Changes in / [921:e05b2b48515a:922:1b8db382910c] in lemon
- Files:
-
- 1 added
- 28 edited
Legend:
- Unmodified
- Added
- Removed
-
INSTALL
r615 r890 174 174 175 175 Disable COIN-OR support. 176 177 178 Makefile Variables 179 ================== 180 181 Some Makefile variables are reserved by the GNU Coding Standards for 182 the use of the "user" - the person building the package. For instance, 183 CXX and CXXFLAGS are such variables, and have the same meaning as 184 explained in the previous section. These variables can be set on the 185 command line when invoking `make' like this: 186 `make [VARIABLE=VALUE]...' 187 188 WARNINGCXXFLAGS is a non-standard Makefile variable introduced by us 189 to hold several compiler flags related to warnings. Its default value 190 can be overridden when invoking `make'. For example to disable all 191 warning flags use `make WARNINGCXXFLAGS='. 192 193 In order to turn off a single flag from the default set of warning 194 flags, you can use the CXXFLAGS variable, since this is passed after 195 WARNINGCXXFLAGS. For example to turn off `-Wold-style-cast' (which is 196 used by default when g++ is detected) you can use 197 `make CXXFLAGS="-g -O2 -Wno-old-style-cast"'. -
demo/arg_parser_demo.cc
r463 r915 66 66 .other("..."); 67 67 68 // Throw an exception when problems occurs. The default behavior is to 69 // exit(1) on these cases, but this makes Valgrind falsely warn 70 // about memory leaks. 71 ap.throwOnProblems(); 72 68 73 // Perform the parsing process 69 74 // (in case of any error it terminates the program) 70 ap.parse(); 75 // The try {} construct is necessary only if the ap.trowOnProblems() 76 // setting is in use. 77 try { 78 ap.parse(); 79 } catch (ArgParserException &) { return 1; } 71 80 72 81 // Check each option if it has been given and print its value -
doc/CMakeLists.txt
r791 r895 27 27 COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps 28 28 COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps 29 COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/planar.png ${CMAKE_CURRENT_SOURCE_DIR}/images/planar.eps 29 30 COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps 30 31 COMMAND ${CMAKE_COMMAND} -E remove_directory html -
doc/Makefile.am
r791 r895 29 29 edge_biconnected_components.eps \ 30 30 node_biconnected_components.eps \ 31 planar.eps \ 31 32 strongly_connected_components.eps 32 33 -
lemon/arg_parser.cc
r463 r915 21 21 namespace lemon { 22 22 23 void ArgParser::_terminate(ArgParserException::Reason reason) const 24 { 25 if(_exit_on_problems) 26 exit(1); 27 else throw(ArgParserException(reason)); 28 } 29 30 23 31 void ArgParser::_showHelp(void *p) 24 32 { 25 33 (static_cast<ArgParser*>(p))->showHelp(); 26 exit(1);34 (static_cast<ArgParser*>(p))->_terminate(ArgParserException::HELP); 27 35 } 28 36 29 37 ArgParser::ArgParser(int argc, const char * const *argv) 30 :_argc(argc), _argv(argv), _command_name(argv[0]) { 38 :_argc(argc), _argv(argv), _command_name(argv[0]), 39 _exit_on_problems(true) { 31 40 funcOption("-help","Print a short help message",_showHelp,this); 32 41 synonym("help","-help"); … … 343 352 i!=_others_help.end();++i) showHelp(i); 344 353 for(Opts::const_iterator i=_opts.begin();i!=_opts.end();++i) showHelp(i); 345 exit(1);354 _terminate(ArgParserException::HELP); 346 355 } 347 356 … … 352 361 std::cerr << "\nType '" << _command_name << 353 362 " --help' to obtain a short summary on the usage.\n\n"; 354 exit(1);363 _terminate(ArgParserException::UNKNOWN_OPT); 355 364 } 356 365 … … 415 424 std::cerr << "\nType '" << _command_name << 416 425 " --help' to obtain a short summary on the usage.\n\n"; 417 exit(1);426 _terminate(ArgParserException::INVALID_OPT); 418 427 } 419 428 } -
lemon/arg_parser.h
r463 r915 35 35 namespace lemon { 36 36 37 ///Exception used by ArgParser 38 class ArgParserException : public Exception { 39 public: 40 enum Reason { 41 HELP, /// <tt>--help</tt> option was given 42 UNKNOWN_OPT, /// Unknown option was given 43 INVALID_OPT /// Invalid combination of options 44 }; 45 46 private: 47 Reason _reason; 48 49 public: 50 ///Constructor 51 ArgParserException(Reason r) throw() : _reason(r) {} 52 ///Virtual destructor 53 virtual ~ArgParserException() throw() {} 54 ///A short description of the exception 55 virtual const char* what() const throw() { 56 switch(_reason) 57 { 58 case HELP: 59 return "lemon::ArgParseException: ask for help"; 60 break; 61 case UNKNOWN_OPT: 62 return "lemon::ArgParseException: unknown option"; 63 break; 64 case INVALID_OPT: 65 return "lemon::ArgParseException: invalid combination of options"; 66 break; 67 } 68 return ""; 69 } 70 ///Return the reason for the failure 71 Reason reason() const {return _reason; } 72 }; 73 74 37 75 ///Command line arguments parser 38 76 … … 104 142 std::string _command_name; 105 143 106 144 107 145 private: 108 146 //Bind a function to an option. … … 116 154 const std::string &help, 117 155 void (*func)(void *),void *data); 156 157 bool _exit_on_problems; 158 159 void _terminate(ArgParserException::Reason reason) const; 118 160 119 161 public: … … 381 423 const std::vector<std::string> &files() const { return _file_args; } 382 424 425 ///Throw instead of exit in case of problems 426 void throwOnProblems() 427 { 428 _exit_on_problems=false; 429 } 383 430 }; 384 431 } -
lemon/bellman_ford.h
r870 r917 29 29 #include <lemon/error.h> 30 30 #include <lemon/maps.h> 31 #include <lemon/tolerance.h> 31 32 #include <lemon/path.h> 32 33 … … 35 36 namespace lemon { 36 37 37 /// \brief Default OperationTraits for the BellmanFord algorithm class.38 /// \brief Default operation traits for the BellmanFord algorithm class. 38 39 /// 39 40 /// This operation traits class defines all computational operations … … 42 43 /// If the numeric type does not have infinity value, then the maximum 43 44 /// value is used as extremal infinity value. 45 /// 46 /// \see BellmanFordToleranceOperationTraits 44 47 template < 45 48 typename V, 46 49 bool has_inf = std::numeric_limits<V>::has_infinity> 47 50 struct BellmanFordDefaultOperationTraits { 48 /// \ e51 /// \brief Value type for the algorithm. 49 52 typedef V Value; 50 53 /// \brief Gives back the zero value of the type. … … 85 88 }; 86 89 90 /// \brief Operation traits for the BellmanFord algorithm class 91 /// using tolerance. 92 /// 93 /// This operation traits class defines all computational operations 94 /// and constants that are used in the Bellman-Ford algorithm. 95 /// The only difference between this implementation and 96 /// \ref BellmanFordDefaultOperationTraits is that this class uses 97 /// the \ref Tolerance "tolerance technique" in its \ref less() 98 /// function. 99 /// 100 /// \tparam V The value type. 101 /// \tparam eps The epsilon value for the \ref less() function. 102 /// By default, it is the epsilon value used by \ref Tolerance 103 /// "Tolerance<V>". 104 /// 105 /// \see BellmanFordDefaultOperationTraits 106 #ifdef DOXYGEN 107 template <typename V, V eps> 108 #else 109 template < 110 typename V, 111 V eps = Tolerance<V>::def_epsilon> 112 #endif 113 struct BellmanFordToleranceOperationTraits { 114 /// \brief Value type for the algorithm. 115 typedef V Value; 116 /// \brief Gives back the zero value of the type. 117 static Value zero() { 118 return static_cast<Value>(0); 119 } 120 /// \brief Gives back the positive infinity value of the type. 121 static Value infinity() { 122 return std::numeric_limits<Value>::infinity(); 123 } 124 /// \brief Gives back the sum of the given two elements. 125 static Value plus(const Value& left, const Value& right) { 126 return left + right; 127 } 128 /// \brief Gives back \c true only if the first value is less than 129 /// the second. 130 static bool less(const Value& left, const Value& right) { 131 return left + eps < right; 132 } 133 }; 134 87 135 /// \brief Default traits class of BellmanFord class. 88 136 /// … … 108 156 /// It defines the used operations and the infinity value for the 109 157 /// given \c Value type. 110 /// \see BellmanFordDefaultOperationTraits 158 /// \see BellmanFordDefaultOperationTraits, 159 /// BellmanFordToleranceOperationTraits 111 160 typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; 112 161 … … 172 221 /// the lengths of the arcs. The default map type is 173 222 /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". 223 /// \tparam TR The traits class that defines various types used by the 224 /// algorithm. By default, it is \ref BellmanFordDefaultTraits 225 /// "BellmanFordDefaultTraits<GR, LEN>". 226 /// In most cases, this parameter should not be set directly, 227 /// consider to use the named template parameters instead. 174 228 #ifdef DOXYGEN 175 229 template <typename GR, typename LEN, typename TR> … … 833 887 /// It defines the used operations and the infinity value for the 834 888 /// given \c Value type. 835 /// \see BellmanFordDefaultOperationTraits 889 /// \see BellmanFordDefaultOperationTraits, 890 /// BellmanFordToleranceOperationTraits 836 891 typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; 837 892 … … 934 989 /// This class should only be used through the \ref bellmanFord() 935 990 /// function, which makes it easier to use the algorithm. 991 /// 992 /// \tparam TR The traits class that defines various types used by the 993 /// algorithm. 936 994 template<class TR> 937 995 class BellmanFordWizard : public TR { -
lemon/bfs.h
r835 r891 122 122 ///\tparam GR The type of the digraph the algorithm runs on. 123 123 ///The default type is \ref ListDigraph. 124 ///\tparam TR The traits class that defines various types used by the 125 ///algorithm. By default, it is \ref BfsDefaultTraits 126 ///"BfsDefaultTraits<GR>". 127 ///In most cases, this parameter should not be set directly, 128 ///consider to use the named template parameters instead. 124 129 #ifdef DOXYGEN 125 130 template <typename GR, … … 958 963 /// This class should only be used through the \ref bfs() function, 959 964 /// which makes it easier to use the algorithm. 965 /// 966 /// \tparam TR The traits class that defines various types used by the 967 /// algorithm. 960 968 template<class TR> 961 969 class BfsWizard : public TR … … 1296 1304 /// does not observe the BFS events. If you want to observe the BFS 1297 1305 /// events, you should implement your own visitor class. 1298 /// \tparam TR T raits class to set various datatypes used by the1299 /// algorithm. The default traits class is1300 /// \ref BfsVisitDefaultTraits"BfsVisitDefaultTraits<GR>".1301 /// See \ref BfsVisitDefaultTraits for the documentation of1302 /// a BFS visit traits class.1306 /// \tparam TR The traits class that defines various types used by the 1307 /// algorithm. By default, it is \ref BfsVisitDefaultTraits 1308 /// "BfsVisitDefaultTraits<GR>". 1309 /// In most cases, this parameter should not be set directly, 1310 /// consider to use the named template parameters instead. 1303 1311 #ifdef DOXYGEN 1304 1312 template <typename GR, typename VS, typename TR> -
lemon/capacity_scaling.h
r887 r911 78 78 /// \tparam GR The digraph type the algorithm runs on. 79 79 /// \tparam V The number type used for flow amounts, capacity bounds 80 /// and supply values in the algorithm. By default it is \c int.80 /// and supply values in the algorithm. By default, it is \c int. 81 81 /// \tparam C The number type used for costs and potentials in the 82 /// algorithm. By default it is the same as \c V. 82 /// algorithm. By default, it is the same as \c V. 83 /// \tparam TR The traits class that defines various types used by the 84 /// algorithm. By default, it is \ref CapacityScalingDefaultTraits 85 /// "CapacityScalingDefaultTraits<GR, V, C>". 86 /// In most cases, this parameter should not be set directly, 87 /// consider to use the named template parameters instead. 83 88 /// 84 89 /// \warning Both number types must be signed and all input data must … … 135 140 136 141 typedef std::vector<int> IntVector; 137 typedef std::vector<char> BoolVector;138 142 typedef std::vector<Value> ValueVector; 139 143 typedef std::vector<Cost> CostVector; 144 typedef std::vector<char> BoolVector; 145 // Note: vector<char> is used instead of vector<bool> for efficiency reasons 140 146 141 147 private: … … 315 321 "The cost type of CapacityScaling must be signed"); 316 322 323 // Reset data structures 324 reset(); 325 } 326 327 /// \name Parameters 328 /// The parameters of the algorithm can be specified using these 329 /// functions. 330 331 /// @{ 332 333 /// \brief Set the lower bounds on the arcs. 334 /// 335 /// This function sets the lower bounds on the arcs. 336 /// If it is not used before calling \ref run(), the lower bounds 337 /// will be set to zero on all arcs. 338 /// 339 /// \param map An arc map storing the lower bounds. 340 /// Its \c Value type must be convertible to the \c Value type 341 /// of the algorithm. 342 /// 343 /// \return <tt>(*this)</tt> 344 template <typename LowerMap> 345 CapacityScaling& lowerMap(const LowerMap& map) { 346 _have_lower = true; 347 for (ArcIt a(_graph); a != INVALID; ++a) { 348 _lower[_arc_idf[a]] = map[a]; 349 _lower[_arc_idb[a]] = map[a]; 350 } 351 return *this; 352 } 353 354 /// \brief Set the upper bounds (capacities) on the arcs. 355 /// 356 /// This function sets the upper bounds (capacities) on the arcs. 357 /// If it is not used before calling \ref run(), the upper bounds 358 /// will be set to \ref INF on all arcs (i.e. the flow value will be 359 /// unbounded from above). 360 /// 361 /// \param map An arc map storing the upper bounds. 362 /// Its \c Value type must be convertible to the \c Value type 363 /// of the algorithm. 364 /// 365 /// \return <tt>(*this)</tt> 366 template<typename UpperMap> 367 CapacityScaling& upperMap(const UpperMap& map) { 368 for (ArcIt a(_graph); a != INVALID; ++a) { 369 _upper[_arc_idf[a]] = map[a]; 370 } 371 return *this; 372 } 373 374 /// \brief Set the costs of the arcs. 375 /// 376 /// This function sets the costs of the arcs. 377 /// If it is not used before calling \ref run(), the costs 378 /// will be set to \c 1 on all arcs. 379 /// 380 /// \param map An arc map storing the costs. 381 /// Its \c Value type must be convertible to the \c Cost type 382 /// of the algorithm. 383 /// 384 /// \return <tt>(*this)</tt> 385 template<typename CostMap> 386 CapacityScaling& costMap(const CostMap& map) { 387 for (ArcIt a(_graph); a != INVALID; ++a) { 388 _cost[_arc_idf[a]] = map[a]; 389 _cost[_arc_idb[a]] = -map[a]; 390 } 391 return *this; 392 } 393 394 /// \brief Set the supply values of the nodes. 395 /// 396 /// This function sets the supply values of the nodes. 397 /// If neither this function nor \ref stSupply() is used before 398 /// calling \ref run(), the supply of each node will be set to zero. 399 /// 400 /// \param map A node map storing the supply values. 401 /// Its \c Value type must be convertible to the \c Value type 402 /// of the algorithm. 403 /// 404 /// \return <tt>(*this)</tt> 405 template<typename SupplyMap> 406 CapacityScaling& supplyMap(const SupplyMap& map) { 407 for (NodeIt n(_graph); n != INVALID; ++n) { 408 _supply[_node_id[n]] = map[n]; 409 } 410 return *this; 411 } 412 413 /// \brief Set single source and target nodes and a supply value. 414 /// 415 /// This function sets a single source node and a single target node 416 /// and the required flow value. 