Changes in / [719:ba79e8d64448:726:3fc2a801c39e] in lemon1.2
 Files:

 2 edited
Legend:
 Unmodified
 Added
 Removed

lemon/maps.h
r717 r726 57 57 /// but data written to it is not required (i.e. it will be sent to 58 58 /// <tt>/dev/null</tt>). 59 /// It conforms t he \ref concepts::ReadWriteMap "ReadWriteMap" concept.59 /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. 60 60 /// 61 61 /// \sa ConstMap … … 90 90 /// 91 91 /// In other aspects it is equivalent to \c NullMap. 92 /// So it conforms t he \ref concepts::ReadWriteMap "ReadWriteMap"92 /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" 93 93 /// concept, but it absorbs the data written to it. 94 94 /// … … 159 159 /// 160 160 /// In other aspects it is equivalent to \c NullMap. 161 /// So it conforms t he \ref concepts::ReadWriteMap "ReadWriteMap"161 /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" 162 162 /// concept, but it absorbs the data written to it. 163 163 /// … … 233 233 /// It can be used with some data structures, for example 234 234 /// \c UnionFind, \c BinHeap, when the used items are small 235 /// integers. This map conforms t he \ref concepts::ReferenceMap235 /// integers. This map conforms to the \ref concepts::ReferenceMap 236 236 /// "ReferenceMap" concept. 237 237 /// … … 341 341 /// stored actually. This value can be different from the default 342 342 /// contructed value (i.e. \c %Value()). 343 /// This type conforms t he \ref concepts::ReferenceMap "ReferenceMap"343 /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" 344 344 /// concept. 345 345 /// … … 707 707 /// The \c Key type of it is inherited from \c M and the \c Value 708 708 /// type is \c V. 709 /// This type conforms t he \ref concepts::ReadMap "ReadMap" concept.709 /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. 710 710 /// 711 711 /// The simplest way of using this map is through the convertMap() … … 1826 1826 /// the items stored in the graph, which is returned by the \c id() 1827 1827 /// function of the graph. This map can be inverted with its member 1828 /// class \c InverseMap or with the \c operator() member.1828 /// class \c InverseMap or with the \c operator()() member. 1829 1829 /// 1830 1830 /// \tparam GR The graph type. … … 1866 1866 public: 1867 1867 1868 /// \brief This class represents the inverse of its owner (IdMap). 1869 /// 1870 /// This class represents the inverse of its owner (IdMap). 1868 /// \brief The inverse map type of IdMap. 1869 /// 1870 /// The inverse map type of IdMap. The subscript operator gives back 1871 /// an item by its id. 1872 /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. 1871 1873 /// \see inverse() 1872 1874 class InverseMap { … … 1883 1885 explicit InverseMap(const IdMap& map) : _graph(map._graph) {} 1884 1886 1885 /// \brief Gives back the given item fromits id.1887 /// \brief Gives back an item by its id. 1886 1888 /// 1887 /// Gives back the given item fromits id.1889 /// Gives back an item by its id. 1888 1890 Item operator[](int id) const { return _graph>fromId(id, Item());} 1889 1891 … … 1898 1900 }; 1899 1901 1902 /// \brief Returns an \c IdMap class. 1903 /// 1904 /// This function just returns an \c IdMap class. 1905 /// \relates IdMap 1906 template <typename K, typename GR> 1907 inline IdMap<GR, K> idMap(const GR& graph) { 1908 return IdMap<GR, K>(graph); 1909 } 1900 1910 1901 1911 /// \brief General cross reference graph map type. … … 1904 1914 /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) 1905 1915 /// and if a key is set to a new value, then stores it in the inverse map. 1906 /// The values of the map can be accessed 1907 /// with stl compatible forward iterator. 1916 /// The graph items can be accessed by their values either using 1917 /// \c InverseMap or \c operator()(), and the values of the map can be 1918 /// accessed with an STL compatible forward iterator (\c ValueIt). 1919 /// 1920 /// This map is intended to be used when all associated values are 1921 /// different (the map is actually invertable) or there are only a few 1922 /// items with the same value. 