1 | /* -*- mode: C++; indent-tabs-mode: nil; -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library. |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2011 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #include <lemon/connectivity.h> |
---|
20 | #include <lemon/list_graph.h> |
---|
21 | #include <lemon/adaptors.h> |
---|
22 | |
---|
23 | #include "test_tools.h" |
---|
24 | |
---|
25 | using namespace lemon; |
---|
26 | |
---|
27 | |
---|
28 | int main() |
---|
29 | { |
---|
30 | typedef ListDigraph Digraph; |
---|
31 | typedef Undirector<Digraph> Graph; |
---|
32 | |
---|
33 | { |
---|
34 | Digraph d; |
---|
35 | Digraph::NodeMap<int> order(d); |
---|
36 | Graph g(d); |
---|
37 | |
---|
38 | check(stronglyConnected(d), "The empty digraph is strongly connected"); |
---|
39 | check(countStronglyConnectedComponents(d) == 0, |
---|
40 | "The empty digraph has 0 strongly connected component"); |
---|
41 | check(connected(g), "The empty graph is connected"); |
---|
42 | check(countConnectedComponents(g) == 0, |
---|
43 | "The empty graph has 0 connected component"); |
---|
44 | |
---|
45 | check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
---|
46 | check(countBiNodeConnectedComponents(g) == 0, |
---|
47 | "The empty graph has 0 bi-node-connected component"); |
---|
48 | check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
---|
49 | check(countBiEdgeConnectedComponents(g) == 0, |
---|
50 | "The empty graph has 0 bi-edge-connected component"); |
---|
51 | |
---|
52 | check(dag(d), "The empty digraph is DAG."); |
---|
53 | check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
---|
54 | check(loopFree(d), "The empty digraph is loop-free."); |
---|
55 | check(parallelFree(d), "The empty digraph is parallel-free."); |
---|
56 | check(simpleGraph(d), "The empty digraph is simple."); |
---|
57 | |
---|
58 | check(acyclic(g), "The empty graph is acyclic."); |
---|
59 | check(tree(g), "The empty graph is tree."); |
---|
60 | check(bipartite(g), "The empty graph is bipartite."); |
---|
61 | check(loopFree(g), "The empty graph is loop-free."); |
---|
62 | check(parallelFree(g), "The empty graph is parallel-free."); |
---|
63 | check(simpleGraph(g), "The empty graph is simple."); |
---|
64 | } |
---|
65 | |
---|
66 | { |
---|
67 | Digraph d; |
---|
68 | Digraph::NodeMap<int> order(d); |
---|
69 | Graph g(d); |
---|
70 | Digraph::Node n = d.addNode(); |
---|
71 | |
---|
72 | check(stronglyConnected(d), "This digraph is strongly connected"); |
---|
73 | check(countStronglyConnectedComponents(d) == 1, |
---|
74 | "This digraph has 1 strongly connected component"); |
---|
75 | check(connected(g), "This graph is connected"); |
---|
76 | check(countConnectedComponents(g) == 1, |
---|
77 | "This graph has 1 connected component"); |
---|
78 | |
---|
79 | check(biNodeConnected(g), "This graph is bi-node-connected"); |
---|
80 | check(countBiNodeConnectedComponents(g) == 0, |
---|
81 | "This graph has 0 bi-node-connected component"); |
---|
82 | check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
---|
83 | check(countBiEdgeConnectedComponents(g) == 1, |
---|
84 | "This graph has 1 bi-edge-connected component"); |
---|
85 | |
---|
86 | check(dag(d), "This digraph is DAG."); |
---|
87 | check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
---|
88 | check(loopFree(d), "This digraph is loop-free."); |
---|
89 | check(parallelFree(d), "This digraph is parallel-free."); |
---|
90 | check(simpleGraph(d), "This digraph is simple."); |
---|
91 | |
---|
92 | check(acyclic(g), "This graph is acyclic."); |
---|
93 | check(tree(g), "This graph is tree."); |
---|
94 | check(bipartite(g), "This graph is bipartite."); |
---|
95 | check(loopFree(g), "This graph is loop-free."); |
---|
96 | check(parallelFree(g), "This graph is parallel-free."); |
---|
97 | check(simpleGraph(g), "This graph is simple."); |
---|
98 | } |
---|
99 | |
---|
100 | { |
---|
101 | Digraph d; |
---|
102 | Digraph::NodeMap<int> order(d); |
---|
103 | Graph g(d); |
---|
104 | |
---|
105 | Digraph::Node n1 = d.addNode(); |
---|
106 | Digraph::Node n2 = d.addNode(); |
---|
107 | Digraph::Node n3 = d.addNode(); |
---|
108 | Digraph::Node n4 = d.addNode(); |