417 /// If neither this function nor \ref supplyMap() is used before 418 /// calling \ref run(), the supply of each node will be set to zero. 419 /// 420 /// Using this function has the same effect as using \ref supplyMap() 421 /// with such a map in which \c k is assigned to \c s, \c -k is 422 /// assigned to \c t and all other nodes have zero supply value. 423 /// 424 /// \param s The source node. 425 /// \param t The target node. 426 /// \param k The required amount of flow from node \c s to node \c t 427 /// (i.e. the supply of \c s and the demand of \c t). 428 /// 429 /// \return <tt>(*this)</tt> 430 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { 431 for (int i = 0; i != _node_num; ++i) { 432 _supply[i] = 0; 433 } 434 _supply[_node_id[s]] = k; 435 _supply[_node_id[t]] = -k; 436 return *this; 437 } 438 439 /// @} 440 441 /// \name Execution control 442 /// The algorithm can be executed using \ref run(). 443 444 /// @{ 445 446 /// \brief Run the algorithm. 447 /// 448 /// This function runs the algorithm. 449 /// The paramters can be specified using functions \ref lowerMap(), 450 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 451 /// For example, 452 /// \code 453 /// CapacityScaling<ListDigraph> cs(graph); 454 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 455 /// .supplyMap(sup).run(); 456 /// \endcode 457 /// 458 /// This function can be called more than once. All the given parameters 459 /// are kept for the next call, unless \ref resetParams() or \ref reset() 460 /// is used, thus only the modified parameters have to be set again. 461 /// If the underlying digraph was also modified after the construction 462 /// of the class (or the last \ref reset() call), then the \ref reset() 463 /// function must be called. 464 /// 465 /// \param factor The capacity scaling factor. It must be larger than 466 /// one to use scaling. If it is less or equal to one, then scaling 467 /// will be disabled. 468 /// 469 /// \return \c INFEASIBLE if no feasible flow exists, 470 /// \n \c OPTIMAL if the problem has optimal solution 471 /// (i.e. it is feasible and bounded), and the algorithm has found 472 /// optimal flow and node potentials (primal and dual solutions), 473 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 474 /// and infinite upper bound. It means that the objective function 475 /// is unbounded on that arc, however, note that it could actually be 476 /// bounded over the feasible flows, but this algroithm cannot handle 477 /// these cases. 478 /// 479 /// \see ProblemType 480 /// \see resetParams(), reset() 481 ProblemType run(int factor = 4) { 482 _factor = factor; 483 ProblemType pt = init(); 484 if (pt != OPTIMAL) return pt; 485 return start(); 486 } 487 488 /// \brief Reset all the parameters that have been given before. 489 /// 490 /// This function resets all the paramaters that have been given 491 /// before using functions \ref lowerMap(), \ref upperMap(), 492 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 493 /// 494 /// It is useful for multiple \ref run() calls. Basically, all the given 495 /// parameters are kept for the next \ref run() call, unless 496 /// \ref resetParams() or \ref reset() is used. 497 /// If the underlying digraph was also modified after the construction 498 /// of the class or the last \ref reset() call, then the \ref reset() 499 /// function must be used, otherwise \ref resetParams() is sufficient. 500 /// 501 /// For example, 502 /// \code 503 /// CapacityScaling<ListDigraph> cs(graph); 504 /// 505 /// // First run 506 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 507 /// .supplyMap(sup).run(); 508 /// 509 /// // Run again with modified cost map (resetParams() is not called, 510 /// // so only the cost map have to be set again) 511 /// cost[e] += 100; 512 /// cs.costMap(cost).run(); 513 /// 514 /// // Run again from scratch using resetParams() 515 /// // (the lower bounds will be set to zero on all arcs) 516 /// cs.resetParams(); 517 /// cs.upperMap(capacity).costMap(cost) 518 /// .supplyMap(sup).run(); 519 /// \endcode 520 /// 521 /// \return <tt>(*this)</tt> 522 /// 523 /// \see reset(), run() 524 CapacityScaling& resetParams() { 525 for (int i = 0; i != _node_num; ++i) { 526 _supply[i] = 0; 527 } 528 for (int j = 0; j != _res_arc_num; ++j) { 529 _lower[j] = 0; 530 _upper[j] = INF; 531 _cost[j] = _forward[j] ? 1 : -1; 532 } 533 _have_lower = false; 534 return *this; 535 } 536 537 /// \brief Reset the internal data structures and all the parameters 538 /// that have been given before. 539 /// 540 /// This function resets the internal data structures and all the 541 /// paramaters that have been given before using functions \ref lowerMap(), 542 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 543 /// 544 /// It is useful for multiple \ref run() calls. Basically, all the given 545 /// parameters are kept for the next \ref run() call, unless 546 /// \ref resetParams() or \ref reset() is used. 547 /// If the underlying digraph was also modified after the construction 548 /// of the class or the last \ref reset() call, then the \ref reset() 549 /// function must be used, otherwise \ref resetParams() is sufficient. 550 /// 551 /// See \ref resetParams() for examples. 552 /// 553 /// \return <tt>(*this)</tt> 554 /// 555 /// \see resetParams(), run() 556 CapacityScaling& reset() { 317 557 // Resize vectors 318 558 _node_num = countNodes(_graph); … … 378 618 379 619 // Reset parameters 380 reset(); 381 } 382 383 /// \name Parameters 384 /// The parameters of the algorithm can be specified using these 385 /// functions. 386 387 /// @{ 388 389 /// \brief Set the lower bounds on the arcs. 390 /// 391 /// This function sets the lower bounds on the arcs. 392 /// If it is not used before calling \ref run(), the lower bounds 393 /// will be set to zero on all arcs. 394 /// 395 /// \param map An arc map storing the lower bounds. 396 /// Its \c Value type must be convertible to the \c Value type 397 /// of the algorithm. 398 /// 399 /// \return <tt>(*this)</tt> 400 template <typename LowerMap> 401 CapacityScaling& lowerMap(const LowerMap& map) { 402 _have_lower = true; 403 for (ArcIt a(_graph); a != INVALID; ++a) { 404 _lower[_arc_idf[a]] = map[a]; 405 _lower[_arc_idb[a]] = map[a]; 406 } 407 return *this; 408 } 409 410 /// \brief Set the upper bounds (capacities) on the arcs. 411 /// 412 /// This function sets the upper bounds (capacities) on the arcs. 413 /// If it is not used before calling \ref run(), the upper bounds 414 /// will be set to \ref INF on all arcs (i.e. the flow value will be 415 /// unbounded from above). 416 /// 417 /// \param map An arc map storing the upper bounds. 418 /// Its \c Value type must be convertible to the \c Value type 419 /// of the algorithm. 420 /// 421 /// \return <tt>(*this)</tt> 422 template<typename UpperMap> 423 CapacityScaling& upperMap(const UpperMap& map) { 424 for (ArcIt a(_graph); a != INVALID; ++a) { 425 _upper[_arc_idf[a]] = map[a]; 426 } 427 return *this; 428 } 429 430 /// \brief Set the costs of the arcs. 431 /// 432 /// This function sets the costs of the arcs. 433 /// If it is not used before calling \ref run(), the costs 434 /// will be set to \c 1 on all arcs. 435 /// 436 /// \param map An arc map storing the costs. 437 /// Its \c Value type must be convertible to the \c Cost type 438 /// of the algorithm. 439 /// 440 /// \return <tt>(*this)</tt> 441 template<typename CostMap> 442 CapacityScaling& costMap(const CostMap& map) { 443 for (ArcIt a(_graph); a != INVALID; ++a) { 444 _cost[_arc_idf[a]] = map[a]; 445 _cost[_arc_idb[a]] = -map[a]; 446 } 447 return *this; 448 } 449 450 /// \brief Set the supply values of the nodes. 451 /// 452 /// This function sets the supply values of the nodes. 453 /// If neither this function nor \ref stSupply() is used before 454 /// calling \ref run(), the supply of each node will be set to zero. 455 /// 456 /// \param map A node map storing the supply values. 457 /// Its \c Value type must be convertible to the \c Value type 458 /// of the algorithm. 459 /// 460 /// \return <tt>(*this)</tt> 461 template<typename SupplyMap> 462 CapacityScaling& supplyMap(const SupplyMap& map) { 463 for (NodeIt n(_graph); n != INVALID; ++n) { 464 _supply[_node_id[n]] = map[n]; 465 } 466 return *this; 467 } 468 469 /// \brief Set single source and target nodes and a supply value. 470 /// 471 /// This function sets a single source node and a single target node 472 /// and the required flow value. 473 /// If neither this function nor \ref supplyMap() is used before 474 /// calling \ref run(), the supply of each node will be set to zero. 475 /// 476 /// Using this function has the same effect as using \ref supplyMap() 477 /// with such a map in which \c k is assigned to \c s, \c -k is 478 /// assigned to \c t and all other nodes have zero supply value. 479 /// 480 /// \param s The source node. 481 /// \param t The target node. 482 /// \param k The required amount of flow from node \c s to node \c t 483 /// (i.e. the supply of \c s and the demand of \c t). 484 /// 485 /// \return <tt>(*this)</tt> 486 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { 487 for (int i = 0; i != _node_num; ++i) { 488 _supply[i] = 0; 489 } 490 _supply[_node_id[s]] = k; 491 _supply[_node_id[t]] = -k; 492 return *this; 493 } 494 495 /// @} 496 497 /// \name Execution control 498 /// The algorithm can be executed using \ref run(). 499 500 /// @{ 501 502 /// \brief Run the algorithm. 503 /// 504 /// This function runs the algorithm. 505 /// The paramters can be specified using functions \ref lowerMap(), 506 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 507 /// For example, 508 /// \code 509 /// CapacityScaling<ListDigraph> cs(graph); 510 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 511 /// .supplyMap(sup).run(); 512 /// \endcode 513 /// 514 /// This function can be called more than once. All the parameters 515 /// that have been given are kept for the next call, unless 516 /// \ref reset() is called, thus only the modified parameters 517 /// have to be set again. See \ref reset() for examples. 518 /// However, the underlying digraph must not be modified after this 519 /// class have been constructed, since it copies and extends the graph. 520 /// 521 /// \param factor The capacity scaling factor. It must be larger than 522 /// one to use scaling. If it is less or equal to one, then scaling 523 /// will be disabled. 524 /// 525 /// \return \c INFEASIBLE if no feasible flow exists, 526 /// \n \c OPTIMAL if the problem has optimal solution 527 /// (i.e. it is feasible and bounded), and the algorithm has found 528 /// optimal flow and node potentials (primal and dual solutions), 529 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 530 /// and infinite upper bound. It means that the objective function 531 /// is unbounded on that arc, however, note that it could actually be 532 /// bounded over the feasible flows, but this algroithm cannot handle 533 /// these cases. 534 /// 535 /// \see ProblemType 536 ProblemType run(int factor = 4) { 537 _factor = factor; 538 ProblemType pt = init(); 539 if (pt != OPTIMAL) return pt; 540 return start(); 541 } 542 543 /// \brief Reset all the parameters that have been given before. 544 /// 545 /// This function resets all the paramaters that have been given 546 /// before using functions \ref lowerMap(), \ref upperMap(), 547 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 548 /// 549 /// It is useful for multiple run() calls. If this function is not 550 /// used, all the parameters given before are kept for the next 551 /// \ref run() call. 552 /// However, the underlying digraph must not be modified after this 553 /// class have been constructed, since it copies and extends the graph. 554 /// 555 /// For example, 556 /// \code 557 /// CapacityScaling<ListDigraph> cs(graph); 558 /// 559 /// // First run 560 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 561 /// .supplyMap(sup).run(); 562 /// 563 /// // Run again with modified cost map (reset() is not called, 564 /// // so only the cost map have to be set again) 565 /// cost[e] += 100; 566 /// cs.costMap(cost).run(); 567 /// 568 /// // Run again from scratch using reset() 569 /// // (the lower bounds will be set to zero on all arcs) 570 /// cs.reset(); 571 /// cs.upperMap(capacity).costMap(cost) 572 /// .supplyMap(sup).run(); 573 /// \endcode 574 /// 575 /// \return <tt>(*this)</tt> 576 CapacityScaling& reset() { 577 for (int i = 0; i != _node_num; ++i) { 578 _supply[i] = 0; 579 } 580 for (int j = 0; j != _res_arc_num; ++j) { 581 _lower[j] = 0; 582 _upper[j] = INF; 583 _cost[j] = _forward[j] ? 1 : -1; 584 } 585 _have_lower = false; 620 resetParams(); 586 621 return *this; 587 622 } … … 765 800 if (_factor > 1) { 766 801 // With scaling 767 Value max_sup = 0, max_dem = 0 ;768 for (int i = 0; i != _ node_num; ++i) {802 Value max_sup = 0, max_dem = 0, max_cap = 0; 803 for (int i = 0; i != _root; ++i) { 769 804 Value ex = _excess[i]; 770 805 if ( ex > max_sup) max_sup = ex; 771 806 if (-ex > max_dem) max_dem = -ex; 772 }773 Value max_cap = 0;774 for (int j = 0; j != _res_arc_num; ++j) {775 if (_res_cap[j] > max_cap) max_cap = _res_cap[j];807 int last_out = _first_out[i+1] - 1; 808 for (int j = _first_out[i]; j != last_out; ++j) { 809 if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; 810 } 776 811 } 777 812 max_sup = std::min(std::min(max_sup, max_dem), max_cap); -
lemon/circulation.h
r833 r891 174 174 \tparam SM The type of the supply map. The default map type is 175 175 \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". 176 \tparam TR The traits class that defines various types used by the 177 algorithm. By default, it is \ref CirculationDefaultTraits 178 "CirculationDefaultTraits<GR, LM, UM, SM>". 179 In most cases, this parameter should not be set directly, 180 consider to use the named template parameters instead. 176 181 */ 177 182 #ifdef DOXYGEN -
lemon/cost_scaling.h
