (match[nodeOfDepth]!=INVALID)
421            typename G2::NodeIt n2(_g2);
422            //if it's not the first try
423            if(pairOfNodeOfDepth!=INVALID) {
424              n2=++typename G2::NodeIt(_g2,pairOfNodeOfDepth);
425              subPair(nodeOfDepth,pairOfNodeOfDepth);
426            }
427            for(; n2!=INVALID; ++n2)
428              if(MT!=SUBGRAPH) {
429                if(_conn[n2]==0&&feas<MT>(nodeOfDepth,n2))
430                  break;
431              }
432              else if(_conn[n2]>=0&&feas<MT>(nodeOfDepth,n2))
433                break;
434            // n2 is the next candidate
435            if(n2!=INVALID) {
436              addPair(nodeOfDepth,n2);
437              ++_depth;
438            }
439            else // there are no more candidates
440              --_depth;
441            continue;
442          }
443          else {
444            currPNode=_mapping[_g1.oppositeNode(nodeOfDepth,
445                                                fstMatchedE)];
446            edgeItOfDepth=typename G2::IncEdgeIt(_g2,currPNode);
447          }
448        }
449        else {
450          currPNode=_g2.oppositeNode(pairOfNodeOfDepth,
451                                     edgeItOfDepth);
452          subPair(nodeOfDepth,pairOfNodeOfDepth);
453          ++edgeItOfDepth;
454        }
455        for(; edgeItOfDepth!=INVALID; ++edgeItOfDepth) {
456          const typename G2::Node currNode =
457            _g2.oppositeNode(currPNode, edgeItOfDepth);
458          if(_conn[currNode]>0&&feas<MT>(nodeOfDepth,currNode)) {
459            addPair(nodeOfDepth,currNode);
460            break;
461          }
462        }
463        edgeItOfDepth==INVALID?--_depth:++_depth;
464      }
465      return false;
466    }
467
468    //calculate the lookup table for cutting the search tree
469    void setRNew1tRInOut1t(){
470      typename G1::template NodeMap<int> tmp(_g1,0);
471      for(unsigned int i=0; i<order.size(); ++i) {
472        tmp[order[i]]=-1;
473        for(typename G1::IncEdgeIt e1(_g1,order[i]); e1!=INVALID; ++e1) {
474          const typename G1::Node currNode=_g1.oppositeNode(order[i],e1);
475          if(tmp[currNode]>0)
476            ++labelTmp1[_intLabels1[currNode]];
477          else if(tmp[currNode]==0)
478            ++labelTmp2[_intLabels1[currNode]];
479        }
480        //labelTmp1[i]=number of neightbours with label i in set rInOut
481        //labelTmp2[i]=number of neightbours with label i in set rNew
482        for(typename G1::IncEdgeIt e1(_g1,order[i]); e1!=INVALID; ++e1) {
483          const int& currIntLabel = _intLabels1[_g1.oppositeNode(order[i],e1)];
484          if(labelTmp1[currIntLabel]>0) {
485            rInOutLabels1[order[i]]
486              .push_back(std::make_pair(currIntLabel,
487                                        labelTmp1[currIntLabel]));
488            labelTmp1[currIntLabel]=0;
489          }
490          else if(labelTmp2[currIntLabel]>0) {
491            rNewLabels1[order[i]].
492              push_back(std::make_pair(currIntLabel,labelTmp2[currIntLabel]));
493            labelTmp2[currIntLabel]=0;
494          }
495        }
496
497        for(typename G1::IncEdgeIt e1(_g1,order[i]); e1!=INVALID; ++e1) {
498          int& tmpCurrNode=tmp[_g1.oppositeNode(order[i],e1)];
499          if(tmpCurrNode!=-1)
500            ++tmpCurrNode;
501        }
502      }
503    }
504
505    int getMaxLabel() const{
506      int m=-1;
507      for(typename G1::NodeIt n1(_g1); n1!=INVALID; ++n1) {
508        const int& currIntLabel = _intLabels1[n1];
509        if(currIntLabel>m)
510          m=currIntLabel;
511      }
512      for(typename G2::NodeIt n2(_g2); n2!=INVALID; ++n2) {
513        const int& currIntLabel = _intLabels2[n2];
514        if(currIntLabel>m)
515          m=currIntLabel;
516      }
517      return m;
518    }
519
520  public:
521    ///Constructor
522
523    ///Constructor.
524    ///\param g1 The graph to be embedded.
525    ///\param g2 The graph \e g1 will be embedded into.
526    ///\param m The type of the NodeMap storing the mapping.
527    ///By default, it is G1::NodeMap<G2::Node>
528    ///\param intLabel1 The NodeMap storing the integer node labels of G1.
529    ///The labels must be the numbers {0,1,2,..,K-1}, where K is the number of
530    ///different labels.