---|
109 | Digraph::Node n5 = d.addNode(); |
---|
110 | Digraph::Node n6 = d.addNode(); |
---|
111 | |
---|
112 | d.addArc(n1, n3); |
---|
113 | d.addArc(n3, n2); |
---|
114 | d.addArc(n2, n1); |
---|
115 | d.addArc(n4, n2); |
---|
116 | d.addArc(n4, n3); |
---|
117 | d.addArc(n5, n6); |
---|
118 | d.addArc(n6, n5); |
---|
119 | |
---|
120 | check(!stronglyConnected(d), "This digraph is not strongly connected"); |
---|
121 | check(countStronglyConnectedComponents(d) == 3, |
---|
122 | "This digraph has 3 strongly connected components"); |
---|
123 | check(!connected(g), "This graph is not connected"); |
---|
124 | check(countConnectedComponents(g) == 2, |
---|
125 | "This graph has 2 connected components"); |
---|
126 | |
---|
127 | check(!dag(d), "This digraph is not DAG."); |
---|
128 | check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
---|
129 | check(loopFree(d), "This digraph is loop-free."); |
---|
130 | check(parallelFree(d), "This digraph is parallel-free."); |
---|
131 | check(simpleGraph(d), "This digraph is simple."); |
---|
132 | |
---|
133 | check(!acyclic(g), "This graph is not acyclic."); |
---|
134 | check(!tree(g), "This graph is not tree."); |
---|
135 | check(!bipartite(g), "This graph is not bipartite."); |
---|
136 | check(loopFree(g), "This graph is loop-free."); |
---|
137 | check(!parallelFree(g), "This graph is not parallel-free."); |
---|
138 | check(!simpleGraph(g), "This graph is not simple."); |
---|
139 | |
---|
140 | d.addArc(n3, n3); |
---|
141 | |
---|
142 | check(!loopFree(d), "This digraph is not loop-free."); |
---|
143 | check(!loopFree(g), "This graph is not loop-free."); |
---|
144 | check(!simpleGraph(d), "This digraph is not simple."); |
---|
145 | |
---|
146 | d.addArc(n3, n2); |
---|
147 | |
---|
148 | check(!parallelFree(d), "This digraph is not parallel-free."); |
---|
149 | } |
---|
150 | |
---|
151 | { |
---|
152 | Digraph d; |
---|
153 | Digraph::ArcMap<bool> cutarcs(d, false); |
---|
154 | Graph g(d); |
---|
155 | |
---|
156 | Digraph::Node n1 = d.addNode(); |
---|
157 | Digraph::Node n2 = d.addNode(); |
---|
158 | Digraph::Node n3 = d.addNode(); |
---|
159 | Digraph::Node n4 = d.addNode(); |
---|
160 | Digraph::Node n5 = d.addNode(); |
---|
161 | Digraph::Node n6 = d.addNode(); |
---|
162 | Digraph::Node n7 = d.addNode(); |
---|
163 | Digraph::Node n8 = d.addNode(); |
---|
164 | |
---|
165 | d.addArc(n1, n2); |
---|
166 | d.addArc(n5, n1); |
---|
167 | d.addArc(n2, n8); |
---|
168 | d.addArc(n8, n5); |
---|
169 | d.addArc(n6, n4); |
---|
170 | d.addArc(n4, n6); |
---|
171 | d.addArc(n2, n5); |
---|
172 | d.addArc(n1, n8); |
---|
173 | d.addArc(n6, n7); |
---|
174 | d.addArc(n7, n6); |
---|
175 | |
---|
176 | check(!stronglyConnected(d), "This digraph is not strongly connected"); |
---|
177 | check(countStronglyConnectedComponents(d) == 3, |
---|
178 | "This digraph has 3 strongly connected components"); |
---|
179 | Digraph::NodeMap<int> scomp1(d); |
---|
180 | check(stronglyConnectedComponents(d, scomp1) == 3, |
---|
181 | "This digraph has 3 strongly connected components"); |
---|
182 | check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
---|
183 | scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
---|
184 | check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
---|
185 | scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
---|
186 | check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
---|
187 | "Wrong stronglyConnectedComponents()"); |
---|
188 | Digraph::ArcMap<bool> scut1(d, false); |
---|
189 | check(stronglyConnectedCutArcs(d, scut1) == 0, |
---|
190 | "This digraph has 0 strongly connected cut arc."); |
---|
191 | for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
---|
192 | check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); |
---|
193 | } |
---|
194 | |
---|
195 | check(!connected(g), "This graph is not connected"); |
---|
196 | check(countConnectedComponents(g) == 3, |
---|
197 | "This graph has 3 connected components"); |
---|
198 | Graph::NodeMap<int> comp(g); |
---|
199 | check(connectedComponents(g, comp) == 3, |
---|
200 | "This graph has 3 connected components"); |
---|