r887 r911 105 105 /// \tparam GR The digraph type the algorithm runs on. 106 106 /// \tparam V The number type used for flow amounts, capacity bounds 107 /// and supply values in the algorithm. By default it is \c int.107 /// and supply values in the algorithm. By default, it is \c int. 108 108 /// \tparam C The number type used for costs and potentials in the 109 /// algorithm. By default it is the same as \c V. 109 /// algorithm. By default, it is the same as \c V. 110 /// \tparam TR The traits class that defines various types used by the 111 /// algorithm. By default, it is \ref CostScalingDefaultTraits 112 /// "CostScalingDefaultTraits<GR, V, C>". 113 /// In most cases, this parameter should not be set directly, 114 /// consider to use the named template parameters instead. 110 115 /// 111 116 /// \warning Both number types must be signed and all input data must … … 137 142 /// 138 143 /// The large cost type used for internal computations. 139 /// Using the \ref CostScalingDefaultTraits "default traits class", 140 /// it is \c long \c long if the \c Cost type is integer, 144 /// By default, it is \c long \c long if the \c Cost type is integer, 141 145 /// otherwise it is \c double. 142 146 typedef typename TR::LargeCost LargeCost; … … 198 202 199 203 typedef std::vector<int> IntVector; 200 typedef std::vector<char> BoolVector;201 204 typedef std::vector<Value> ValueVector; 202 205 typedef std::vector<Cost> CostVector; 203 206 typedef std::vector<LargeCost> LargeCostVector; 207 typedef std::vector<char> BoolVector; 208 // Note: vector<char> is used instead of vector<bool> for efficiency reasons 204 209 205 210 private: … … 245 250 bool _have_lower; 246 251 Value _sum_supply; 252 int _sup_node_num; 247 253 248 254 // Data structures for storing the digraph … … 273 279 int _alpha; 274 280 281 IntVector _buckets; 282 IntVector _bucket_next; 283 IntVector _bucket_prev; 284 IntVector _rank; 285 int _max_rank; 286 275 287 // Data for a StaticDigraph structure 276 288 typedef std::pair<int, int> IntPair; … … 333 345 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, 334 346 "The cost type of CostScaling must be signed"); 335 347 348 // Reset data structures 349 reset(); 350 } 351 352 /// \name Parameters 353 /// The parameters of the algorithm can be specified using these 354 /// functions. 355 356 /// @{ 357 358 /// \brief Set the lower bounds on the arcs. 359 /// 360 /// This function sets the lower bounds on the arcs. 361 /// If it is not used before calling \ref run(), the lower bounds 362 /// will be set to zero on all arcs. 363 /// 364 /// \param map An arc map storing the lower bounds. 365 /// Its \c Value type must be convertible to the \c Value type 366 /// of the algorithm. 367 /// 368 /// \return <tt>(*this)</tt> 369 template <typename LowerMap> 370 CostScaling& lowerMap(const LowerMap& map) { 371 _have_lower = true; 372 for (ArcIt a(_graph); a != INVALID; ++a) { 373 _lower[_arc_idf[a]] = map[a]; 374 _lower[_arc_idb[a]] = map[a]; 375 } 376 return *this; 377 } 378 379 /// \brief Set the upper bounds (capacities) on the arcs. 380 /// 381 /// This function sets the upper bounds (capacities) on the arcs. 382 /// If it is not used before calling \ref run(), the upper bounds 383 /// will be set to \ref INF on all arcs (i.e. the flow value will be 384 /// unbounded from above). 385 /// 386 /// \param map An arc map storing the upper bounds. 387 /// Its \c Value type must be convertible to the \c Value type 388 /// of the algorithm. 389 /// 390 /// \return <tt>(*this)</tt> 391 template<typename UpperMap> 392 CostScaling& upperMap(const UpperMap& map) { 393 for (ArcIt a(_graph); a != INVALID; ++a) { 394 _upper[_arc_idf[a]] = map[a]; 395 } 396 return *this; 397 } 398 399 /// \brief Set the costs of the arcs. 400 /// 401 /// This function sets the costs of the arcs. 402 /// If it is not used before calling \ref run(), the costs 403 /// will be set to \c 1 on all arcs. 404 /// 405 /// \param map An arc map storing the costs. 406 /// Its \c Value type must be convertible to the \c Cost type 407 /// of the algorithm. 408 /// 409 /// \return <tt>(*this)</tt> 410 template<typename CostMap> 411 CostScaling& costMap(const CostMap& map) { 412 for (ArcIt a(_graph); a != INVALID; ++a) { 413 _scost[_arc_idf[a]] = map[a]; 414 _scost[_arc_idb[a]] = -map[a]; 415 } 416 return *this; 417 } 418 419 /// \brief Set the supply values of the nodes. 420 /// 421 /// This function sets the supply values of the nodes. 422 /// If neither this function nor \ref stSupply() is used before 423 /// calling \ref run(), the supply of each node will be set to zero. 424 /// 425 /// \param map A node map storing the supply values. 426 /// Its \c Value type must be convertible to the \c Value type 427 /// of the algorithm. 428 /// 429 /// \return <tt>(*this)</tt> 430 template<typename SupplyMap> 431 CostScaling& supplyMap(const SupplyMap& map) { 432 for (NodeIt n(_graph); n != INVALID; ++n) { 433 _supply[_node_id[n]] = map[n]; 434 } 435 return *this; 436 } 437 438 /// \brief Set single source and target nodes and a supply value. 439 /// 440 /// This function sets a single source node and a single target node 441 /// and the required flow value. 442 /// If neither this function nor \ref supplyMap() is used before 443 /// calling \ref run(), the supply of each node will be set to zero. 444 /// 445 /// Using this function has the same effect as using \ref supplyMap() 446 /// with such a map in which \c k is assigned to \c s, \c -k is 447 /// assigned to \c t and all other nodes have zero supply value. 448 /// 449 /// \param s The source node. 450 /// \param t The target node. 451 /// \param k The required amount of flow from node \c s to node \c t 452 /// (i.e. the supply of \c s and the demand of \c t). 453 /// 454 /// \return <tt>(*this)</tt> 455 CostScaling& stSupply(const Node& s, const Node& t, Value k) { 456 for (int i = 0; i != _res_node_num; ++i) { 457 _supply[i] = 0; 458 } 459 _supply[_node_id[s]] = k; 460 _supply[_node_id[t]] = -k; 461 return *this; 462 } 463 464 /// @} 465 466 /// \name Execution control 467 /// The algorithm can be executed using \ref run(). 468 469 /// @{ 470 471 /// \brief Run the algorithm. 472 /// 473 /// This function runs the algorithm. 474 /// The paramters can be specified using functions \ref lowerMap(), 475 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 476 /// For example, 477 /// \code 478 /// CostScaling<ListDigraph> cs(graph); 479 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 480 /// .supplyMap(sup).run(); 481 /// \endcode 482 /// 483 /// This function can be called more than once. All the given parameters 484 /// are kept for the next call, unless \ref resetParams() or \ref reset() 485 /// is used, thus only the modified parameters have to be set again. 486 /// If the underlying digraph was also modified after the construction 487 /// of the class (or the last \ref reset() call), then the \ref reset() 488 /// function must be called. 489 /// 490 /// \param method The internal method that will be used in the 491 /// algorithm. For more information, see \ref Method. 492 /// \param factor The cost scaling factor. It must be larger than one. 493 /// 494 /// \return \c INFEASIBLE if no feasible flow exists, 495 /// \n \c OPTIMAL if the problem has optimal solution 496 /// (i.e. it is feasible and bounded), and the algorithm has found 497 /// optimal flow and node potentials (primal and dual solutions), 498 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 499 /// and infinite upper bound. It means that the objective function 500 /// is unbounded on that arc, however, note that it could actually be 501 /// bounded over the feasible flows, but this algroithm cannot handle 502 /// these cases. 503 /// 504 /// \see ProblemType, Method 505 /// \see resetParams(), reset() 506 ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { 507 _alpha = factor; 508 ProblemType pt = init(); 509 if (pt != OPTIMAL) return pt; 510 start(method); 511 return OPTIMAL; 512 } 513 514 /// \brief Reset all the parameters that have been given before. 515 /// 516 /// This function resets all the paramaters that have been given 517 /// before using functions \ref lowerMap(), \ref upperMap(), 518 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 519 /// 520 /// It is useful for multiple \ref run() calls. Basically, all the given 521 /// parameters are kept for the next \ref run() call, unless 522 /// \ref resetParams() or \ref reset() is used. 523 /// If the underlying digraph was also modified after the construction 524 /// of the class or the last \ref reset() call, then the \ref reset() 525 /// function must be used, otherwise \ref resetParams() is sufficient. 526 /// 527 /// For example, 528 /// \code 529 /// CostScaling<ListDigraph> cs(graph); 530 /// 531 /// // First run 532 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 533 /// .supplyMap(sup).run(); 534 /// 535 /// // Run again with modified cost map (resetParams() is not called, 536 /// // so only the cost map have to be set again) 537 /// cost[e] += 100; 538 /// cs.costMap(cost).run(); 539 /// 540 /// // Run again from scratch using resetParams() 541 /// // (the lower bounds will be set to zero on all arcs) 542 /// cs.resetParams(); 543 /// cs.upperMap(capacity).costMap(cost) 544 /// .supplyMap(sup).run(); 545 /// \endcode 546 /// 547 /// \return <tt>(*this)</tt> 548 /// 549 /// \see reset(), run() 550 CostScaling& resetParams() { 551 for (int i = 0; i != _res_node_num; ++i) { 552 _supply[i] = 0; 553 } 554 int limit = _first_out[_root]; 555 for (int j = 0; j != limit; ++j) { 556 _lower[j] = 0; 557 _upper[j] = INF; 558 _scost[j] = _forward[j] ? 1 : -1; 559 } 560 for (int j = limit; j != _res_arc_num; ++j) { 561 _lower[j] = 0; 562 _upper[j] = INF; 563 _scost[j] = 0; 564 _scost[_reverse[j]] = 0; 565 } 566 _have_lower = false; 567 return *this; 568 } 569 570 /// \brief Reset all the parameters that have been given before. 571 /// 572 /// This function resets all the paramaters that have been given 573 /// before using functions \ref lowerMap(), \ref upperMap(), 574 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 575 /// 576 /// It is useful for multiple run() calls. If this function is not 577 /// used, all the parameters given before are kept for the next 578 /// \ref run() call. 579 /// However, the underlying digraph must not be modified after this 580 /// class have been constructed, since it copies and extends the graph. 581 /// \return <tt>(*this)</tt> 582 CostScaling& reset() { 336 583 // Resize vectors 337 584 _node_num = countNodes(_graph); … … 401 648 402 649 // Reset parameters 403 reset(); 404 } 405 406 /// \name Parameters 407 /// The parameters of the algorithm can be specified using these 408 /// functions. 409 410 /// @{ 411 412 /// \brief Set the lower bounds on the arcs. 413 /// 414 /// This function sets the lower bounds on the arcs. 415 /// If it is not used before calling \ref run(), the lower bounds 416 /// will be set to zero on all arcs. 417 /// 418 /// \param map An arc map storing the lower bounds. 419 /// Its \c Value type must be convertible to the \c Value type 420 /// of the algorithm. 421 /// 422 /// \return <tt>(*this)</tt> 423 template <typename LowerMap> 424 CostScaling& lowerMap(const LowerMap& map) { 425 _have_lower = true; 426 for (ArcIt a(_graph); a != INVALID; ++a) { 427 _lower[_arc_idf[a]] = map[a]; 428 _lower[_arc_idb[a]] = map[a]; 429 } 430 return *this; 431 } 432 433 /// \brief Set the upper bounds (capacities) on the arcs. 434 /// 435 /// This function sets the upper bounds (capacities) on the arcs. 436 /// If it is not used before calling \ref run(), the upper bounds 437 /// will be set to \ref INF on all arcs (i.e. the flow value will be 438 /// unbounded from above). 439 /// 440 /// \param map An arc map storing the upper bounds. 441 /// Its \c Value type must be convertible to the \c Value type 442 /// of the algorithm. 443 /// 444 /// \return <tt>(*this)</tt> 445 template<typename UpperMap> 446 CostScaling& upperMap(const UpperMap& map) { 447 for (ArcIt a(_graph); a != INVALID; ++a) { 448 _upper[_arc_idf[a]] = map[a]; 449 } 450 return *this; 451 } 452 453 /// \brief Set the costs of the arcs. 454 /// 455 /// This function sets the costs of the arcs. 456 /// If it is not used before calling \ref run(), the costs 457 /// will be set to \c 1 on all arcs. 458 /// 459 /// \param map An arc map storing the costs. 460 /// Its \c Value type must be convertible to the \c Cost type 461 /// of the algorithm. 462 /// 463 /// \return <tt>(*this)</tt> 464 template<typename CostMap> 465 CostScaling& costMap(const CostMap& map) { 466 for (ArcIt a(_graph); a != INVALID; ++a) { 467 _scost[_arc_idf[a]] = map[a]; 468 _scost[_arc_idb[a]] = -map[a]; 469 } 470 return *this; 471 } 472 473 /// \brief Set the supply values of the nodes. 474 /// 475 /// This function sets the supply values of the nodes. 476 /// If neither this function nor \ref stSupply() is used before 477 /// calling \ref run(), the supply of each node will be set to zero. 478 /// 479 /// \param map A node map storing the supply values. 480 /// Its \c Value type must be convertible to the \c Value type 481 /// of the algorithm. 482 /// 483 /// \return <tt>(*this)</tt> 484 template<typename SupplyMap> 485 CostScaling& supplyMap(const SupplyMap& map) { 486 for (NodeIt n(_graph); n != INVALID; ++n) { 487 _supply[_node_id[n]] = map[n]; 488 } 489 return *this; 490 } 491 492 /// \brief Set single source and target nodes and a supply value. 493 /// 494 /// This function sets a single source node and a single target node 495 /// and the required flow value. 496 /// If neither this function nor \ref supplyMap() is used before 497 /// calling \ref run(), the supply of each node will be set to zero. 498 /// 499 /// Using this function has the same effect as using \ref supplyMap() 500 /// with such a map in which \c k is assigned to \c s, \c -k is 501 /// assigned to \c t and all other nodes have zero supply value. 502 /// 503 /// \param s The source node. 504 /// \param t The target node. 505 /// \param k The required amount of flow from node \c s to node \c t 506 /// (i.e. the supply of \c s and the demand of \c t). 507 /// 508 /// \return <tt>(*this)</tt> 509 CostScaling& stSupply(const Node& s, const Node& t, Value k) { 510 for (int i = 0; i != _res_node_num; ++i) { 511 _supply[i] = 0; 512 } 513 _supply[_node_id[s]] = k; 514 _supply[_node_id[t]] = -k; 515 return *this; 516 } 517 518 /// @} 519 520 /// \name Execution control 521 /// The algorithm can be executed using \ref run(). 522 523 /// @{ 524 525 /// \brief Run the algorithm. 526 /// 527 /// This function runs the algorithm. 528 /// The paramters can be specified using functions \ref lowerMap(), 529 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 530 /// For example, 531 /// \code 532 /// CostScaling<ListDigraph> cs(graph); 533 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 534 /// .supplyMap(sup).run(); 535 /// \endcode 536 /// 537 /// This function can be called more than once. All the parameters 538 /// that have been given are kept for the next call, unless 539 /// \ref reset() is called, thus only the modified parameters 540 /// have to be set again. See \ref reset() for examples. 541 /// However, the underlying digraph must not be modified after this 542 /// class have been constructed, since it copies and extends the graph. 543 /// 544 /// \param method The internal method that will be used in the 545 /// algorithm. For more information, see \ref Method. 546 /// \param factor The cost scaling factor. It must be larger than one. 547 /// 548 /// \return \c INFEASIBLE if no feasible flow exists, 549 /// \n \c OPTIMAL if the problem has optimal solution 550 /// (i.e. it is feasible and bounded), and the algorithm has found 551 /// optimal flow and node potentials (primal and dual solutions), 552 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 553 /// and infinite upper bound. It means that the objective function 554 /// is unbounded on that arc, however, note that it could actually be 555 /// bounded over the feasible flows, but this algroithm cannot handle 556 /// these cases. 557 /// 558 /// \see ProblemType, Method 559 ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { 560 _alpha = factor; 561 ProblemType pt = init(); 562 if (pt != OPTIMAL) return pt; 563 start(method); 564 return OPTIMAL; 565 } 566 567 /// \brief Reset all the parameters that have been given before. 