1923 /// Otherwise consider to use \c IterableValueMap, which is more 1924 /// suitable and more efficient for such cases. It provides iterators 1925 /// to traverse the items with the same associated value, however 1926 /// it does not have \c InverseMap. 1908 1927 /// 1909 1928 /// This type is not reference map, so it cannot be modified with … … 1946 1965 /// \brief Forward iterator for values. 1947 1966 /// 1948 /// This iterator is an stlcompatible forward1967 /// This iterator is an STL compatible forward 1949 1968 /// iterator on the values of the map. The values can 1950 1969 /// be accessed in the <tt>[beginValue, endValue)</tt> range. 1951 1970 /// They are considered with multiplicity, so each value is 1952 1971 /// traversed for each item it is assigned to. 1953 class ValueIt erator1972 class ValueIt 1954 1973 : public std::iterator<std::forward_iterator_tag, Value> { 1955 1974 friend class CrossRefMap; 1956 1975 private: 1957 ValueIt erator(typename Container::const_iterator _it)1976 ValueIt(typename Container::const_iterator _it) 1958 1977 : it(_it) {} 1959 1978 public: 1960 1979 1961 ValueIterator() {} 1962 1963 ValueIterator& operator++() { ++it; return *this; } 1964 ValueIterator operator++(int) { 1965 ValueIterator tmp(*this); 1980 /// Constructor 1981 ValueIt() {} 1982 1983 /// \e 1984 ValueIt& operator++() { ++it; return *this; } 1985 /// \e 1986 ValueIt operator++(int) { 1987 ValueIt tmp(*this); 1966 1988 operator++(); 1967 1989 return tmp; 1968 1990 } 1969 1991 1992 /// \e 1970 1993 const Value& operator*() const { return it>first; } 1994 /// \e 1971 1995 const Value* operator>() const { return &(it>first); } 1972 1996 1973 bool operator==(ValueIterator jt) const { return it == jt.it; } 1974 bool operator!=(ValueIterator jt) const { return it != jt.it; } 1997 /// \e 1998 bool operator==(ValueIt jt) const { return it == jt.it; } 1999 /// \e 2000 bool operator!=(ValueIt jt) const { return it != jt.it; } 1975 2001 1976 2002 private: 1977 2003 typename Container::const_iterator it; 1978 2004 }; 2005 2006 /// Alias for \c ValueIt 2007 typedef ValueIt ValueIterator; 1979 2008 1980 2009 /// \brief Returns an iterator to the first value. 1981 2010 /// 1982 /// Returns an stlcompatible iterator to the2011 /// Returns an STL compatible iterator to the 1983 2012 /// first value of the map. The values of the 1984 2013 /// map can be accessed in the <tt>[beginValue, endValue)</tt> 1985 2014 /// range. 1986 ValueIt eratorbeginValue() const {1987 return ValueIt erator(_inv_map.begin());2015 ValueIt beginValue() const { 2016 return ValueIt(_inv_map.begin()); 1988 2017 } 1989 2018 1990 2019 /// \brief Returns an iterator after the last value. 1991 2020 /// 1992 /// Returns an stlcompatible iterator after the2021 /// Returns an STL compatible iterator after the 1993 2022 /// last value of the map. The values of the 1994 2023 /// map can be accessed in the <tt>[beginValue, endValue)</tt> 1995 2024 /// range. 1996 ValueIt eratorendValue() const {1997 return ValueIt erator(_inv_map.end());2025 ValueIt endValue() const { 2026 return ValueIt(_inv_map.end()); 1998 2027 } 1999 2028 … … 2032 2061 typename Container::const_iterator it = _inv_map.find(val); 2033 2062 return it != _inv_map.end() ? it>second : INVALID; 2063 } 2064 2065 /// \brief Returns the number of items with the given value. 2066 /// 2067 /// This function returns the number of items with the given value 2068 /// associated with it. 2069 int count(const Value &val) const { 2070 return _inv_map.count(val); 2034 2071 } 2035 2072 … … 2083 2120 public: 2084 2121 2085 /// \brief The inverse map type. 2086 /// 2087 /// The inverse of this map. The subscript operator of the map 2088 /// gives back the item that was last assigned to the value. 2122 /// \brief The inverse map type of CrossRefMap. 2123 /// 2124 /// The inverse map type of CrossRefMap. The subscript operator gives 2125 /// back an item by its value. 2126 /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. 