531    ///\param intLabel1 The NodeMap storing the integer node labels of G2.
532    ///The labels must be the numbers {0,1,2,..,K-1}, where K is the number of
533    ///different labels.
534    Vf2pp(const G1 &g1, const G2 &g2,M &m, M1 &intLabels1, M2 &intLabels2) :
535      _depth(0), _conn(g2,0), _mapping(m), order(countNodes(g1),INVALID),
536      currEdgeIts(countNodes(g1),INVALID), _g1(g1), _g2(g2), rNewLabels1(_g1),
537      rInOutLabels1(_g1), _intLabels1(intLabels1) ,_intLabels2(intLabels2),
538      maxLabel(getMaxLabel()), labelTmp1(maxLabel+1),labelTmp2(maxLabel+1),
539      _mapping_type(SUBGRAPH), _deallocMappingAfterUse(0),
540      _deallocLabelsAfterUse(0)
541    {
542      setOrder();
543      setRNew1tRInOut1t();
544
545      //reset mapping
546      for(typename G1::NodeIt n(g1);n!=INVALID;++n)
547        m[n]=INVALID;
548    }
549
550    ///Destructor
551
552    ///Destructor.
553    ///
554    ~Vf2pp()
555    {
556      if(_deallocMappingAfterUse)
557        delete &_mapping;
558      if(_deallocLabelsAfterUse) {
559        delete &_intLabels1;
560        delete &_intLabels2;
561      }
562    }
563
564    ///Returns the current mapping type.
565
566    ///Returns the current mapping type.
567    ///
568    MappingType mappingType() const
569    {
570      return _mapping_type;
571    }
572
573    ///Sets the mapping type
574
575    ///Sets the mapping type.
576    ///
577    ///The mapping type is set to \ref SUBGRAPH by default.
578    ///
579    ///\sa See \ref MappingType for the possible values.
580    void mappingType(MappingType m_type)
581    {
582      _mapping_type = m_type;
583    }
584
585    ///Finds a mapping.
586
587    ///This method finds a mapping from g1 into g2 according to the mapping
588    ///type set by \ref mappingType(MappingType) "mappingType()".
589    ///
590    ///By subsequent calls, it returns all possible mappings one-by-one.
591    ///
592    ///\retval true if a mapping is found.
593    ///\retval false if there is no (more) mapping.
594    bool find()
595    {
596      switch(_mapping_type)
597        {
598        case SUBGRAPH:
599          return extMatch<SUBGRAPH>();
600        case INDUCED:
601          return extMatch<INDUCED>();
602        case ISOMORPH:
603          return extMatch<ISOMORPH>();
604        default:
605          return false;
606        }
607    }
608  };
609
610  template<typename G1, typename G2>
611  class Vf2ppWizardBase {
612  protected:
613    typedef G1 Graph1;
614    typedef G2 Graph2;
615
616    const G1 &_g1;
617    const G2 &_g2;
618
619    MappingType _mapping_type;
620
621    typedef typename G1::template NodeMap<typename G2::Node> Mapping;
622    bool _local_mapping;
623    void *_mapping;
624    void createMapping() {
625      _mapping = new Mapping(_g1);
626    }
627
628    bool _local_nodeLabels;
629    typedef typename G1::template NodeMap<int> NodeLabels1;
630    typedef typename G2::template NodeMap<int> NodeLabels2;
631    void *_nodeLabels1, *_nodeLabels2;
632    void createNodeLabels() {
633      _nodeLabels1 = new NodeLabels1(_g1,0);
634      _nodeLabels2 = new NodeLabels2(_g2,0);
635    }
636
637    Vf2ppWizardBase(const G1 &g1,const G2 &g2)
638      : _g1(g1), _g2(g2), _mapping_type(SUBGRAPH),
639        _local_mapping(1), _local_nodeLabels(1) { }
640  };
641
642
643  /// \brief Auxiliary class for the function-type interface of %VF2
644  /// Plus Plus algorithm.
645  ///
646  /// This auxiliary class implements the named parameters of
647  /// \ref vf2pp() "function-type interface" of \ref Vf2pp algorithm.
648  ///
649  /// \warning This class is not to be used directly.
650  ///
651  /// \tparam TR The traits class that defines various types used by the
652  /// algorithm.
653  template<typename TR>
654  class Vf2ppWizard : public TR {
655    typedef TR Base;
656    typedef typename TR::Graph1 Graph1;
657    typedef typename TR::Graph2 Graph2;
658    typedef typename TR::Mapping Mapping;
659    typedef typename TR::NodeLabels1 NodeLabels1;
660    typedef typename TR::NodeLabels2 NodeLabels2;
661
662    using TR::_g1;
663    using TR::_g2;
664    using TR::_mapping_type;
665    using TR::_mapping;
666    using TR::_nodeLabels1;
667    using TR::_nodeLabels2;
668
669  public:
670    ///Constructor
671    Vf2ppWizard(const Graph1 &g1,const Graph2 &g2) : Base(g1,g2) {}
672
673    ///Copy constructor
674    Vf2ppWizard(const Base &b) : Base(b) {}
675
676
677    template<typename T>
678    struct SetMappingBase : public Base {
679      typedef T Mapping;
680      SetMappingBase(const Base &b) : Base(b) {}
681    };
682
683    ///\brief \ref named-templ-param "Named parameter" for setting
684    ///the mapping.