568 /// 569 /// This function resets all the paramaters that have been given 570 /// before using functions \ref lowerMap(), \ref upperMap(), 571 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 572 /// 573 /// It is useful for multiple run() calls. If this function is not 574 /// used, all the parameters given before are kept for the next 575 /// \ref run() call. 576 /// However, the underlying digraph must not be modified after this 577 /// class have been constructed, since it copies and extends the graph. 578 /// 579 /// For example, 580 /// \code 581 /// CostScaling<ListDigraph> cs(graph); 582 /// 583 /// // First run 584 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 585 /// .supplyMap(sup).run(); 586 /// 587 /// // Run again with modified cost map (reset() is not called, 588 /// // so only the cost map have to be set again) 589 /// cost[e] += 100; 590 /// cs.costMap(cost).run(); 591 /// 592 /// // Run again from scratch using reset() 593 /// // (the lower bounds will be set to zero on all arcs) 594 /// cs.reset(); 595 /// cs.upperMap(capacity).costMap(cost) 596 /// .supplyMap(sup).run(); 597 /// \endcode 598 /// 599 /// \return <tt>(*this)</tt> 600 CostScaling& reset() { 601 for (int i = 0; i != _res_node_num; ++i) { 602 _supply[i] = 0; 603 } 604 int limit = _first_out[_root]; 605 for (int j = 0; j != limit; ++j) { 606 _lower[j] = 0; 607 _upper[j] = INF; 608 _scost[j] = _forward[j] ? 1 : -1; 609 } 610 for (int j = limit; j != _res_arc_num; ++j) { 611 _lower[j] = 0; 612 _upper[j] = INF; 613 _scost[j] = 0; 614 _scost[_reverse[j]] = 0; 615 } 616 _have_lower = false; 650 resetParams(); 617 651 return *this; 618 652 } … … 803 837 } 804 838 839 _sup_node_num = 0; 840 for (NodeIt n(_graph); n != INVALID; ++n) { 841 if (sup[n] > 0) ++_sup_node_num; 842 } 843 805 844 // Find a feasible flow using Circulation 806 845 Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> … … 837 876 for (int a = _first_out[_root]; a != _res_arc_num; ++a) { 838 877 int ra = _reverse[a]; 839 _res_cap[a] = 1;878 _res_cap[a] = 0; 840 879 _res_cap[ra] = 0; 841 880 _cost[a] = 0; … … 851 890 // Maximum path length for partial augment 852 891 const int MAX_PATH_LENGTH = 4; 853 892 893 // Initialize data structures for buckets 894 _max_rank = _alpha * _res_node_num; 895 _buckets.resize(_max_rank); 896 _bucket_next.resize(_res_node_num + 1); 897 _bucket_prev.resize(_res_node_num + 1); 898 _rank.resize(_res_node_num + 1); 899 854 900 // Execute the algorithm 855 901 switch (method) { … … 890 936 } 891 937 } 938 939 // Initialize a cost scaling phase 940 void initPhase() { 941 // Saturate arcs not satisfying the optimality condition 942 for (int u = 0; u != _res_node_num; ++u) { 943 int last_out = _first_out[u+1]; 944 LargeCost pi_u = _pi[u]; 945 for (int a = _first_out[u]; a != last_out; ++a) { 946 int v = _target[a]; 947 if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) { 948 Value delta = _res_cap[a]; 949 _excess[u] -= delta; 950 _excess[v] += delta; 951 _res_cap[a] = 0; 952 _res_cap[_reverse[a]] += delta; 953 } 954 } 955 } 956 957 // Find active nodes (i.e. nodes with positive excess) 958 for (int u = 0; u != _res_node_num; ++u) { 959 if (_excess[u] > 0) _active_nodes.push_back(u); 960 } 961 962 // Initialize the next arcs 963 for (int u = 0; u != _res_node_num; ++u) { 964 _next_out[u] = _first_out[u]; 965 } 966 } 967 968 // Early termination heuristic 969 bool earlyTermination() { 970 const double EARLY_TERM_FACTOR = 3.0; 971 972 // Build a static residual graph 973 _arc_vec.clear(); 974 _cost_vec.clear(); 975 for (int j = 0; j != _res_arc_num; ++j) { 976 if (_res_cap[j] > 0) { 977 _arc_vec.push_back(IntPair(_source[j], _target[j])); 978 _cost_vec.push_back(_cost[j] + 1); 979 } 980 } 981 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); 982 983 // Run Bellman-Ford algorithm to check if the current flow is optimal 984 BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); 985 bf.init(0); 986 bool done = false; 987 int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); 988 for (int i = 0; i < K && !done; ++i) { 989 done = bf.processNextWeakRound(); 990 } 991 return done; 992 } 993 994 // Global potential update heuristic 995 void globalUpdate() { 996 int bucket_end = _root + 1; 997 998 // Initialize buckets 999 for (int r = 0; r != _max_rank; ++r) { 1000 _buckets[r] = bucket_end; 1001 } 1002 Value total_excess = 0; 1003 for (int i = 0; i != _res_node_num; ++i) { 1004 if (_excess[i] < 0) { 1005 _rank[i] = 0; 1006 _bucket_next[i] = _buckets[0]; 1007 _bucket_prev[_buckets[0]] = i; 1008 _buckets[0] = i; 1009 } else { 1010 total_excess += _excess[i]; 1011 _rank[i] = _max_rank; 1012 } 1013 } 1014 if (total_excess == 0) return; 1015 1016 // Search the buckets 1017 int r = 0; 1018 for ( ; r != _max_rank; ++r) { 1019 while (_buckets[r] != bucket_end) { 1020 // Remove the first node from the current bucket 1021 int u = _buckets[r]; 1022 _buckets[r] = _bucket_next[u]; 1023 1024 // Search the incomming arcs of u 1025 LargeCost pi_u = _pi[u]; 1026 int last_out = _first_out[u+1]; 1027 for (int a = _first_out[u]; a != last_out; ++a) { 1028 int ra = _reverse[a]; 1029 if (_res_cap[ra] > 0) { 1030 int v = _source[ra]; 1031 int old_rank_v = _rank[v]; 1032 if (r < old_rank_v) { 1033 // Compute the new rank of v 1034 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; 1035 int new_rank_v = old_rank_v; 1036 if (nrc < LargeCost(_max_rank)) 1037 new_rank_v = r + 1 + int(nrc); 1038 1039 // Change the rank of v 1040 if (new_rank_v < old_rank_v) { 1041 _rank[v] = new_rank_v; 1042 _next_out[v] = _first_out[v]; 1043 1044 // Remove v from its old bucket 1045 if (old_rank_v < _max_rank) { 1046 if (_buckets[old_rank_v] == v) { 1047 _buckets[old_rank_v] = _bucket_next[v]; 1048 } else { 1049 _bucket_next[_bucket_prev[v]] = _bucket_next[v]; 1050 _bucket_prev[_bucket_next[v]] = _bucket_prev[v]; 1051 } 1052 } 1053 1054 // Insert v to its new bucket 1055 _bucket_next[v] = _buckets[new_rank_v]; 1056 _bucket_prev[_buckets[new_rank_v]] = v; 1057 _buckets[new_rank_v] = v; 1058 } 1059 } 1060 } 1061 } 1062 1063 // Finish search if there are no more active nodes 1064 if (_excess[u] > 0) { 1065 total_excess -= _excess[u]; 1066 if (total_excess <= 0) break; 1067 } 1068 } 1069 if (total_excess <= 0) break; 1070 } 1071 1072 // Relabel nodes 1073 for (int u = 0; u != _res_node_num; ++u) { 1074 int k = std::min(_rank[u], r); 1075 if (k > 0) { 1076 _pi[u] -= _epsilon * k; 1077 _next_out[u] = _first_out[u]; 1078 } 1079 } 1080 } 892 1081 893 1082 /// Execute the algorithm performing augment and relabel operations 894 1083 void startAugment(int max_length = std::numeric_limits<int>::max()) { 895 1084 // Paramters for heuristics 896 const int BF_HEURISTIC_EPSILON_BOUND = 1000; 897 const int BF_HEURISTIC_BOUND_FACTOR = 3; 898 1085 const int EARLY_TERM_EPSILON_LIMIT = 1000; 1086 const double GLOBAL_UPDATE_FACTOR = 3.0; 1087 1088 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * 1089 (_res_node_num + _sup_node_num * _sup_node_num)); 1090 int next_update_limit = global_update_freq; 1091 1092 int relabel_cnt = 0; 1093 899 1094 // Perform cost scaling phases 900 IntVector pred_arc(_res_node_num); 901 std::vector<int> path_nodes; 1095 std::vector<int> path; 902 1096 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? 903 1097 1 : _epsilon / _alpha ) 904 1098 { 905 // "Early Termination" heuristic: use Bellman-Ford algorithm 906 // to check if the current flow is optimal 907 if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { 908 _arc_vec.clear(); 909 _cost_vec.clear(); 910 for (int j = 0; j != _res_arc_num; ++j) { 911 if (_res_cap[j] > 0) { 912 _arc_vec.push_back(IntPair(_source[j], _target[j])); 913 _cost_vec.push_back(_cost[j] + 1); 914 } 915 } 916 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); 917 918 BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); 919 bf.init(0); 920 bool done = false; 921 int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); 922 for (int i = 0; i < K && !done; ++i) 923 done = bf.processNextWeakRound(); 924 if (done) break; 925 } 926 927 // Saturate arcs not satisfying the optimality condition 928 for (int a = 0; a != _res_arc_num; ++a) { 929 if (_res_cap[a] > 0 && 930 _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { 931 Value delta = _res_cap[a]; 932 _excess[_source[a]] -= delta; 933 _excess[_target[a]] += delta; 934 _res_cap[a] = 0; 935 _res_cap[_reverse[a]] += delta; 936 } 1099 // Early termination heuristic 1100 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { 1101 if (earlyTermination()) break; 937 1102 } 938 1103 939 // Find active nodes (i.e. nodes with positive excess) 940 for (int u = 0; u != _res_node_num; ++u) { 941 if (_excess[u] > 0) _active_nodes.push_back(u); 942 } 943 944 // Initialize the next arcs 945 for (int u = 0; u != _res_node_num; ++u) { 946 _next_out[u] = _first_out[u]; 947 } 948 1104 // Initialize current phase 1105 initPhase(); 1106 949 1107 // Perform partial augment and relabel operations 950 1108 while (true) { … … 956 1114 if (_active_nodes.size() == 0) break; 957 1115 int start = _active_nodes.front(); 958 path_nodes.clear();959 path_nodes.push_back(start);960 1116 961 1117 // Find an augmenting path from the start node 1118 path.clear(); 962 1119 int tip = start; 963 while (_excess[tip] >= 0 && 964 int(path_nodes.size()) <= max_length) { 1120 while (_excess[tip] >= 0 && int(path.size()) < max_length) { 965 1121 int u; 966 LargeCost min_red_cost, rc; 967 int last_out = _sum_supply < 0 ? 968 _first_out[tip+1] : _first_out[tip+1] - 1; 1122 LargeCost min_red_cost, rc, pi_tip = _pi[tip]; 1123 int last_out = _first_out[tip+1]; 969 1124 for (int a = _next_out[tip]; a != last_out; ++a) { 970 if (_res_cap[a] > 0 && 971 _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { 972 u = _target[a]; 973 pred_arc[u] = a; 1125 u = _target[a]; 1126 if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) { 1127 path.push_back(a); 974 1128 _next_out[tip] = a; 975 1129 tip = u; 976 path_nodes.push_back(tip);977 1130 goto next_step; 978 1131 } … … 980 1133 981 1134 // Relabel tip node 982 min_red_cost = std::numeric_limits<LargeCost>::max() / 2; 1135 min_red_cost = std::numeric_limits<LargeCost>::max(); 1136 if (tip != start) { 1137 int ra = _reverse[path.back()]; 1138 min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; 1139 } 983 1140 for (int a = _first_out[tip]; a != last_out; ++a) { 984 rc = _cost[a] + _pi[_source[a]]- _pi[_target[a]];1141 rc = _cost[a] + pi_tip - _pi[_target[a]]; 985 1142 if (_res_cap[a] > 0 && rc < min_red_cost) { 986 1143 min_red_cost = rc; … … 988 1145 } 989 1146 _pi[tip] -= min_red_cost + _epsilon; 990 991 // Reset the next arc of tip992 1147 _next_out[tip] = _first_out[tip]; 1148 ++relabel_cnt; 993 1149 994 1150 // Step back 995 1151 if (tip != start) { 996 path_nodes.pop_back();997 tip = path_nodes.back();1152 tip = _source[path.back()]; 1153 path.pop_back(); 998 1154 } 999 1155 … … 1003 1159 // Augment along the found path (as much flow as possible) 1004 1160 Value delta; 1005 int u, v = path_nodes.front(), pa; 1006 for (int i = 1; i < int(path_nodes.size()); ++i) { 1161 int pa, u, v = start; 1162 for (int i = 0; i != int(path.size()); ++i) { 1163 pa = path[i]; 1007 1164 u = v; 1008 v = path_nodes[i]; 1009 pa = pred_arc[v]; 1165 v = _target[pa]; 1010 1166 delta = std::min(_res_cap[pa], _excess[u]); 1011 1167 _res_cap[pa] -= delta; … … 1016 1172 _active_nodes.push_back(v); 1017 1173 } 1174 1175 // Global update heuristic 1176 if (relabel_cnt >= next_update_limit) { 1177 globalUpdate(); 1178 next_update_limit += global_update_freq; 1179 } 1018 1180 } 1019 1181 } … … 1023 1185 void startPush() { 1024 1186 // Paramters for heuristics 1025 const int BF_HEURISTIC_EPSILON_BOUND = 1000; 1026 const int BF_HEURISTIC_BOUND_FACTOR = 3; 1027 1187 const int EARLY_TERM_EPSILON_LIMIT = 1000; 1188 const double GLOBAL_UPDATE_FACTOR = 2.0; 1189 1190 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * 1191 (_res_node_num + _sup_node_num * _sup_node_num)); 1192 int next_update_limit = global_update_freq; 1193 1194 int relabel_cnt = 0; 1195 1028 1196 // Perform cost scaling phases 1029 1197 BoolVector hyper(_res_node_num, false); 1198 LargeCostVector hyper_cost(_res_node_num); 1030 1199 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? 1031 1200 1 : _epsilon / _alpha ) 1032 1201 { 1033 // "Early Termination" heuristic: use Bellman-Ford algorithm 1034 // to check if the current flow is optimal 1035 if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { 1036 _arc_vec.clear(); 1037 _cost_vec.clear(); 1038 for (int j = 0; j != _res_arc_num; ++j) { 1039 if (_res_cap[j] > 0) { 1040 _arc_vec.push_back(IntPair(_source[j], _target[j])); 1041 _cost_vec.push_back(_cost[j] + 1); 1042 } 1043 } 1044 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); 1045 1046 BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); 1047 bf.init(0); 1048 bool done = false; 1049 int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); 1050 for (int i = 0; i < K && !done; ++i) 1051 done = bf.processNextWeakRound(); 1052 if (done) break; 1053 } 1054 1055 // Saturate arcs not satisfying the optimality condition 1056 for (int a = 0; a != _res_arc_num; ++a) { 1057 if (_res_cap[a] > 0 && 1058 _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { 1059 Value delta = _res_cap[a]; 1060 _excess[_source[a]] -= delta; 1061 _excess[_target[a]] += delta; 1062 _res_cap[a] = 0; 1063 _res_cap[_reverse[a]] += delta; 1064 } 1065 } 1066 1067 // Find active nodes (i.e. nodes with positive excess) 1068 for (int u = 0; u != _res_node_num; ++u) { 1069 if (_excess[u] > 0) _active_nodes.push_back(u); 1070 } 1071 1072 // Initialize the next arcs 1073 for (int u = 0; u != _res_node_num; ++u) { 1074 _next_out[u] = _first_out[u]; 1075 } 1202 // Early termination heuristic 1203 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { 1204 if (earlyTermination()) break; 1205 } 1206 1207 // Initialize current phase 1208 initPhase(); 1076 1209 1077 1210 // Perform push and relabel operations 1078 1211 while (_active_nodes.size() > 0) { 1079 LargeCost min_red_cost, rc ;1212 LargeCost min_red_cost, rc, pi_n; 1080 1213 Value delta; 1081 1214 int n, t, a, last_out = _res_arc_num; 1082 1215 1216 next_node: 1083 1217 // Select an active node (FIFO selection) 1084 next_node:1085 1218 n = _active_nodes.front(); 1086 last_out = _ sum_supply < 0 ?1087 _first_out[n+1] : _first_out[n+1] - 1;1088 1219 last_out = _first_out[n+1]; 1220 pi_n = _pi[n]; 1221 1089 1222 // Perform push operations if there are admissible arcs 1090 1223 if (_excess[n] > 0) { 1091 1224 for (a = _next_out[n]; a != last_out; ++a) { 1092 1225 if (_res_cap[a] > 0 && 1093 _cost[a] + _pi[_source[a]]- _pi[_target[a]] < 0) {1226 _cost[a] + pi_n - _pi[_target[a]] < 0) { 1094 1227 delta = std::min(_res_cap[a], _excess[n]); 1095 1228 t = _target[a]; … … 1097 1230 // Push-look-ahead heuristic 1098 1231 Value ahead = -_excess[t]; 1099 int last_out_t = _ sum_supply < 0 ?1100 _first_out[t+1] : _first_out[t+1] - 1;1232 int last_out_t = _first_out[t+1]; 1233 LargeCost pi_t = _pi[t]; 1101 1234 for (int ta = _next_out[t]; ta != last_out_t; ++ta) { 1102 1235 if (_res_cap[ta] > 0 && 1103 _cost[ta] + _pi[_source[ta]]- _pi[_target[ta]] < 0)1236 _cost[ta] + pi_t - _pi[_target[ta]] < 0) 1104 1237 ahead += _res_cap[ta]; 1105 1238 if (ahead >= delta) break; … … 1108 1241 1109 1242 // Push flow along the arc 1110 if (ahead < delta ) {1243 if (ahead < delta && !hyper[t]) { 1111 1244 _res_cap[a] -= ahead; 1112 1245 _res_cap[_reverse[a]] += ahead; … … 1115 1248 _active_nodes.push_front(t); 1116 1249 hyper[t] = true; 1250 hyper_cost[t] = _cost[a] + pi_n - pi_t; 1117 1251 _next_out[n] = a; 1118 1252 goto next_node; … … 1137 1271 // Relabel the node if it is still active (or hyper) 1138 1272 if (_excess[n] > 0 || hyper[n]) { 1139 min_red_cost = std::numeric_limits<LargeCost>::max() / 2; 1273 min_red_cost = hyper[n] ? -hyper_cost[n] : 1274 std::numeric_limits<LargeCost>::max(); 1140 1275 for (int a = _first_out[n]; a != last_out; ++a) { 1141 rc = _cost[a] + _pi[_source[a]]- _pi[_target[a]];1276 rc = _cost[a] + pi_n - _pi[_target[a]]; 1142 1277 if (_res_cap[a] > 0 && rc < min_red_cost) { 1143 1278 min_red_cost = rc; … … 1145 1280 } 1146 1281 _pi[n] -= min_red_cost + _epsilon; 1282 _next_out[n] = _first_out[n]; 1147 1283 hyper[n] = false; 1148 1149 // Reset the next arc 1150 _next_out[n] = _first_out[n]; 1284 ++relabel_cnt; 1151 1285 } 1152 1286 … … 1158 1292 _active_nodes.pop_front(); 1159 1293 } 1294 1295 // Global update heuristic 1296 if (relabel_cnt >= next_update_limit) { 1297 globalUpdate(); 1298 for (int u = 0; u != _res_node_num; ++u) 1299 hyper[u] = false; 1300 next_update_limit += global_update_freq; 1301 } 1160 1302 } 1161 1303 } -
