COIN-OR::LEMON - Graph Library

Changeset 2273:507232469f5e in lemon-0.x for lemon/hao_orlin.h


Ignore:
Timestamp:
10/30/06 17:12:44 (18 years ago)
Author:
athos
Branch:
default
Phase:
public
Convert:
svn:c9d7d8f5-90d6-0310-b91f-818b3a526b0e/lemon/trunk@3036
Message:

Small bugs in the documentation.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • lemon/hao_orlin.h

    r2228 r2273  
    4343  /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
    4444  ///
    45   /// Hao-Orlin calculates a minimum cut in a directed graph \f$
    46   /// D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists
     45  /// Hao-Orlin calculates a minimum cut in a directed graph
     46  /// \f$ D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists
    4747  /// of two phases: in the first phase it determines a minimum cut
    48   /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V
    49   /// \f$ with \f$ source \in X \f$ and minimal out-degree) and in the
     48  /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V \f$
     49  /// with \f$ source \in X \f$ and minimal out-degree) and in the
    5050  /// second phase it determines a minimum cut with \f$ source \f$ on the
    5151  /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X \f$
     
    5757  /// network reliability. For an undirected graph with \f$ n \f$
    5858  /// nodes and \f$ e \f$ edges you can use the algorithm of Nagamochi
    59   /// and Ibaraki which solves the undirected problem in \f$ O(ne +
    60   /// n^2 \log(n)) \f$ time: it is implemented in the MinCut algorithm
     59  /// and Ibaraki which solves the undirected problem in
     60  /// \f$ O(ne + n^2 \log(n)) \f$ time: it is implemented in the MinCut
     61  /// algorithm
    6162  /// class.
    6263  ///
     
    536537    ///
    537538    /// \brief Calculates a minimum cut with \f$ source \f$ on the
    538     /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
    539     /// \f$ and minimal out-degree).
     539    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$
     540    /// and minimal out-degree).
    540541    void calculateOut() {
    541542      for (NodeIt it(*_graph); it != INVALID; ++it) {
     
    551552    ///
    552553    /// \brief Calculates a minimum cut with \f$ source \f$ on the
    553     /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
    554     /// \f$ and minimal out-degree). The \c target is the initial target
     554    /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$
     555    /// and minimal out-degree). The \c target is the initial target
    555556    /// for the push-relabel algorithm.
    556557    void calculateOut(const Node& target) {
     
    562563    ///
    563564    /// \brief Calculates a minimum cut with \f$ source \f$ on the
    564     /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X
    565     /// \f$ and minimal out-degree).
     565    /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with
     566    /// \f$ source \notin X \f$
     567    /// and minimal out-degree).
    566568    void calculateIn() {
    567569      for (NodeIt it(*_graph); it != INVALID; ++it) {
     
    577579    ///
    578580    /// \brief Calculates a minimum cut with \f$ source \f$ on the
    579     /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin
    580     /// X \f$ and minimal out-degree).  The \c target is the initial
     581    /// sink-side (i.e. a set \f$ X\subsetneq V
     582    /// \f$ with \f$ source \notin X \f$ and minimal out-degree). 
     583    /// The \c target is the initial
    581584    /// target for the push-relabel algorithm.
    582585    void calculateIn(const Node& target) {
Note: See TracChangeset for help on using the changeset viewer.