2127 /// \see inverse() 2089 2128 class InverseMap { 2090 2129 public: … … 2113 2152 }; 2114 2153 2115 /// \brief It gives back the readonly inverse map.2116 /// 2117 /// It gives back the readonly inverse map.2154 /// \brief Gives back the inverse of the map. 2155 /// 2156 /// Gives back the inverse of the CrossRefMap. 2118 2157 InverseMap inverse() const { 2119 2158 return InverseMap(*this); … … 2122 2161 }; 2123 2162 2124 /// \brief Provides continuous and unique IDfor the2163 /// \brief Provides continuous and unique id for the 2125 2164 /// items of a graph. 2126 2165 /// 2127 2166 /// RangeIdMap provides a unique and continuous 2128 /// IDfor each item of a given type (\c Node, \c Arc or2167 /// id for each item of a given type (\c Node, \c Arc or 2129 2168 /// \c Edge) in a graph. This id is 2130 2169 ///  \b unique: different items get different ids, … … 2137 2176 /// the \c id() function of the graph or \ref IdMap. 2138 2177 /// This map can be inverted with its member class \c InverseMap, 2139 /// or with the \c operator() member.2178 /// or with the \c operator()() member. 2140 2179 /// 2141 2180 /// \tparam GR The graph type. … … 2265 2304 } 2266 2305 2267 /// \brief Gives back the \e RangeId of the item2268 /// 2269 /// Gives back the \e RangeId of the item.2306 /// \brief Gives back the \e range \e id of the item 2307 /// 2308 /// Gives back the \e range \e id of the item. 2270 2309 int operator[](const Item& item) const { 2271 2310 return Map::operator[](item); 2272 2311 } 2273 2312 2274 /// \brief Gives back the item belonging to a \e RangeId2275 /// 2276 /// Gives back the item belonging to a \e RangeId.2313 /// \brief Gives back the item belonging to a \e range \e id 2314 /// 2315 /// Gives back the item belonging to the given \e range \e id. 2277 2316 Item operator()(int id) const { 2278 2317 return _inv_map[id]; … … 2288 2327 /// \brief The inverse map type of RangeIdMap. 2289 2328 /// 2290 /// The inverse map type of RangeIdMap. 2329 /// The inverse map type of RangeIdMap. The subscript operator gives 2330 /// back an item by its \e range \e id. 2331 /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. 2291 2332 class InverseMap { 2292 2333 public: … … 2306 2347 /// 2307 2348 /// Subscript operator. It gives back the item 2308 /// that the descriptorcurrently belongs to.2349 /// that the given \e range \e id currently belongs to. 2309 2350 Value operator[](const Key& key) const { 2310 2351 return _inverted(key); … … 2324 2365 /// \brief Gives back the inverse of the map. 2325 2366 /// 2326 /// Gives back the inverse of the map.2367 /// Gives back the inverse of the RangeIdMap. 2327 2368 const InverseMap inverse() const { 2328 2369 return InverseMap(*this); … … 2330 2371 }; 2331 2372 2373 /// \brief Returns a \c RangeIdMap class. 2374 /// 2375 /// This function just returns an \c RangeIdMap class. 2376 /// \relates RangeIdMap 2377 template <typename K, typename GR> 2378 inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) { 2379 return RangeIdMap<GR, K>(graph); 2380 } 2381 2332 2382 /// \brief Dynamic iterable \c bool map. 2333 2383 /// … … 2335 2385 /// \c bool value for graph items (\c Node, \c Arc or \c Edge). 2336 2386 /// For both \c true and \c false values it is possible to iterate on 2337 /// the keys .2387 /// the keys mapped to the value. 2338 2388 /// 2339 2389 /// This type is a reference map, so it can be modified with the … … 2704 2754 /// mapped to the value. 2705 2755 /// 2756 /// This map is intended to be used with small integer values, for which 2757 /// it is efficient, and supports iteration only for nonnegative values. 2758 /// If you need large values and/or iteration for negative integers, 2759 /// consider to use \ref IterableValueMap instead. 2760 /// 2706 2761 /// This type is a reference map, so it can be modified with the 2707 2762 /// subscript operator. … … 2985 3040 /// \brief Dynamic iterable map for comparable values. 2986 3041 /// 2987 /// This class provides a special graph map type which can store a n3042 /// This class provides a special graph map type which can store a 2988 3043 /// comparable value for graph items (\c Node, \c Arc or \c Edge). 