lemon/cycle_canceling.h
r886 r911 145 145 146 146 typedef std::vector<int> IntVector; 147 typedef std::vector<char> CharVector;148 147 typedef std::vector<double> DoubleVector; 149 148 typedef std::vector<Value> ValueVector; 150 149 typedef std::vector<Cost> CostVector; 150 typedef std::vector<char> BoolVector; 151 // Note: vector<char> is used instead of vector<bool> for efficiency reasons 151 152 152 153 private: … … 199 200 IntArcMap _arc_idb; 200 201 IntVector _first_out; 201 CharVector _forward;202 BoolVector _forward; 202 203 IntVector _source; 203 204 IntVector _target; … … 251 252 "The cost type of CycleCanceling must be signed"); 252 253 254 // Reset data structures 255 reset(); 256 } 257 258 /// \name Parameters 259 /// The parameters of the algorithm can be specified using these 260 /// functions. 261 262 /// @{ 263 264 /// \brief Set the lower bounds on the arcs. 265 /// 266 /// This function sets the lower bounds on the arcs. 267 /// If it is not used before calling \ref run(), the lower bounds 268 /// will be set to zero on all arcs. 269 /// 270 /// \param map An arc map storing the lower bounds. 271 /// Its \c Value type must be convertible to the \c Value type 272 /// of the algorithm. 273 /// 274 /// \return <tt>(*this)</tt> 275 template <typename LowerMap> 276 CycleCanceling& lowerMap(const LowerMap& map) { 277 _have_lower = true; 278 for (ArcIt a(_graph); a != INVALID; ++a) { 279 _lower[_arc_idf[a]] = map[a]; 280 _lower[_arc_idb[a]] = map[a]; 281 } 282 return *this; 283 } 284 285 /// \brief Set the upper bounds (capacities) on the arcs. 286 /// 287 /// This function sets the upper bounds (capacities) on the arcs. 288 /// If it is not used before calling \ref run(), the upper bounds 289 /// will be set to \ref INF on all arcs (i.e. the flow value will be 290 /// unbounded from above). 291 /// 292 /// \param map An arc map storing the upper bounds. 293 /// Its \c Value type must be convertible to the \c Value type 294 /// of the algorithm. 295 /// 296 /// \return <tt>(*this)</tt> 297 template<typename UpperMap> 298 CycleCanceling& upperMap(const UpperMap& map) { 299 for (ArcIt a(_graph); a != INVALID; ++a) { 300 _upper[_arc_idf[a]] = map[a]; 301 } 302 return *this; 303 } 304 305 /// \brief Set the costs of the arcs. 306 /// 307 /// This function sets the costs of the arcs. 308 /// If it is not used before calling \ref run(), the costs 309 /// will be set to \c 1 on all arcs. 310 /// 311 /// \param map An arc map storing the costs. 312 /// Its \c Value type must be convertible to the \c Cost type 313 /// of the algorithm. 314 /// 315 /// \return <tt>(*this)</tt> 316 template<typename CostMap> 317 CycleCanceling& costMap(const CostMap& map) { 318 for (ArcIt a(_graph); a != INVALID; ++a) { 319 _cost[_arc_idf[a]] = map[a]; 320 _cost[_arc_idb[a]] = -map[a]; 321 } 322 return *this; 323 } 324 325 /// \brief Set the supply values of the nodes. 326 /// 327 /// This function sets the supply values of the nodes. 328 /// If neither this function nor \ref stSupply() is used before 329 /// calling \ref run(), the supply of each node will be set to zero. 330 /// 331 /// \param map A node map storing the supply values. 332 /// Its \c Value type must be convertible to the \c Value type 333 /// of the algorithm. 334 /// 335 /// \return <tt>(*this)</tt> 336 template<typename SupplyMap> 337 CycleCanceling& supplyMap(const SupplyMap& map) { 338 for (NodeIt n(_graph); n != INVALID; ++n) { 339 _supply[_node_id[n]] = map[n]; 340 } 341 return *this; 342 } 343 344 /// \brief Set single source and target nodes and a supply value. 345 /// 346 /// This function sets a single source node and a single target node 347 /// and the required flow value. 348 /// If neither this function nor \ref supplyMap() is used before 349 /// calling \ref run(), the supply of each node will be set to zero. 350 /// 351 /// Using this function has the same effect as using \ref supplyMap() 352 /// with such a map in which \c k is assigned to \c s, \c -k is 353 /// assigned to \c t and all other nodes have zero supply value. 354 /// 355 /// \param s The source node. 356 /// \param t The target node. 357 /// \param k The required amount of flow from node \c s to node \c t 358 /// (i.e. the supply of \c s and the demand of \c t). 359 /// 360 /// \return <tt>(*this)</tt> 361 CycleCanceling& stSupply(const Node& s, const Node& t, Value k) { 362 for (int i = 0; i != _res_node_num; ++i) { 363 _supply[i] = 0; 364 } 365 _supply[_node_id[s]] = k; 366 _supply[_node_id[t]] = -k; 367 return *this; 368 } 369 370 /// @} 371 372 /// \name Execution control 373 /// The algorithm can be executed using \ref run(). 374 375 /// @{ 376 377 /// \brief Run the algorithm. 378 /// 379 /// This function runs the algorithm. 380 /// The paramters can be specified using functions \ref lowerMap(), 381 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 382 /// For example, 383 /// \code 384 /// CycleCanceling<ListDigraph> cc(graph); 385 /// cc.lowerMap(lower).upperMap(upper).costMap(cost) 386 /// .supplyMap(sup).run(); 387 /// \endcode 388 /// 389 /// This function can be called more than once. All the given parameters 390 /// are kept for the next call, unless \ref resetParams() or \ref reset() 391 /// is used, thus only the modified parameters have to be set again. 392 /// If the underlying digraph was also modified after the construction 393 /// of the class (or the last \ref reset() call), then the \ref reset() 394 /// function must be called. 395 /// 396 /// \param method The cycle-canceling method that will be used. 397 /// For more information, see \ref Method. 398 /// 399 /// \return \c INFEASIBLE if no feasible flow exists, 400 /// \n \c OPTIMAL if the problem has optimal solution 401 /// (i.e. it is feasible and bounded), and the algorithm has found 402 /// optimal flow and node potentials (primal and dual solutions), 403 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 404 /// and infinite upper bound. It means that the objective function 405 /// is unbounded on that arc, however, note that it could actually be 406 /// bounded over the feasible flows, but this algroithm cannot handle 407 /// these cases. 408 /// 409 /// \see ProblemType, Method 410 /// \see resetParams(), reset() 411 ProblemType run(Method method = CANCEL_AND_TIGHTEN) { 412 ProblemType pt = init(); 413 if (pt != OPTIMAL) return pt; 414 start(method); 415 return OPTIMAL; 416 } 417 418 /// \brief Reset all the parameters that have been given before. 419 /// 420 /// This function resets all the paramaters that have been given 421 /// before using functions \ref lowerMap(), \ref upperMap(), 422 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 423 /// 424 /// It is useful for multiple \ref run() calls. Basically, all the given 425 /// parameters are kept for the next \ref run() call, unless 426 /// \ref resetParams() or \ref reset() is used. 427 /// If the underlying digraph was also modified after the construction 428 /// of the class or the last \ref reset() call, then the \ref reset() 429 /// function must be used, otherwise \ref resetParams() is sufficient. 430 /// 431 /// For example, 432 /// \code 433 /// CycleCanceling<ListDigraph> cs(graph); 434 /// 435 /// // First run 436 /// cc.lowerMap(lower).upperMap(upper).costMap(cost) 437 /// .supplyMap(sup).run(); 438 /// 439 /// // Run again with modified cost map (resetParams() is not called, 440 /// // so only the cost map have to be set again) 441 /// cost[e] += 100; 442 /// cc.costMap(cost).run(); 443 /// 444 /// // Run again from scratch using resetParams() 445 /// // (the lower bounds will be set to zero on all arcs) 446 /// cc.resetParams(); 447 /// cc.upperMap(capacity).costMap(cost) 448 /// .supplyMap(sup).run(); 449 /// \endcode 450 /// 451 /// \return <tt>(*this)</tt> 452 /// 453 /// \see reset(), run() 454 CycleCanceling& resetParams() { 455 for (int i = 0; i != _res_node_num; ++i) { 456 _supply[i] = 0; 457 } 458 int limit = _first_out[_root]; 459 for (int j = 0; j != limit; ++j) { 460 _lower[j] = 0; 461 _upper[j] = INF; 462 _cost[j] = _forward[j] ? 1 : -1; 463 } 464 for (int j = limit; j != _res_arc_num; ++j) { 465 _lower[j] = 0; 466 _upper[j] = INF; 467 _cost[j] = 0; 468 _cost[_reverse[j]] = 0; 469 } 470 _have_lower = false; 471 return *this; 472 } 473 474 /// \brief Reset the internal data structures and all the parameters 475 /// that have been given before. 476 /// 477 /// This function resets the internal data structures and all the 478 /// paramaters that have been given before using functions \ref lowerMap(), 479 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 480 /// 481 /// It is useful for multiple \ref run() calls. Basically, all the given 482 /// parameters are kept for the next \ref run() call, unless 483 /// \ref resetParams() or \ref reset() is used. 484 /// If the underlying digraph was also modified after the construction 485 /// of the class or the last \ref reset() call, then the \ref reset() 486 /// function must be used, otherwise \ref resetParams() is sufficient. 487 /// 488 /// See \ref resetParams() for examples. 489 /// 490 /// \return <tt>(*this)</tt> 491 /// 492 /// \see resetParams(), run() 493 CycleCanceling& reset() { 253 494 // Resize vectors 254 495 _node_num = countNodes(_graph); … … 316 557 317 558 // Reset parameters 318 reset(); 319 } 320 321 /// \name Parameters 322 /// The parameters of the algorithm can be specified using these 323 /// functions. 324 325 /// @{ 326 327 /// \brief Set the lower bounds on the arcs. 328 /// 329 /// This function sets the lower bounds on the arcs. 330 /// If it is not used before calling \ref run(), the lower bounds 331 /// will be set to zero on all arcs. 332 /// 333 /// \param map An arc map storing the lower bounds. 334 /// Its \c Value type must be convertible to the \c Value type 335 /// of the algorithm. 336 /// 337 /// \return <tt>(*this)</tt> 338 template <typename LowerMap> 339 CycleCanceling& lowerMap(const LowerMap& map) { 340 _have_lower = true; 341 for (ArcIt a(_graph); a != INVALID; ++a) { 342 _lower[_arc_idf[a]] = map[a]; 343 _lower[_arc_idb[a]] = map[a]; 344 } 345 return *this; 346 } 347 348 /// \brief Set the upper bounds (capacities) on the arcs. 349 /// 350 /// This function sets the upper bounds (capacities) on the arcs. 351 /// If it is not used before calling \ref run(), the upper bounds 352 /// will be set to \ref INF on all arcs (i.e. the flow value will be 353 /// unbounded from above). 354 /// 355 /// \param map An arc map storing the upper bounds. 356 /// Its \c Value type must be convertible to the \c Value type 357 /// of the algorithm. 358 /// 359 /// \return <tt>(*this)</tt> 360 template<typename UpperMap> 361 CycleCanceling& upperMap(const UpperMap& map) { 362 for (ArcIt a(_graph); a != INVALID; ++a) { 363 _upper[_arc_idf[a]] = map[a]; 364 } 365 return *this; 366 } 367 368 /// \brief Set the costs of the arcs. 369 /// 370 /// This function sets the costs of the arcs. 371 /// If it is not used before calling \ref run(), the costs 372 /// will be set to \c 1 on all arcs. 373 /// 374 /// \param map An arc map storing the costs. 375 /// Its \c Value type must be convertible to the \c Cost type 376 /// of the algorithm. 377 /// 378 /// \return <tt>(*this)</tt> 379 template<typename CostMap> 380 CycleCanceling& costMap(const CostMap& map) { 381 for (ArcIt a(_graph); a != INVALID; ++a) { 382 _cost[_arc_idf[a]] = map[a]; 383 _cost[_arc_idb[a]] = -map[a]; 384 } 385 return *this; 386 } 387 388 /// \brief Set the supply values of the nodes. 389 /// 390 /// This function sets the supply values of the nodes. 391 /// If neither this function nor \ref stSupply() is used before 392 /// calling \ref run(), the supply of each node will be set to zero. 393 /// 394 /// \param map A node map storing the supply values. 395 /// Its \c Value type must be convertible to the \c Value type 396 /// of the algorithm. 397 /// 398 /// \return <tt>(*this)</tt> 399 template<typename SupplyMap> 400 CycleCanceling& supplyMap(const SupplyMap& map) { 401 for (NodeIt n(_graph); n != INVALID; ++n) { 402 _supply[_node_id[n]] = map[n]; 403 } 404 return *this; 405 } 406 407 /// \brief Set single source and target nodes and a supply value. 408 /// 409 /// This function sets a single source node and a single target node 410 /// and the required flow value. 411 /// If neither this function nor \ref supplyMap() is used before 412 /// calling \ref run(), the supply of each node will be set to zero. 413 /// 414 /// Using this function has the same effect as using \ref supplyMap() 415 /// with such a map in which \c k is assigned to \c s, \c -k is 416 /// assigned to \c t and all other nodes have zero supply value. 417 /// 418 /// \param s The source node. 419 /// \param t The target node. 420 /// \param k The required amount of flow from node \c s to node \c t 421 /// (i.e. the supply of \c s and the demand of \c t). 422 /// 423 /// \return <tt>(*this)</tt> 424 CycleCanceling& stSupply(const Node& s, const Node& t, Value k) { 425 for (int i = 0; i != _res_node_num; ++i) { 426 _supply[i] = 0; 427 } 428 _supply[_node_id[s]] = k; 429 _supply[_node_id[t]] = -k; 430 return *this; 431 } 432 433 /// @} 434 435 /// \name Execution control 436 /// The algorithm can be executed using \ref run(). 437 438 /// @{ 439 440 /// \brief Run the algorithm. 441 /// 442 /// This function runs the algorithm. 443 /// The paramters can be specified using functions \ref lowerMap(), 444 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 445 /// For example, 446 /// \code 447 /// CycleCanceling<ListDigraph> cc(graph); 448 /// cc.lowerMap(lower).upperMap(upper).costMap(cost) 449 /// .supplyMap(sup).run(); 450 /// \endcode 451 /// 452 /// This function can be called more than once. All the parameters 453 /// that have been given are kept for the next call, unless 454 /// \ref reset() is called, thus only the modified parameters 455 /// have to be set again. See \ref reset() for examples. 