685    ///
686    ///\ref named-templ-param "Named parameter" function for setting
687    ///the map that stores the found embedding.
688    template<typename T>
689    Vf2ppWizard< SetMappingBase<T> > mapping(const T &t) {
690      Base::_mapping=reinterpret_cast<void*>(const_cast<T*>(&t));
691      Base::_local_mapping = 0;
692      return Vf2ppWizard<SetMappingBase<T> >(*this);
693    }
694
695    template<typename NL1, typename NL2>
696    struct SetNodeLabelsBase : public Base {
697      typedef NL1 NodeLabels1;
698      typedef NL2 NodeLabels2;
699      SetNodeLabelsBase(const Base &b) : Base(b) { }
700    };
701
702    ///\brief \ref named-templ-param "Named parameter" for setting the
703    ///node labels.
704    ///
705    ///\ref named-templ-param "Named parameter" function for setting
706    ///the node labels.
707    ///
708    ///\param nodeLabels1 A \ref concepts::ReadMap "readable node map"
709    ///of g1 with integer values. In case of K different labels, the labels
710    ///must be the numbers {0,1,..,K-1}.
711    ///\param nodeLabels2 A \ref concepts::ReadMap "readable node map"
712    ///of g2 with integer values. In case of K different labels, the labels
713    ///must be the numbers {0,1,..,K-1}.
714    template<typename NL1, typename NL2>
715    Vf2ppWizard< SetNodeLabelsBase<NL1,NL2> >
716    nodeLabels(const NL1 &nodeLabels1, const NL2 &nodeLabels2) {
717      Base::_local_nodeLabels = 0;
718      Base::_nodeLabels1=
719        reinterpret_cast<void*>(const_cast<NL1*>(&nodeLabels1));
720      Base::_nodeLabels2=
721        reinterpret_cast<void*>(const_cast<NL2*>(&nodeLabels2));
722      return Vf2ppWizard<SetNodeLabelsBase<NL1,NL2> >
723        (SetNodeLabelsBase<NL1,NL2>(*this));
724    }
725
726
727    ///\brief \ref named-templ-param "Named parameter" for setting
728    ///the mapping type.
729    ///
730    ///\ref named-templ-param "Named parameter" for setting
731    ///the mapping type.
732    ///
733    ///The mapping type is set to \ref SUBGRAPH by default.
734    ///
735    ///\sa See \ref MappingType for the possible values.
736    Vf2ppWizard<Base> &mappingType(MappingType m_type) {
737      _mapping_type = m_type;
738      return *this;
739    }
740
741    ///\brief \ref named-templ-param "Named parameter" for setting
742    ///the mapping type to \ref INDUCED.
743    ///
744    ///\ref named-templ-param "Named parameter" for setting
745    ///the mapping type to \ref INDUCED.
746    Vf2ppWizard<Base> &induced() {
747      _mapping_type = INDUCED;
748      return *this;
749    }
750
751    ///\brief \ref named-templ-param "Named parameter" for setting
752    ///the mapping type to \ref ISOMORPH.
753    ///
754    ///\ref named-templ-param "Named parameter" for setting
755    ///the mapping type to \ref ISOMORPH.
756    Vf2ppWizard<Base> &iso() {
757      _mapping_type = ISOMORPH;
758      return *this;
759    }
760
761    ///Runs the %VF2 Plus Plus algorithm.
762
763    ///This method runs the VF2 Plus Plus algorithm.
764    ///
765    ///\retval true if a mapping is found.
766    ///\retval false if there is no mapping.
767    bool run() {
768      if(Base::_local_mapping)
769        Base::createMapping();
770      if(Base::_local_nodeLabels)
771        Base::createNodeLabels();
772
773      Vf2pp<Graph1, Graph2, Mapping, NodeLabels1, NodeLabels2 >
774        alg(_g1, _g2, *reinterpret_cast<Mapping*>(_mapping),
775            *reinterpret_cast<NodeLabels1*>(_nodeLabels1),
776            *reinterpret_cast<NodeLabels2*>(_nodeLabels2));
777
778      alg.mappingType(_mapping_type);
779
780      const bool ret = alg.find();
781
782      if(Base::_local_nodeLabels) {
783        delete reinterpret_cast<NodeLabels1*>(_nodeLabels1);
784        delete reinterpret_cast<NodeLabels2*>(_nodeLabels2);
785      }
786      if(Base::_local_mapping)
787        delete reinterpret_cast<Mapping*>(_mapping);
788
789      return ret;
790    }
791
792    ///Get a pointer to the generated Vf2pp object.