201 | check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && |
---|
202 | comp[n3] != comp[n4], "Wrong connectedComponents()"); |
---|
203 | check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && |
---|
204 | comp[n1] == comp[n8], "Wrong connectedComponents()"); |
---|
205 | check(comp[n4] == comp[n6] && comp[n4] == comp[n7], |
---|
206 | "Wrong connectedComponents()"); |
---|
207 | |
---|
208 | cutarcs[d.addArc(n3, n1)] = true; |
---|
209 | cutarcs[d.addArc(n3, n5)] = true; |
---|
210 | cutarcs[d.addArc(n3, n8)] = true; |
---|
211 | cutarcs[d.addArc(n8, n6)] = true; |
---|
212 | cutarcs[d.addArc(n8, n7)] = true; |
---|
213 | |
---|
214 | check(!stronglyConnected(d), "This digraph is not strongly connected"); |
---|
215 | check(countStronglyConnectedComponents(d) == 3, |
---|
216 | "This digraph has 3 strongly connected components"); |
---|
217 | Digraph::NodeMap<int> scomp2(d); |
---|
218 | check(stronglyConnectedComponents(d, scomp2) == 3, |
---|
219 | "This digraph has 3 strongly connected components"); |
---|
220 | check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); |
---|
221 | check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && |
---|
222 | scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); |
---|
223 | check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, |
---|
224 | "Wrong stronglyConnectedComponents()"); |
---|
225 | Digraph::ArcMap<bool> scut2(d, false); |
---|
226 | check(stronglyConnectedCutArcs(d, scut2) == 5, |
---|
227 | "This digraph has 5 strongly connected cut arcs."); |
---|
228 | for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
---|
229 | check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
---|
230 | } |
---|
231 | } |
---|
232 | |
---|
233 | { |
---|
234 | // DAG example for topological sort from the book New Algorithms |
---|
235 | // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
---|
236 | Digraph d; |
---|
237 | Digraph::NodeMap<int> order(d); |
---|
238 | |
---|
239 | Digraph::Node belt = d.addNode(); |
---|
240 | Digraph::Node trousers = d.addNode(); |
---|
241 | Digraph::Node necktie = d.addNode(); |
---|
242 | Digraph::Node coat = d.addNode(); |
---|
243 | Digraph::Node socks = d.addNode(); |
---|
244 | Digraph::Node shirt = d.addNode(); |
---|
245 | Digraph::Node shoe = d.addNode(); |
---|
246 | Digraph::Node watch = d.addNode(); |
---|
247 | Digraph::Node pants = d.addNode(); |
---|
248 | |
---|
249 | d.addArc(socks, shoe); |
---|
250 | d.addArc(pants, shoe); |
---|
251 | d.addArc(pants, trousers); |
---|
252 | d.addArc(trousers, shoe); |
---|
253 | d.addArc(trousers, belt); |
---|
254 | d.addArc(belt, coat); |
---|
255 | d.addArc(shirt, belt); |
---|
256 | d.addArc(shirt, necktie); |
---|
257 | d.addArc(necktie, coat); |
---|
258 | |
---|
259 | check(dag(d), "This digraph is DAG."); |
---|
260 | topologicalSort(d, order); |
---|
261 | for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
---|
262 | check(order[d.source(a)] < order[d.target(a)], |
---|
263 | "Wrong topologicalSort()"); |
---|
264 | } |
---|
265 | } |
---|
266 | |
---|
267 | { |
---|
268 | ListGraph g; |
---|
269 | ListGraph::NodeMap<bool> map(g); |
---|
270 | |
---|
271 | ListGraph::Node n1 = g.addNode(); |
---|
272 | ListGraph::Node n2 = g.addNode(); |
---|
273 | ListGraph::Node n3 = g.addNode(); |
---|
274 | ListGraph::Node n4 = g.addNode(); |
---|
275 | ListGraph::Node n5 = g.addNode(); |
---|
276 | ListGraph::Node n6 = g.addNode(); |
---|
277 | ListGraph::Node n7 = g.addNode(); |
---|
278 | |
---|
279 | g.addEdge(n1, n3); |
---|
280 | g.addEdge(n1, n4); |
---|
281 | g.addEdge(n2, n5); |
---|
282 | g.addEdge(n3, n6); |
---|
283 | g.addEdge(n4, n6); |
---|
284 | g.addEdge(n4, n7); |
---|
285 | g.addEdge(n5, n7); |
---|
286 | |
---|
287 | check(bipartite(g), "This graph is bipartite"); |
---|
288 | check(bipartitePartitions(g, map), "This graph is bipartite"); |
---|
289 | |
---|
290 | check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
---|
291 | "Wrong bipartitePartitions()"); |
---|
292 | check(map[n3] == map[n4] && map[n3] == map[n5], |
---|
293 | "Wrong bipartitePartitions()"); |
---|
294 | } |
---|
295 | |
---|
296 | return 0; |
---|
297 | } |
---|