456 /// However, the underlying digraph must not be modified after this 457 /// class have been constructed, since it copies and extends the graph. 458 /// 459 /// \param method The cycle-canceling method that will be used. 460 /// For more information, see \ref Method. 461 /// 462 /// \return \c INFEASIBLE if no feasible flow exists, 463 /// \n \c OPTIMAL if the problem has optimal solution 464 /// (i.e. it is feasible and bounded), and the algorithm has found 465 /// optimal flow and node potentials (primal and dual solutions), 466 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 467 /// and infinite upper bound. It means that the objective function 468 /// is unbounded on that arc, however, note that it could actually be 469 /// bounded over the feasible flows, but this algroithm cannot handle 470 /// these cases. 471 /// 472 /// \see ProblemType, Method 473 ProblemType run(Method method = CANCEL_AND_TIGHTEN) { 474 ProblemType pt = init(); 475 if (pt != OPTIMAL) return pt; 476 start(method); 477 return OPTIMAL; 478 } 479 480 /// \brief Reset all the parameters that have been given before. 481 /// 482 /// This function resets all the paramaters that have been given 483 /// before using functions \ref lowerMap(), \ref upperMap(), 484 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 485 /// 486 /// It is useful for multiple run() calls. If this function is not 487 /// used, all the parameters given before are kept for the next 488 /// \ref run() call. 489 /// However, the underlying digraph must not be modified after this 490 /// class have been constructed, since it copies and extends the graph. 491 /// 492 /// For example, 493 /// \code 494 /// CycleCanceling<ListDigraph> cs(graph); 495 /// 496 /// // First run 497 /// cc.lowerMap(lower).upperMap(upper).costMap(cost) 498 /// .supplyMap(sup).run(); 499 /// 500 /// // Run again with modified cost map (reset() is not called, 501 /// // so only the cost map have to be set again) 502 /// cost[e] += 100; 503 /// cc.costMap(cost).run(); 504 /// 505 /// // Run again from scratch using reset() 506 /// // (the lower bounds will be set to zero on all arcs) 507 /// cc.reset(); 508 /// cc.upperMap(capacity).costMap(cost) 509 /// .supplyMap(sup).run(); 510 /// \endcode 511 /// 512 /// \return <tt>(*this)</tt> 513 CycleCanceling& reset() { 514 for (int i = 0; i != _res_node_num; ++i) { 515 _supply[i] = 0; 516 } 517 int limit = _first_out[_root]; 518 for (int j = 0; j != limit; ++j) { 519 _lower[j] = 0; 520 _upper[j] = INF; 521 _cost[j] = _forward[j] ? 1 : -1; 522 } 523 for (int j = limit; j != _res_arc_num; ++j) { 524 _lower[j] = 0; 525 _upper[j] = INF; 526 _cost[j] = 0; 527 _cost[_reverse[j]] = 0; 528 } 529 _have_lower = false; 559 resetParams(); 530 560 return *this; 531 561 } … … 934 964 DoubleVector pi(_res_node_num, 0.0); 935 965 IntVector level(_res_node_num); 936 CharVector reached(_res_node_num);937 CharVector processed(_res_node_num);966 BoolVector reached(_res_node_num); 967 BoolVector processed(_res_node_num); 938 968 IntVector pred_node(_res_node_num); 939 969 IntVector pred_arc(_res_node_num); -
lemon/dfs.h
r835 r891 122 122 ///\tparam GR The type of the digraph the algorithm runs on. 123 123 ///The default type is \ref ListDigraph. 124 ///\tparam TR The traits class that defines various types used by the 125 ///algorithm. By default, it is \ref DfsDefaultTraits 126 ///"DfsDefaultTraits<GR>". 127 ///In most cases, this parameter should not be set directly, 128 ///consider to use the named template parameters instead. 124 129 #ifdef DOXYGEN 125 130 template <typename GR, … … 888 893 /// This class should only be used through the \ref dfs() function, 889 894 /// which makes it easier to use the algorithm. 895 /// 896 /// \tparam TR The traits class that defines various types used by the 897 /// algorithm. 890 898 template<class TR> 891 899 class DfsWizard : public TR … … 1238 1246 /// does not observe the DFS events. If you want to observe the DFS 1239 1247 /// events, you should implement your own visitor class. 1240 /// \tparam TR T raits class to set various datatypes used by the1241 /// algorithm. The default traits class is1242 /// \ref DfsVisitDefaultTraits"DfsVisitDefaultTraits<GR>".1243 /// See \ref DfsVisitDefaultTraits for the documentation of1244 /// a DFS visit traits class.1248 /// \tparam TR The traits class that defines various types used by the 1249 /// algorithm. By default, it is \ref DfsVisitDefaultTraits 1250 /// "DfsVisitDefaultTraits<GR>". 1251 /// In most cases, this parameter should not be set directly, 1252 /// consider to use the named template parameters instead. 1245 1253 #ifdef DOXYGEN 1246 1254 template <typename GR, typename VS, typename TR> -
lemon/dijkstra.h
r835 r891 193 193 ///it is necessary. The default map type is \ref 194 194 ///concepts::Digraph::ArcMap "GR::ArcMap<int>". 195 ///\tparam TR The traits class that defines various types used by the 196 ///algorithm. By default, it is \ref DijkstraDefaultTraits 197 ///"DijkstraDefaultTraits<GR, LEN>". 198 ///In most cases, this parameter should not be set directly, 199 ///consider to use the named template parameters instead. 195 200 #ifdef DOXYGEN 196 201 template <typename GR, typename LEN, typename TR> … … 1093 1098 /// This class should only be used through the \ref dijkstra() function, 1094 1099 /// which makes it easier to use the algorithm. 1100 /// 1101 /// \tparam TR The traits class that defines various types used by the 1102 /// algorithm. 1095 1103 template<class TR> 1096 1104 class DijkstraWizard : public TR -
lemon/glpk.h
r793 r902 26 26 #include <lemon/lp_base.h> 27 27 28 // forward declaration29 #if !defined _GLP_PROB && !defined GLP_PROB30 #define _GLP_PROB31 #define GLP_PROB32 typedef struct { double _opaque_prob; } glp_prob;33 /* LP/MIP problem object */34 #endif35 36 28 namespace lemon { 37 29 30 namespace _solver_bits { 31 class VoidPtr { 32 private: 33 void *_ptr; 34 public: 35 VoidPtr() : _ptr(0) {} 36 37 template <typename T> 38 VoidPtr(T* ptr) : _ptr(reinterpret_cast<void*>(ptr)) {} 39 40 template <typename T> 41 VoidPtr& operator=(T* ptr) { 42 _ptr = reinterpret_cast<void*>(ptr); 43 return *this; 44 } 45 46 template <typename T> 47 operator T*() const { return reinterpret_cast<T*>(_ptr); } 48 }; 49 } 38 50 39 51 /// \brief Base interface for the GLPK LP and MIP solver … … 44 56 protected: 45 57 46 typedef glp_prob LPX; 47 glp_prob* lp; 58 _solver_bits::VoidPtr lp; 48 59 49 60 GlpkBase(); … … 124 135 125 136 ///Pointer to the underlying GLPK data structure. 126 LPX *lpx() {return lp;}137 _solver_bits::VoidPtr lpx() {return lp;} 127 138 ///Const pointer to the underlying GLPK data structure. 128 const LPX *lpx() const {return lp;}139 _solver_bits::VoidPtr lpx() const {return lp;} 129 140 130 141 ///Returns the constraint identifier understood by GLPK. -
lemon/graph_to_eps.h
r833 r909 685 685 #else 686 686 os << bits::getWinFormattedDate(); 687 os << std::endl; 687 688 #endif 688 689 } 689 os << std::endl;690 690 691 691 if (_autoArcWidthScale) { -
lemon/hartmann_orlin.h
r859 r914 107 107 /// \tparam LEN The type of the length map. The default 108 108 /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". 109 /// \tparam TR The traits class that defines various types used by the 110 /// algorithm. By default, it is \ref HartmannOrlinDefaultTraits 111 /// "HartmannOrlinDefaultTraits<GR, LEN>". 112 /// In most cases, this parameter should not be set directly, 113 /// consider to use the named template parameters instead. 109 114 #ifdef DOXYGEN 110 115 template <typename GR, typename LEN, typename TR> … … 128 133 /// 129 134 /// The large value type used for internal computations. 130 /// Using the \ref HartmannOrlinDefaultTraits "default traits class", 131 /// it is \c long \c long if the \c Value type is integer, 135 /// By default, it is \c long \c long if the \c Value type is integer, 132 136 /// otherwise it is \c double. 133 137 typedef typename TR::LargeValue LargeValue; … … 402 406 /// \pre \ref run() or \ref findMinMean() must be called before 403 407 /// using this function. 404 LargeValue cycleLength() const {405 return _best_length;408 Value cycleLength() const { 409 return static_cast<Value>(_best_length); 406 410 } 407 411 -
lemon/howard.h
r818 r914 107 107 /// \tparam LEN The type of the length map. The default 108 108 /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". 109 /// \tparam TR The traits class that defines various types used by the 110 /// algorithm. By default, it is \ref HowardDefaultTraits 111 /// "HowardDefaultTraits<GR, LEN>". 112 /// In most cases, this parameter should not be set directly, 113 /// consider to use the named template parameters instead. 109 114 #ifdef DOXYGEN 110 115 template <typename GR, typename LEN, typename TR> … … 128 133 /// 129 134 /// The large value type used for internal computations. 130 /// Using the \ref HowardDefaultTraits "default traits class", 131 /// it is \c long \c long if the \c Value type is integer, 135 /// By default, it is \c long \c long if the \c Value type is integer, 132 136 /// otherwise it is \c double. 133 137 typedef typename TR::LargeValue LargeValue; … … 381 385 /// \pre \ref run() or \ref findMinMean() must be called before 382 386 /// using this function. 383 LargeValue cycleLength() const {384 return _best_length;387 Value cycleLength() const { 388 return static_cast<Value>(_best_length); 385 389 } 386 390 -
lemon/karp.h
r819 r914 105 105 /// \tparam LEN The type of the length map. The default 106 106 /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". 107 /// \tparam TR The traits class that defines various types used by the 108 /// algorithm. By default, it is \ref KarpDefaultTraits 109 /// "KarpDefaultTraits<GR, LEN>". 110 /// In most cases, this parameter should not be set directly, 111 /// consider to use the named template parameters instead. 107 112 #ifdef DOXYGEN 108 113 template <typename GR, typename LEN, typename TR> … … 126 131 /// 127 132 /// The large value type used for internal computations. 128 /// Using the \ref KarpDefaultTraits "default traits class", 129 /// it is \c long \c long if the \c Value type is integer, 133 /// By default, it is \c long \c long if the \c Value type is integer, 130 134 /// otherwise it is \c double. 131 135 typedef typename TR::LargeValue LargeValue; … … 389 393 /// \pre \ref run() or \ref findMinMean() must be called before 390 394 /// using this function. 391 LargeValue cycleLength() const {392 return _cycle_length;395 Value cycleLength() const { 396 return static_cast<Value>(_cycle_length); 393 397 } 394 398 -
lemon/lp_base.h
r833 r903 1230 1230 Row r; 1231 1231 c.expr().simplify(); 1232 r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound() :-INF,1232 r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF, 1233 1233 ExprIterator(c.expr().comps.begin(), cols), 1234 1234 ExprIterator(c.expr().comps.end(), cols), 1235 c.upperBounded()?c.upperBound() :INF));1235 c.upperBounded()?c.upperBound()-*c.expr():INF)); 1236 1236 return r; 1237 1237 } -
lemon/min_cost_arborescence.h
r760 r891 113 113 /// it is necessary. The default map type is \ref 114 114 /// concepts::Digraph::ArcMap "Digraph::ArcMap<int>". 115 /// \param TR Traits class to set various data types used 116 /// by the algorithm. The default traits class is 117 /// \ref MinCostArborescenceDefaultTraits 115 /// \tparam TR The traits class that defines various types used by the 116 /// algorithm. By default, it is \ref MinCostArborescenceDefaultTraits 118 117 /// "MinCostArborescenceDefaultTraits<GR, CM>". 118 /// In most cases, this parameter should not be set directly, 119 /// consider to use the named template parameters instead. 119 120 #ifndef DOXYGEN 120 121 template <typename GR, … … 123 124 MinCostArborescenceDefaultTraits<GR, CM> > 124 125 #else 125 template <typename GR, typename CM, type defTR>126 template <typename GR, typename CM, typename TR> 126 127 #endif 127 128 class MinCostArborescence { -
lemon/network_simplex.h
r878 r911 165 165 166 166 typedef std::vector<int> IntVector; 167 typedef std::vector<char> CharVector;168 167 typedef std::vector<Value> ValueVector; 169 168 typedef std::vector<Cost> CostVector; 169 typedef std::vector<char> BoolVector; 170 // Note: vector<char> is used instead of vector<bool> for efficiency reasons 170 171 171 172 // State constants for arcs … … 195 196 IntVector _source; 196 197 IntVector _target; 198 bool _arc_mixing; 197 199 198 200 // Node and arc data … … 213 215 IntVector _last_succ; 214 216 IntVector _dirty_revs; 215 CharVector _forward;216 CharVector _state;217 BoolVector _forward; 218 BoolVector _state; 217 219 int _root; 218 220 … … 245 247 const IntVector &_target; 246 248 const CostVector &_cost; 247 const CharVector &_state;249 const BoolVector &_state; 248 250 const CostVector &_pi; 249 251 int &_in_arc; … … 266 268 bool findEnteringArc() { 267 269 Cost c; 268 for (int e = _next_arc; e <_search_arc_num; ++e) {270 for (int e = _next_arc; e != _search_arc_num; ++e) { 269 271 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); 270 272 if (c < 0) { … … 274 276 } 275 277 } 276 for (int e = 0; e <_next_arc; ++e) {278 for (int e = 0; e != _next_arc; ++e) { 277 279 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); 278 280 if (c < 0) { … … 297 299 const IntVector &_target; 298 300 const CostVector &_cost; 299 const CharVector &_state;301 const BoolVector &_state; 300 302 const CostVector &_pi; 301 303 int &_in_arc; … … 314 316 bool findEnteringArc() { 315 317 Cost c, min = 0; 316 for (int e = 0; e <_search_arc_num; ++e) {318 for (int e = 0; e != _search_arc_num; ++e) { 317 319 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); 318 320 if (c < min) { … … 336 338 const IntVector &_target; 337 339 const CostVector &_cost; 338 const CharVector &_state;340 const BoolVector &_state; 339 341 const CostVector &_pi; 340 342 int &_in_arc; … … 355 357 { 356 358 // The main parameters of the pivot rule 357 const double BLOCK_SIZE_FACTOR = 0.5;359 const double BLOCK_SIZE_FACTOR = 1.0; 358 360 const int MIN_BLOCK_SIZE = 10; 359 361 … … 368 370 int cnt = _block_size; 369 371 int e; 370 for (e = _next_arc; e <_search_arc_num; ++e) {372 for (e = _next_arc; e != _search_arc_num; ++e) { 371 373 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); 372 374 if (c < min) { … … 379 381 } 380 382 } 381 for (e = 0; e <_next_arc; ++e) {383 for (e = 0; e != _next_arc; ++e) { 382 384 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); 383 385 if (c < min) { … … 409 411 const IntVector &_target; 410 412 const CostVector &_cost; 411 const CharVector &_state;413 const BoolVector &_state; 412 414 const CostVector &_pi; 413 415 int &_in_arc; … … 470 472 min = 0; 471 473 _curr_length = 0; 472 for (e = _next_arc; e <_search_arc_num; ++e) {474 for (e = _next_arc; e != _search_arc_num; ++e) { 473 475 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); 474 476 if (c < 0) { … … 481 483 } 482 484 } 483 for (e = 0; e <_next_arc; ++e) {485 for (e = 0; e != _next_arc; ++e) { 484 486 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); 485 487 if (c < 0) { … … 512 514 const IntVector &_target; 