2989 3044 /// For each value it is possible to iterate on the keys mapped to 2990 /// the value. 2991 /// 2992 /// The map stores for each value a linked list with 2993 /// the items which mapped to the value, and the values are stored 2994 /// in balanced binary tree. The values of the map can be accessed 2995 /// with stl compatible forward iterator. 3045 /// the value (\c ItemIt), and the values of the map can be accessed 3046 /// with an STL compatible forward iterator (\c ValueIt). 3047 /// The map stores a linked list for each value, which contains 3048 /// the items mapped to the value, and the used values are stored 3049 /// in balanced binary tree (\c std::map). 3050 /// 3051 /// \ref IterableBoolMap and \ref IterableIntMap are similar classes 3052 /// specialized for \c bool and \c int values, respectively. 2996 3053 /// 2997 3054 /// This type is not reference map, so it cannot be modified with … … 3072 3129 /// \brief Forward iterator for values. 3073 3130 /// 3074 /// This iterator is an stlcompatible forward3131 /// This iterator is an STL compatible forward 3075 3132 /// iterator on the values of the map. The values can 3076 3133 /// be accessed in the <tt>[beginValue, endValue)</tt> range. 3077 class ValueIt erator3134 class ValueIt 3078 3135 : public std::iterator<std::forward_iterator_tag, Value> { 3079 3136 friend class IterableValueMap; 3080 3137 private: 3081 ValueIt erator(typename std::map<Value, Key>::const_iterator _it)3138 ValueIt(typename std::map<Value, Key>::const_iterator _it) 3082 3139 : it(_it) {} 3083 3140 public: 3084 3141 3085 ValueIterator() {} 3086 3087 ValueIterator& operator++() { ++it; return *this; } 3088 ValueIterator operator++(int) { 3089 ValueIterator tmp(*this); 3142 /// Constructor 3143 ValueIt() {} 3144 3145 /// \e 3146 ValueIt& operator++() { ++it; return *this; } 3147 /// \e 3148 ValueIt operator++(int) { 3149 ValueIt tmp(*this); 3090 3150 operator++(); 3091 3151 return tmp; 3092 3152 } 3093 3153 3154 /// \e 3094 3155 const Value& operator*() const { return it>first; } 3156 /// \e 3095 3157 const Value* operator>() const { return &(it>first); } 3096 3158 3097 bool operator==(ValueIterator jt) const { return it == jt.it; } 3098 bool operator!=(ValueIterator jt) const { return it != jt.it; } 3159 /// \e 3160 bool operator==(ValueIt jt) const { return it == jt.it; } 3161 /// \e 3162 bool operator!=(ValueIt jt) const { return it != jt.it; } 3099 3163 3100 3164 private: … … 3104 3168 /// \brief Returns an iterator to the first value. 3105 3169 /// 3106 /// Returns an stlcompatible iterator to the3170 /// Returns an STL compatible iterator to the 3107 3171 /// first value of the map. The values of the 3108 3172 /// map can be accessed in the <tt>[beginValue, endValue)</tt> 3109 3173 /// range. 3110 ValueIt eratorbeginValue() const {3111 return ValueIt erator(_first.begin());3174 ValueIt beginValue() const { 3175 return ValueIt(_first.begin()); 3112 3176 } 3113 3177 3114 3178 /// \brief Returns an iterator after the last value. 3115 3179 /// 3116 /// Returns an stlcompatible iterator after the3180 /// Returns an STL compatible iterator after the 3117 3181 /// last value of the map. The values of the 3118 3182 /// map can be accessed in the <tt>[beginValue, endValue)</tt> 3119 3183 /// range. 3120 ValueIt eratorendValue() const {3121 return ValueIt erator(_first.end());3184 ValueIt endValue() const { 3185 return ValueIt(_first.end()); 3122 3186 } 3123 3187 … … 3237 3301 public: 3238 3302 3239 /// \e3303 /// The key type (the \c Arc type of the digraph). 3240 3304 typedef typename GR::Arc Key; 3241 /// \e3305 /// The value type (the \c Node type of the digraph). 3242 3306 typedef typename GR::Node Value; 3243 3307 … … 3278 3342 public: 3279 3343 3280 /// \e3344 /// The key type (the \c Arc type of the digraph). 3281 3345 typedef typename GR::Arc Key; 3282 /// \e3346 /// The value type (the \c Node type of the digraph). 