# Changeset 2042:bdc953f2a449 in lemon-0.x for demo/tight_edge_filter_map.h

Ignore:
Timestamp:
04/07/06 11:54:35 (15 years ago)
Branch:
default
Phase:
public
Convert:
svn:c9d7d8f5-90d6-0310-b91f-818b3a526b0e/lemon/trunk@2681
Message:

New Algorithm group for matchings

LaTeX formulas
Bug fix => /\f$will cause parsing error in doxygen File: 1 edited ### Legend: Unmodified Added Removed • ## demo/tight_edge_filter_map.h  r1956 edge-distance. Let \f$G=(V,A)\f$be a directed graph (graph for short) and let \f$\mathbb{F}\f$be a number type. Let \f$ G=(V,A) \f$be a directed graph (graph for short) and let \f$ \mathbb{F} \f$be a number type. Given a distance function \f$d:E\to\mathbb{F}\f$, \f$\pi:V\to\mathbb{F}\f$is said to be a potetial w.r.t. \f$d\f$\f$ d:E\to\mathbb{F} \f$, \f$ \pi:V\to\mathbb{F} \f$is said to be a potetial w.r.t. \f$ d \f$if and only if \f$\pi(v)\le d(uv)+\pi(u)\f$holds for each edge \f$uv\in E\f$\f$ \pi(v)\le d(uv)+\pi(u) \f$holds for each edge \f$ uv\in E \f\$ (or the reverse inequality holds for each edge). An edge is said to be tight if this inequality holds with equality,
Note: See TracChangeset for help on using the changeset viewer.