513 515 const CostVector &_cost; 514 const CharVector &_state;516 const BoolVector &_state; 515 517 const CostVector &_pi; 516 518 int &_in_arc; … … 565 567 // Check the current candidate list 566 568 int e; 567 for (int i = 0; i <_curr_length; ++i) {569 for (int i = 0; i != _curr_length; ++i) { 568 570 e = _candidates[i]; 569 571 _cand_cost[e] = _state[e] * … … 578 580 int limit = _head_length; 579 581 580 for (e = _next_arc; e <_search_arc_num; ++e) {582 for (e = _next_arc; e != _search_arc_num; ++e) { 581 583 _cand_cost[e] = _state[e] * 582 584 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); … … 590 592 } 591 593 } 592 for (e = 0; e <_next_arc; ++e) {594 for (e = 0; e != _next_arc; ++e) { 593 595 _cand_cost[e] = _state[e] * 594 596 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); … … 634 636 NetworkSimplex(const GR& graph, bool arc_mixing = false) : 635 637 _graph(graph), _node_id(graph), _arc_id(graph), 638 _arc_mixing(arc_mixing), 636 639 MAX(std::numeric_limits<Value>::max()), 637 640 INF(std::numeric_limits<Value>::has_infinity ? … … 644 647 "The cost type of NetworkSimplex must be signed"); 645 648 646 // Resize vectors 647 _node_num = countNodes(_graph); 648 _arc_num = countArcs(_graph); 649 int all_node_num = _node_num + 1; 650 int max_arc_num = _arc_num + 2 * _node_num; 651 652 _source.resize(max_arc_num); 653 _target.resize(max_arc_num); 654 655 _lower.resize(_arc_num); 656 _upper.resize(_arc_num); 657 _cap.resize(max_arc_num); 658 _cost.resize(max_arc_num); 659 _supply.resize(all_node_num); 660 _flow.resize(max_arc_num); 661 _pi.resize(all_node_num); 662 663 _parent.resize(all_node_num); 664 _pred.resize(all_node_num); 665 _forward.resize(all_node_num); 666 _thread.resize(all_node_num); 667 _rev_thread.resize(all_node_num); 668 _succ_num.resize(all_node_num); 669 _last_succ.resize(all_node_num); 670 _state.resize(max_arc_num); 671 672 // Copy the graph 673 int i = 0; 674 for (NodeIt n(_graph); n != INVALID; ++n, ++i) { 675 _node_id[n] = i; 676 } 677 if (arc_mixing) { 678 // Store the arcs in a mixed order 679 int k = std::max(int(std::sqrt(double(_arc_num))), 10); 680 int i = 0, j = 0; 681 for (ArcIt a(_graph); a != INVALID; ++a) { 682 _arc_id[a] = i; 683 _source[i] = _node_id[_graph.source(a)]; 684 _target[i] = _node_id[_graph.target(a)]; 685 if ((i += k) >= _arc_num) i = ++j; 686 } 687 } else { 688 // Store the arcs in the original order 689 int i = 0; 690 for (ArcIt a(_graph); a != INVALID; ++a, ++i) { 691 _arc_id[a] = i; 692 _source[i] = _node_id[_graph.source(a)]; 693 _target[i] = _node_id[_graph.target(a)]; 694 } 695 } 696 697 // Reset parameters 649 // Reset data structures 698 650 reset(); 699 651 } … … 843 795 /// \endcode 844 796 /// 845 /// This function can be called more than once. All the parameters846 /// that have been given are kept for the next call, unless847 /// \ref reset() is called, thus only the modified parameters848 /// have to be set again. See \ref reset() for examples.849 /// However, the underlying digraph must not be modified after this850 /// class have been constructed, since it copies and extends the graph.797 /// This function can be called more than once. All the given parameters 798 /// are kept for the next call, unless \ref resetParams() or \ref reset() 799 /// is used, thus only the modified parameters have to be set again. 800 /// If the underlying digraph was also modified after the construction 801 /// of the class (or the last \ref reset() call), then the \ref reset() 802 /// function must be called. 851 803 /// 852 804 /// \param pivot_rule The pivot rule that will be used during the … … 862 814 /// 863 815 /// \see ProblemType, PivotRule 816 /// \see resetParams(), reset() 864 817 ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { 865 818 if (!init()) return INFEASIBLE; … … 873 826 /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). 874 827 /// 875 /// It is useful for multiple run() calls. If this function is not 876 /// used, all the parameters given before are kept for the next 877 /// \ref run() call. 878 /// However, the underlying digraph must not be modified after this 879 /// class have been constructed, since it copies and extends the graph. 828 /// It is useful for multiple \ref run() calls. Basically, all the given 829 /// parameters are kept for the next \ref run() call, unless 830 /// \ref resetParams() or \ref reset() is used. 831 /// If the underlying digraph was also modified after the construction 832 /// of the class or the last \ref reset() call, then the \ref reset() 833 /// function must be used, otherwise \ref resetParams() is sufficient. 880 834 /// 881 835 /// For example, … … 887 841 /// .supplyMap(sup).run(); 888 842 /// 889 /// // Run again with modified cost map (reset () is not called,843 /// // Run again with modified cost map (resetParams() is not called, 890 844 /// // so only the cost map have to be set again) 891 845 /// cost[e] += 100; 892 846 /// ns.costMap(cost).run(); 893 847 /// 894 /// // Run again from scratch using reset ()848 /// // Run again from scratch using resetParams() 895 849 /// // (the lower bounds will be set to zero on all arcs) 896 /// ns.reset ();850 /// ns.resetParams(); 897 851 /// ns.upperMap(capacity).costMap(cost) 898 852 /// .supplyMap(sup).run(); … … 900 854 /// 901 855 /// \return <tt>(*this)</tt> 902 NetworkSimplex& reset() { 856 /// 857 /// \see reset(), run() 858 NetworkSimplex& resetParams() { 903 859 for (int i = 0; i != _node_num; ++i) { 904 860 _supply[i] = 0; … … 914 870 } 915 871 872 /// \brief Reset the internal data structures and all the parameters 873 /// that have been given before. 874 /// 875 /// This function resets the internal data structures and all the 876 /// paramaters that have been given before using functions \ref lowerMap(), 877 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 878 /// \ref supplyType(). 879 /// 880 /// It is useful for multiple \ref run() calls. Basically, all the given 881 /// parameters are kept for the next \ref run() call, unless 882 /// \ref resetParams() or \ref reset() is used. 883 /// If the underlying digraph was also modified after the construction 884 /// of the class or the last \ref reset() call, then the \ref reset() 885 /// function must be used, otherwise \ref resetParams() is sufficient. 886 /// 887 /// See \ref resetParams() for examples. 888 /// 889 /// \return <tt>(*this)</tt> 890 /// 891 /// \see resetParams(), run() 892 NetworkSimplex& reset() { 893 // Resize vectors 894 _node_num = countNodes(_graph); 895 _arc_num = countArcs(_graph); 896 int all_node_num = _node_num + 1; 897 int max_arc_num = _arc_num + 2 * _node_num; 898 899 _source.resize(max_arc_num); 900 _target.resize(max_arc_num); 901 902 _lower.resize(_arc_num); 903 _upper.resize(_arc_num); 904 _cap.resize(max_arc_num); 905 _cost.resize(max_arc_num); 906 _supply.resize(all_node_num); 907 _flow.resize(max_arc_num); 908 _pi.resize(all_node_num); 909 910 _parent.resize(all_node_num); 911 _pred.resize(all_node_num); 912 _forward.resize(all_node_num); 913 _thread.resize(all_node_num); 914 _rev_thread.resize(all_node_num); 915 _succ_num.resize(all_node_num); 916 _last_succ.resize(all_node_num); 917 _state.resize(max_arc_num); 918 919 // Copy the graph 920 int i = 0; 921 for (NodeIt n(_graph); n != INVALID; ++n, ++i) { 922 _node_id[n] = i; 923 } 924 if (_arc_mixing) { 925 // Store the arcs in a mixed order 926 int k = std::max(int(std::sqrt(double(_arc_num))), 10); 927 int i = 0, j = 0; 928 for (ArcIt a(_graph); a != INVALID; ++a) { 929 _arc_id[a] = i; 930 _source[i] = _node_id[_graph.source(a)]; 931 _target[i] = _node_id[_graph.target(a)]; 932 if ((i += k) >= _arc_num) i = ++j; 933 } 934 } else { 935 // Store the arcs in the original order 936 int i = 0; 937 for (ArcIt a(_graph); a != INVALID; ++a, ++i) { 938 _arc_id[a] = i; 939 _source[i] = _node_id[_graph.source(a)]; 940 _target[i] = _node_id[_graph.target(a)]; 941 } 942 } 943 944 // Reset parameters 945 resetParams(); 946 return *this; 947 } 948 916 949 /// @} 917 950 … … 1329 1362 1330 1363 // Update _rev_thread using the new _thread values 1331 for (int i = 0; i <int(_dirty_revs.size()); ++i) {1364 for (int i = 0; i != int(_dirty_revs.size()); ++i) { 1332 1365 u = _dirty_revs[i]; 1333 1366 _rev_thread[_thread[u]] = u; … … 1399 1432 _pi[u] += sigma; 1400 1433 } 1434 } 1435 1436 // Heuristic initial pivots 1437 bool initialPivots() { 1438 Value curr, total = 0; 1439 std::vector<Node> supply_nodes, demand_nodes; 1440 for (NodeIt u(_graph); u != INVALID; ++u) { 1441 curr = _supply[_node_id[u]]; 1442 if (curr > 0) { 1443 total += curr; 1444 supply_nodes.push_back(u); 1445 } 1446 else if (curr < 0) { 1447 demand_nodes.push_back(u); 1448 } 1449 } 1450 if (_sum_supply > 0) total -= _sum_supply; 1451 if (total <= 0) return true; 1452 1453 IntVector arc_vector; 1454 if (_sum_supply >= 0) { 1455 if (supply_nodes.size() == 1 && demand_nodes.size() == 1) { 1456 // Perform a reverse graph search from the sink to the source 1457 typename GR::template NodeMap<bool> reached(_graph, false); 1458 Node s = supply_nodes[0], t = demand_nodes[0]; 1459 std::vector<Node> stack; 1460 reached[t] = true; 1461 stack.push_back(t); 1462 while (!stack.empty()) { 1463 Node u, v = stack.back(); 1464 stack.pop_back(); 1465 if (v == s) break; 1466 for (InArcIt a(_graph, v); a != INVALID; ++a) { 1467 if (reached[u = _graph.source(a)]) continue; 1468 int j = _arc_id[a]; 1469 if (_cap[j] >= total) { 1470 arc_vector.push_back(j); 1471 reached[u] = true; 1472 stack.push_back(u); 1473 } 1474 } 1475 } 1476 } else { 1477 // Find the min. cost incomming arc for each demand node 1478 for (int i = 0; i != int(demand_nodes.size()); ++i) { 1479 Node v = demand_nodes[i]; 1480 Cost c, min_cost = std::numeric_limits<Cost>::max(); 1481 Arc min_arc = INVALID; 1482 for (InArcIt a(_graph, v); a != INVALID; ++a) { 1483 c = _cost[_arc_id[a]]; 1484 if (c < min_cost) { 1485 min_cost = c; 1486 min_arc = a; 1487 } 1488 } 1489 if (min_arc != INVALID) { 1490 arc_vector.push_back(_arc_id[min_arc]); 1491 } 1492 } 1493 } 1494 } else { 1495 // Find the min. cost outgoing arc for each supply node 1496 for (int i = 0; i != int(supply_nodes.size()); ++i) { 1497 Node u = supply_nodes[i]; 1498 Cost c, min_cost = std::numeric_limits<Cost>::max(); 1499 Arc min_arc = INVALID; 1500 for (OutArcIt a(_graph, u); a != INVALID; ++a) { 1501 c = _cost[_arc_id[a]]; 1502 if (c < min_cost) { 1503 min_cost = c; 1504 min_arc = a; 1505 } 1506 } 1507 if (min_arc != INVALID) { 1508 arc_vector.push_back(_arc_id[min_arc]); 1509 } 1510 } 1511 } 1512 1513 // Perform heuristic initial pivots 1514 for (int i = 0; i != int(arc_vector.size()); ++i) { 1515 in_arc = arc_vector[i]; 1516 if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - 1517 _pi[_target[in_arc]]) >= 0) continue; 1518 findJoinNode(); 1519 bool change = findLeavingArc(); 1520 if (delta >= MAX) return false; 1521 changeFlow(change); 1522 if (change) { 1523 updateTreeStructure(); 1524 updatePotential(); 1525 } 1526 } 1527 return true; 1401 1528 } 1402 1529 … … 1423 1550 PivotRuleImpl pivot(*this); 1424 1551 1552 // Perform heuristic initial pivots 1553 if (!initialPivots()) return UNBOUNDED; 1554 1425 1555 // Execute the Network Simplex algorithm 1426 1556 while (pivot.findEnteringArc()) { -
lemon/planarity.h
r862 r896 519 519 /// 520 520 /// This function implements the Boyer-Myrvold algorithm for 521 /// planarity checking of an undirected graph. It is a simplified521 /// planarity checking of an undirected simple graph. It is a simplified 522 522 /// version of the PlanarEmbedding algorithm class because neither 523 /// the embedding nor the kuratowski subdivisons are notcomputed.523 /// the embedding nor the Kuratowski subdivisons are computed. 524 524 template <typename GR> 525 525 bool checkPlanarity(const GR& graph) { … … 533 533 /// 534 534 /// This class implements the Boyer-Myrvold algorithm for planar 535 /// embedding of an undirected graph. The planar embedding is an535 /// embedding of an undirected simple graph. The planar embedding is an 536 536 /// ordering of the outgoing edges of the nodes, which is a possible 537 537 /// configuration to draw the graph in the plane. If there is not 538 /// such ordering then the graph contains a \f$ K_5 \f$(full graph539 /// with 5 nodes) or a \f$ K_{3,3} \f$(complete bipartite graph on540 /// 3 ANode and 3 BNode) subdivision.538 /// such ordering then the graph contains a K<sub>5</sub> (full graph 539 /// with 5 nodes) or a K<sub>3,3</sub> (complete bipartite graph on 540 /// 3 Red and 3 Blue nodes) subdivision. 541 541 /// 542 542 /// The current implementation calculates either an embedding or a 543 /// Kuratowski subdivision. The running time of the algorithm is 544 /// \f$ O(n) \f$. 543 /// Kuratowski subdivision. The running time of the algorithm is O(n). 544 /// 545 /// \see PlanarDrawing, checkPlanarity() 545 546 template <typename Graph> 546 547 class PlanarEmbedding { … … 592 593 public: 593 594 594 /// \brief The map for store of embedding 595 /// \brief The map type for storing the embedding 596 /// 597 /// The map type for storing the embedding. 598 /// \see embeddingMap() 595 599 typedef typename Graph::template ArcMap<Arc> EmbeddingMap; 596 600 597 601 /// \brief Constructor 598 602 /// 599 /// \note The graph should be simple, i.e. parallel and loop arc 600 /// free. 603 /// Constructor. 604 /// \pre The graph must be simple, i.e. it should not 605 /// contain parallel or loop arcs. 601 606 PlanarEmbedding(const Graph& graph) 602 607 : _graph(graph), _embedding(_graph), _kuratowski(graph, false) {} 603 608 604 /// \brief Run sthe algorithm.609 /// \brief Run the algorithm. 605 610 /// 606 /// Runs the algorithm.607 /// \param kuratowski If th e parameter isfalse, then the611 /// This function runs the algorithm. 612 /// \param kuratowski If this parameter is set to \c false, then the 608 613 /// algorithm does not compute a Kuratowski subdivision. 609 /// \return %True whenthe graph is planar.614 /// \return \c true if the graph is planar. 610 615 bool run(bool kuratowski = true) { 611 616 typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; … … 700 705 } 701 706 702 /// \brief Give sback the successor of an arc707 /// \brief Give back the successor of an arc 703 708 /// 704 /// Gives back the successor of an arc. This functionmakes709 /// This function gives back the successor of an arc. It makes 705 710 /// possible to query the cyclic order of the outgoing arcs from 706 711 /// a node. … … 709 714 } 710 715 711 /// \brief Give sback the calculated embedding map716 /// \brief Give back the calculated embedding map 712 717 /// 713 /// The returned map contains the successor of each arc in the 714 /// graph. 718 /// This function gives back the calculated embedding map, which 719 /// contains the successor of each arc in the cyclic order of the 720 /// outgoing arcs of its source node. 715 721 const EmbeddingMap& embeddingMap() const { 716 722 return _embedding; 717 723 } 718 724 719 /// \brief Give s back true if the undirected arc is in the720 /// kuratowskisubdivision725 /// \brief Give back \c true if the given edge is in the Kuratowski 726 /// subdivision 721 727 /// 722 /// Gives back true if the undirected arc is in the kuratowski 723 /// subdivision 724 /// \note The \c run() had to be called with true value. 