/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #include #include #include #include #include #include #include #include "test_tools.h" using namespace lemon; char test_lgf[] = "@nodes\n" "label\n" "1\n" "2\n" "3\n" "4\n" "5\n" "6\n" "7\n" "8\n" "9\n" "10\n" "11\n" "12\n" "@arcs\n" " length\n" " 1 2 70\n" " 1 3 150\n" " 1 4 80\n" " 2 8 80\n" " 3 5 140\n" " 4 6 60\n" " 4 7 80\n" " 4 8 110\n" " 5 7 60\n" " 5 11 120\n" " 6 3 0\n" " 6 9 140\n" " 6 10 90\n" " 7 1 30\n" " 8 12 60\n" " 9 12 50\n" "10 12 70\n" "10 2 100\n" "10 7 60\n" "11 10 20\n" "12 11 30\n" "@attributes\n" "source 1\n" "target 12\n" "@end\n"; // Check the interface of Suurballe void checkSuurballeCompile() { typedef int VType; typedef concepts::Digraph Digraph; typedef Digraph::Node Node; typedef Digraph::Arc Arc; typedef concepts::ReadMap LengthMap; typedef Suurballe ST; typedef Suurballe ::SetFlowMap ::SetPotentialMap ::SetPath > ::SetHeap > > ::Create SuurballeType; Digraph g; Node n; Arc e; LengthMap len; SuurballeType::FlowMap flow(g); SuurballeType::PotentialMap pi(g); SuurballeType suurb_test(g, len); const SuurballeType& const_suurb_test = suurb_test; suurb_test .flowMap(flow) .potentialMap(pi); int k; k = suurb_test.run(n, n); k = suurb_test.run(n, n, k); suurb_test.init(n); suurb_test.fullInit(n); suurb_test.start(n); suurb_test.start(n, k); k = suurb_test.findFlow(n); k = suurb_test.findFlow(n, k); suurb_test.findPaths(); int f; VType c; c = const_suurb_test.totalLength(); f = const_suurb_test.flow(e); const SuurballeType::FlowMap& fm = const_suurb_test.flowMap(); c = const_suurb_test.potential(n); const SuurballeType::PotentialMap& pm = const_suurb_test.potentialMap(); k = const_suurb_test.pathNum(); Path p = const_suurb_test.path(k); ignore_unused_variable_warning(fm); ignore_unused_variable_warning(pm); } // Check the feasibility of the flow template bool checkFlow( const Digraph& gr, const FlowMap& flow, typename Digraph::Node s, typename Digraph::Node t, int value ) { TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); for (ArcIt e(gr); e != INVALID; ++e) if (!(flow[e] == 0 || flow[e] == 1)) return false; for (NodeIt n(gr); n != INVALID; ++n) { int sum = 0; for (OutArcIt e(gr, n); e != INVALID; ++e) sum += flow[e]; for (InArcIt e(gr, n); e != INVALID; ++e) sum -= flow[e]; if (n == s && sum != value) return false; if (n == t && sum != -value) return false; if (n != s && n != t && sum != 0) return false; } return true; } // Check the optimalitiy of the flow template < typename Digraph, typename CostMap, typename FlowMap, typename PotentialMap > bool checkOptimality( const Digraph& gr, const CostMap& cost, const FlowMap& flow, const PotentialMap& pi ) { // Check the "Complementary Slackness" optimality condition TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); bool opt = true; for (ArcIt e(gr); e != INVALID; ++e) { typename CostMap::Value red_cost = cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; opt = (flow[e] == 0 && red_cost >= 0) || (flow[e] == 1 && red_cost <= 0); if (!opt) break; } return opt; } // Check a path template bool checkPath( const Digraph& gr, const Path& path, typename Digraph::Node s, typename Digraph::Node t) { TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); Node n = s; for (int i = 0; i < path.length(); ++i) { if (gr.source(path.nth(i)) != n) return false; n = gr.target(path.nth(i)); } return n == t; } int main() { DIGRAPH_TYPEDEFS(ListDigraph); // Read the test digraph ListDigraph digraph; ListDigraph::ArcMap length(digraph); Node s, t; std::istringstream input(test_lgf); DigraphReader(digraph, input). arcMap("length", length). node("source", s). node("target", t). run(); // Find 2 paths { Suurballe suurballe(digraph, length); check(suurballe.run(s, t) == 2, "Wrong number of paths"); check(checkFlow(digraph, suurballe.flowMap(), s, t, 2), "The flow is not feasible"); check(suurballe.totalLength() == 510, "The flow is not optimal"); check(checkOptimality(digraph, length, suurballe.flowMap(), suurballe.potentialMap()), "Wrong potentials"); for (int i = 0; i < suurballe.pathNum(); ++i) check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); } // Find 3 paths { Suurballe suurballe(digraph, length); check(suurballe.run(s, t, 3) == 3, "Wrong number of paths"); check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), "The flow is not feasible"); check(suurballe.totalLength() == 1040, "The flow is not optimal"); check(checkOptimality(digraph, length, suurballe.flowMap(), suurballe.potentialMap()), "Wrong potentials"); for (int i = 0; i < suurballe.pathNum(); ++i) check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); } // Find 5 paths (only 3 can be found) { Suurballe suurballe(digraph, length); check(suurballe.run(s, t, 5) == 3, "Wrong number of paths"); check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), "The flow is not feasible"); check(suurballe.totalLength() == 1040, "The flow is not optimal"); check(checkOptimality(digraph, length, suurballe.flowMap(), suurballe.potentialMap()), "Wrong potentials"); for (int i = 0; i < suurballe.pathNum(); ++i) check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); } return 0; }