793
794    ///Gives a pointer to the generated Vf2pp object.
795    ///
796    ///\return Pointer to the generated Vf2pp object.
797    ///\warning Don't forget to delete the referred Vf2pp object after use.
798    Vf2pp<Graph1, Graph2, Mapping, NodeLabels1, NodeLabels2 >*
799    getPtrToVf2ppObject(){
800      if(Base::_local_mapping)
801        Base::createMapping();
802      if(Base::_local_nodeLabels)
803        Base::createNodeLabels();
804
805      Vf2pp<Graph1, Graph2, Mapping, NodeLabels1, NodeLabels2 >* ptr =
806        new Vf2pp<Graph1, Graph2, Mapping, NodeLabels1, NodeLabels2>
807        (_g1, _g2, *reinterpret_cast<Mapping*>(_mapping),
808         *reinterpret_cast<NodeLabels1*>(_nodeLabels1),
809         *reinterpret_cast<NodeLabels2*>(_nodeLabels2));
810      ptr->mappingType(_mapping_type);
811      if(Base::_local_mapping)
812        ptr->_deallocMappingAfterUse=true;
813      if(Base::_local_nodeLabels)
814        ptr->_deallocLabelMapsAfterUse=true;
815
816      return ptr;
817    }
818
819    ///Counts the number of mappings.
820
821    ///This method counts the number of mappings.
822    ///
823    /// \return The number of mappings.
824    int count() {
825      if(Base::_local_mapping)
826        Base::createMapping();
827      if(Base::_local_nodeLabels)
828        Base::createNodeLabels();
829
830      Vf2pp<Graph1, Graph2, Mapping, NodeLabels1, NodeLabels2>
831        alg(_g1, _g2, *reinterpret_cast<Mapping*>(_mapping),
832            *reinterpret_cast<NodeLabels1*>(_nodeLabels1),
833            *reinterpret_cast<NodeLabels2*>(_nodeLabels2));
834
835      alg.mappingType(_mapping_type);
836
837      int ret = 0;
838      while(alg.find())
839        ++ret;
840
841      if(Base::_local_nodeLabels) {
842        delete reinterpret_cast<NodeLabels1*>(_nodeLabels1);
843        delete reinterpret_cast<NodeLabels2*>(_nodeLabels2);
844      }
845      if(Base::_local_mapping)
846        delete reinterpret_cast<Mapping*>(_mapping);
847
848      return ret;
849    }
850  };
851
852
853  ///Function-type interface for VF2 Plus Plus algorithm.
854
855  /// \ingroup graph_isomorphism
856  ///Function-type interface for VF2 Plus Plus algorithm.
857  ///
858  ///This function has several \ref named-func-param "named parameters"
859  ///declared as the members of class \ref Vf2ppWizard.
860  ///The following examples show how to use these parameters.
861  ///\code
862  ///  ListGraph::NodeMap<ListGraph::Node> m(g);
863  ///  // Find an embedding of graph g1 into graph g2
864  ///  vf2pp(g1,g2).mapping(m).run();
865  ///
866  ///  // Check whether graphs g1 and g2 are isomorphic
867  ///  bool is_iso = vf2pp(g1,g2).iso().run();
868  ///
869  ///  // Count the number of isomorphisms
870  ///  int num_isos = vf2pp(g1,g2).iso().count();
871  ///
872  ///  // Iterate through all the induced subgraph mappings
873  ///  // of graph g1 into g2 using the labels c1 and c2
874  ///  auto* myVf2pp = vf2pp(g1,g2).mapping(m).nodeLabels(c1,c2)
875  ///  .induced().getPtrToVf2Object();
876  ///  while(myVf2pp->find()){
877  ///    //process the current mapping m
878  ///  }
879  ///  delete myVf22pp;
880  ///\endcode
881  ///\warning Don't forget to put the \ref Vf2ppWizard::run() "run()",
882  ///\ref Vf2ppWizard::count() "count()" or
883  ///the \ref Vf2ppWizard::getPtrToVf2ppObject() "getPtrToVf2ppObject()"
884  ///to the end of the expression.
885  ///\sa Vf2ppWizard
886  ///\sa Vf2pp
887  template<class G1, class G2>
888  Vf2ppWizard<Vf2ppWizardBase<G1,G2> > vf2pp(const G1 &g1, const G2 &g2) {
889    return Vf2ppWizard<Vf2ppWizardBase<G1,G2> >(g1,g2);
890  }
891
892}
893
894#endif
895
Note: See TracBrowser for help on using the repository browser.