725 bool kuratowski(const Edge& edge) { 728 /// This function gives back \c true if the given edge is in the found 729 /// Kuratowski subdivision. 730 /// \pre The \c run() function must be called with \c true parameter 731 /// before using this function. 732 bool kuratowski(const Edge& edge) const { 726 733 return _kuratowski[edge]; 727 734 } … … 2060 2067 /// 2061 2068 /// The planar drawing algorithm calculates positions for the nodes 2062 /// in the plane which coordinates satisfy that if the arcs are2063 /// represented with straight lines then they will not intersect2069 /// in the plane. These coordinates satisfy that if the edges are 2070 /// represented with straight lines, then they will not intersect 2064 2071 /// each other. 2065 2072 /// 2066 /// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid,2067 /// i.e. each node will be located in the \c [0 ,n-2]x[0,n-2] square.2073 /// Scnyder's algorithm embeds the graph on an \c (n-2)x(n-2) size grid, 2074 /// i.e. each node will be located in the \c [0..n-2]x[0..n-2] square. 2068 2075 /// The time complexity of the algorithm is O(n). 2076 /// 2077 /// \see PlanarEmbedding 2069 2078 template <typename Graph> 2070 2079 class PlanarDrawing { … … 2073 2082 TEMPLATE_GRAPH_TYPEDEFS(Graph); 2074 2083 2075 /// \brief The point type for stor ecoordinates2084 /// \brief The point type for storing coordinates 2076 2085 typedef dim2::Point<int> Point; 2077 /// \brief The map type for stor e coordinates2086 /// \brief The map type for storing the coordinates of the nodes 2078 2087 typedef typename Graph::template NodeMap<Point> PointMap; 2079 2088 … … 2082 2091 /// 2083 2092 /// Constructor 2084 /// \pre The graph should be simple, i.e. loop and parallel arc free. 2093 /// \pre The graph must be simple, i.e. it should not 2094 /// contain parallel or loop arcs. 2085 2095 PlanarDrawing(const Graph& graph) 2086 2096 : _graph(graph), _point_map(graph) {} … … 2367 2377 public: 2368 2378 2369 /// \brief Calculate sthe node positions2379 /// \brief Calculate the node positions 2370 2380 /// 2371 /// This function calculates the node positions .2372 /// \return %True if the graph is planar.2381 /// This function calculates the node positions on the plane. 2382 /// \return \c true if the graph is planar. 2373 2383 bool run() { 2374 2384 PlanarEmbedding<Graph> pe(_graph); … … 2379 2389 } 2380 2390 2381 /// \brief Calculate sthe node positions according to a2391 /// \brief Calculate the node positions according to a 2382 2392 /// combinatorical embedding 2383 2393 /// 2384 /// This function calculates the node locations. The \c embedding 2385 /// parameter should contain a valid combinatorical embedding, i.e. 2386 /// a valid cyclic order of the arcs. 2394 /// This function calculates the node positions on the plane. 2395 /// The given \c embedding map should contain a valid combinatorical 2396 /// embedding, i.e. a valid cyclic order of the arcs. 2397 /// It can be computed using PlanarEmbedding. 2387 2398 template <typename EmbeddingMap> 2388 2399 void run(const EmbeddingMap& embedding) { … … 2424 2435 /// \brief The coordinate of the given node 2425 2436 /// 2426 /// Th e coordinate of the given node.2437 /// This function returns the coordinate of the given node. 2427 2438 Point operator[](const Node& node) const { 2428 2439 return _point_map[node]; 2429 2440 } 2430 2441 2431 /// \brief Return s the grid embedding in a \e NodeMap.2442 /// \brief Return the grid embedding in a node map 2432 2443 /// 2433 /// Returns the grid embedding in a \e NodeMap of \c dim2::Point<int> . 2444 /// This function returns the grid embedding in a node map of 2445 /// \c dim2::Point<int> coordinates. 2434 2446 const PointMap& coords() const { 2435 2447 return _point_map; … … 2471 2483 /// 2472 2484 /// The graph coloring problem is the coloring of the graph nodes 2473 /// that there are notadjacent nodes with the same color. The2474 /// planar graphs can be always colored with four colors, itis2475 /// proved by Appel and Haken and their proofs provide a quadratic2485 /// so that there are no adjacent nodes with the same color. The 2486 /// planar graphs can always be colored with four colors, which is 2487 /// proved by Appel and Haken. Their proofs provide a quadratic 2476 2488 /// time algorithm for four coloring, but it could not be used to 2477 /// implement efficient algorithm. The five and six coloring can be2478 /// made in linear time, but in this class the five coloring has2489 /// implement an efficient algorithm. The five and six coloring can be 2490 /// made in linear time, but in this class, the five coloring has 2479 2491 /// quadratic worst case time complexity. The two coloring (if 2480 2492 /// possible) is solvable with a graph search algorithm and it is 2481 2493 /// implemented in \ref bipartitePartitions() function in LEMON. To 2482 /// decide whether the planar graph is three colorable is 2483 /// NP-complete. 2494 /// decide whether a planar graph is three colorable is NP-complete. 2484 2495 /// 2485 2496 /// This class contains member functions for calculate colorings 2486 2497 /// with five and six colors. The six coloring algorithm is a simple 2487 2498 /// greedy coloring on the backward minimum outgoing order of nodes. 2488 /// This order can be computed as in each phasethe node with least2489 /// outgoing arcs to unprocessed nodes i s chosen. This order2499 /// This order can be computed by selecting the node with least 2500 /// outgoing arcs to unprocessed nodes in each phase. This order 2490 2501 /// guarantees that when a node is chosen for coloring it has at 2491 2502 /// most five already colored adjacents. The five coloring algorithm … … 2500 2511 TEMPLATE_GRAPH_TYPEDEFS(Graph); 2501 2512 2502 /// \brief The map type for stor e color indexes2513 /// \brief The map type for storing color indices 2503 2514 typedef typename Graph::template NodeMap<int> IndexMap; 2504 /// \brief The map type for store colors 2515 /// \brief The map type for storing colors 2516 /// 2517 /// The map type for storing colors. 2518 /// \see Palette, Color 2505 2519 typedef ComposeMap<Palette, IndexMap> ColorMap; 2506 2520 2507 2521 /// \brief Constructor 2508 2522 /// 2509 /// Constructor 2510 /// \pre The graph should be simple, i.e. loop and parallel arc free. 2523 /// Constructor. 2524 /// \pre The graph must be simple, i.e. it should not 2525 /// contain parallel or loop arcs. 2511 2526 PlanarColoring(const Graph& graph) 2512 2527 : _graph(graph), _color_map(graph), _palette(0) { … … 2519 2534 } 2520 2535 2521 /// \brief Return s the \e NodeMap of color indexes2536 /// \brief Return the node map of color indices 2522 2537 /// 2523 /// Returns the \e NodeMap of color indexes. The values are in the2524 /// range \c [0..4] or \c [0..5] according to the coloring method.2538 /// This function returns the node map of color indices. The values are 2539 /// in the range \c [0..4] or \c [0..5] according to the coloring method. 2525 2540 IndexMap colorIndexMap() const { 2526 2541 return _color_map; 2527 2542 } 2528 2543 2529 /// \brief Return s the \e NodeMap of colors2544 /// \brief Return the node map of colors 2530 2545 /// 2531 /// Returns the \e NodeMap of colors. The values are five or six2532 /// distinct \ref lemon::Color "colors".2546 /// This function returns the node map of colors. The values are among 2547 /// five or six distinct \ref lemon::Color "colors". 2533 2548 ColorMap colorMap() const { 2534 2549 return composeMap(_palette, _color_map); 2535 2550 } 2536 2551 2537 /// \brief Return sthe color index of the node2552 /// \brief Return the color index of the node 2538 2553 /// 2539 /// Returns the color index of the node. The values are in the2540 /// range \c [0..4] or \c [0..5] according to the coloring method.2554 /// This function returns the color index of the given node. The value is 2555 /// in the range \c [0..4] or \c [0..5] according to the coloring method. 2541 2556 int colorIndex(const Node& node) const { 2542 2557 return _color_map[node]; 2543 2558 } 2544 2559 2545 /// \brief Return sthe color of the node2560 /// \brief Return the color of the node 2546 2561 /// 2547 /// Returns the color of the node. The values are five or six2548 /// distinct \ref lemon::Color "colors".2562 /// This function returns the color of the given node. The value is among 2563 /// five or six distinct \ref lemon::Color "colors". 2549 2564 Color color(const Node& node) const { 2550 2565 return _palette[_color_map[node]]; … … 2552 2567 2553 2568 2554 /// \brief Calculate sa coloring with at most six colors2569 /// \brief Calculate a coloring with at most six colors 2555 2570 /// 2556 2571 /// This function calculates a coloring with at most six colors. The time 2557 2572 /// complexity of this variant is linear in the size of the graph. 2558 /// \return %True when the algorithm could color the graph with six color.2559 /// If the algorithm fails, then the graph could not beplanar.2560 /// \note This function can return true if the graph is not2561 /// planar but it can be colored with 6colors.2573 /// \return \c true if the algorithm could color the graph with six colors. 2574 /// If the algorithm fails, then the graph is not planar. 2575 /// \note This function can return \c true if the graph is not 2576 /// planar, but it can be colored with at most six colors. 2562 2577 bool runSixColoring() { 2563 2578 … … 2661 2676 public: 2662 2677 2663 /// \brief Calculate sa coloring with at most five colors2678 /// \brief Calculate a coloring with at most five colors 2664 2679 /// 2665 2680 /// This function calculates a coloring with at most five 2666 2681 /// colors. The worst case time complexity of this variant is 2667 2682 /// quadratic in the size of the graph. 2683 /// \param embedding This map should contain a valid combinatorical 2684 /// embedding, i.e. a valid cyclic order of the arcs. 2685 /// It can be computed using PlanarEmbedding. 2668 2686 template <typename EmbeddingMap> 2669 2687 void runFiveColoring(const EmbeddingMap& embedding) { … … 2712 2730 } 2713 2731 2714 /// \brief Calculate sa coloring with at most five colors2732 /// \brief Calculate a coloring with at most five colors 2715 2733 /// 2716 2734 /// This function calculates a coloring with at most five 2717 2735 /// colors. The worst case time complexity of this variant is 2718 2736 /// quadratic in the size of the graph. 2719 /// \return %True whenthe graph is planar.2737 /// \return \c true if the graph is planar. 2720 2738 bool runFiveColoring() { 2721 2739 PlanarEmbedding<Graph> pe(_graph); -
lemon/preflow.h
r835 r891 114 114 /// second phase constructs a feasible maximum flow on each arc. 115 115 /// 116 /// \warning This implementation cannot handle infinite or very large 117 /// capacities (e.g. the maximum value of \c CAP::Value). 118 /// 116 119 /// \tparam GR The type of the digraph the algorithm runs on. 117 120 /// \tparam CAP The type of the capacity map. The default map 118 121 /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". 122 /// \tparam TR The traits class that defines various types used by the 123 /// algorithm. By default, it is \ref PreflowDefaultTraits 124 /// "PreflowDefaultTraits<GR, CAP>". 125 /// In most cases, this parameter should not be set directly, 126 /// consider to use the named template parameters instead. 119 127 #ifdef DOXYGEN 120 128 template <typename GR, typename CAP, typename TR> -
scripts/bib2dox.py
r801 r905 1 #! /usr/bin/env /usr/local/Python/bin/python2.11 #! /usr/bin/env python 2 2 """ 3 3 BibTeX to Doxygen converter 4 4 Usage: python bib2dox.py bibfile.bib > bibfile.dox 5 5 6 This file is a part of LEMON, a generic C++ optimization library. 7 8 ********************************************************************** 9 6 10 This code is the modification of the BibTeX to XML converter 7 by Vidar Bronken Gundersen et al. See the original copyright notices below. 11 by Vidar Bronken Gundersen et al. 12 See the original copyright notices below. 8 13 9 14 ********************************************************************** -
test/bellman_ford_test.cc
r838 r917 105 105 ::SetDistMap<concepts::ReadWriteMap<Node,Value> > 106 106 ::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > 107 ::SetOperationTraits<BellmanFordToleranceOperationTraits<Value, 0> > 107 108 ::Create bf_test(gr,length); 108 109 -
test/min_cost_flow_test.cc
r885 r898 158 158 const MCF& const_mcf = mcf; 159 159 160 b = mcf.reset() 160 b = mcf.reset().resetParams() 161 161 .lowerMap(me.lower) 162 162 .upperMap(me.upper) … … 347 347 checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s2, 348 348 mcf1.OPTIMAL, true, 8010, test_str + "-4"); 349 mcf1.reset ().supplyMap(s1);349 mcf1.resetParams().supplyMap(s1); 350 350 checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s1, 351 351 mcf1.OPTIMAL, true, 74, test_str + "-5"); … … 364 364 365 365 // Tests for the GEQ form 366 mcf1.reset ().upperMap(u).costMap(c).supplyMap(s5);366 mcf1.resetParams().upperMap(u).costMap(c).supplyMap(s5); 367 367 checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s5, 368 368 mcf1.OPTIMAL, true, 3530, test_str + "-10", GEQ); … … 381 381 checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u2, neg1_c, neg1_s, 382 382 mcf2.OPTIMAL, true, -40000, test_str + "-14"); 383 mcf2.reset ().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s);383 mcf2.resetParams().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s); 384 384 checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l2, neg1_u1, neg1_c, neg1_s, 385 385 mcf2.UNBOUNDED, false, 0, test_str + "-15"); -
tools/dimacs-solver.cc
r691 r919 92 92 } 93 93 94 template<class Value >94 template<class Value, class LargeValue> 95 95 void solve_min(ArgParser &ap, std::istream &is, std::ostream &, 96 96 Value infty, DimacsDescriptor &desc) … … 128 128 std::cerr << "Run NetworkSimplex: " << ti << "\n\n"; 129 129 std::cerr << "Feasible flow: " << (res ? "found" : "not found") << '\n'; 130 if (res) std::cerr << "Min flow cost: " << ns.totalCost() << '\n'; 130 if (res) std::cerr << "Min flow cost: " 131 << ns.template totalCost<LargeValue>() << '\n'; 131 132 } 132 133 } … … 152 153 153 154 154 template<class Value >155 template<class Value, class LargeValue> 155 156 void solve(ArgParser &ap, std::istream &is, std::ostream &os, 156 157 DimacsDescriptor &desc) … … 170 171 { 171 172 case DimacsDescriptor::MIN: 172 solve_min<Value >(ap,is,os,infty,desc);173 solve_min<Value, LargeValue>(ap,is,os,infty,desc); 173 174 break; 174 175 case DimacsDescriptor::MAX: … … 265 266 266 267 if(ap.given("double")) 267 solve<double >(ap,is,os,desc);268 solve<double, double>(ap,is,os,desc); 268 269 else if(ap.given("ldouble")) 269 solve<long double >(ap,is,os,desc);270 solve<long double, long double>(ap,is,os,desc); 270 271 #ifdef LEMON_HAVE_LONG_LONG 271 272 else if(ap.given("long")) 272 solve<long long>(ap,is,os,desc); 273 solve<long long, long long>(ap,is,os,desc); 274 else solve<int, long long>(ap,is,os,desc); 275 #else 276 else solve<int, long>(ap,is,os,desc); 273 277 #endif 274 else solve<int>(ap,is,os,desc);275 278 276 279 return 0;
Note: See TracChangeset
for help on using the changeset viewer.