3283 3347 typedef typename GR::Node Value; 3284 3348 … … 3320 3384 public: 3321 3385 3386 /// The key type (the \c Edge type of the digraph). 3387 typedef typename GR::Edge Key; 3388 /// The value type (the \c Arc type of the digraph). 3322 3389 typedef typename GR::Arc Value; 3323 typedef typename GR::Edge Key;3324 3390 3325 3391 /// \brief Constructor … … 3360 3426 public: 3361 3427 3428 /// The key type (the \c Edge type of the digraph). 3429 typedef typename GR::Edge Key; 3430 /// The value type (the \c Arc type of the digraph). 3362 3431 typedef typename GR::Arc Value; 3363 typedef typename GR::Edge Key;3364 3432 3365 3433 /// \brief Constructor 
test/maps_test.cc
r695 r726 23 23 #include <lemon/concepts/maps.h> 24 24 #include <lemon/maps.h> 25 #include <lemon/list_graph.h> 25 26 #include <lemon/smart_graph.h> 27 #include <lemon/adaptors.h> 28 #include <lemon/dfs.h> 26 29 27 30 #include "test_tools.h" … … 61 64 typedef ReadWriteMap<A, bool> BoolWriteMap; 62 65 typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; 66 67 template<typename Map1, typename Map2, typename ItemIt> 68 void compareMap(const Map1& map1, const Map2& map2, ItemIt it) { 69 for (; it != INVALID; ++it) 70 check(map1[it] == map2[it], "The maps are not equal"); 71 } 63 72 64 73 int main() … … 330 339 { 331 340 typedef std::vector<int> vec; 341 checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >(); 342 checkConcept<WriteMap<int, bool>, 343 LoggerBoolMap<std::back_insert_iterator<vec> > >(); 344 332 345 vec v1; 333 346 vec v2(10); … … 349 362 it != map2.end(); ++it ) 350 363 check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); 364 365 typedef ListDigraph Graph; 366 DIGRAPH_TYPEDEFS(Graph); 367 Graph gr; 368 369 Node n0 = gr.addNode(); 370 Node n1 = gr.addNode(); 371 Node n2 = gr.addNode(); 372 Node n3 = gr.addNode(); 373 374 gr.addArc(n3, n0); 375 gr.addArc(n3, n2); 376 gr.addArc(n0, n2); 377 gr.addArc(n2, n1); 378 gr.addArc(n0, n1); 379 380 { 381 std::vector<Node> v; 382 dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run(); 383 384 check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, 385 "Something is wrong with LoggerBoolMap"); 386 } 387 { 388 std::vector<Node> v(countNodes(gr)); 389 dfs(gr).processedMap(loggerBoolMap(v.begin())).run(); 390 391 check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, 392 "Something is wrong with LoggerBoolMap"); 393 } 394 } 395 396 // IdMap, RangeIdMap 397 { 398 typedef ListDigraph Graph; 399 DIGRAPH_TYPEDEFS(Graph); 400 401 checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >(); 402 checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >(); 403 checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >(); 404 checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >(); 405 406 Graph gr; 407 IdMap<Graph, Node> nmap(gr); 408 IdMap<Graph, Arc> amap(gr); 409 RangeIdMap<Graph, Node> nrmap(gr); 410 RangeIdMap<Graph, Arc> armap(gr); 411 412 Node n0 = gr.addNode(); 413 Node n1 = gr.addNode(); 414 Node n2 = gr.addNode(); 415 416 Arc a0 = gr.addArc(n0, n1); 417 Arc a1 = gr.addArc(n0, n2); 418 Arc a2 = gr.addArc(n2, n1); 419 Arc a3 = gr.addArc(n2, n0); 420 421 check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap"); 422 check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap"); 423 check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap"); 424 425 check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap"); 426 check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap"); 427 check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap"); 428 check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap"); 429 430 check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap"); 431 check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap"); 432 433 check(nrmap.size() == 3 && armap.size() == 4, 434 "Wrong RangeIdMap::size()"); 435 436 check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap"); 437 check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap"); 438 check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap"); 439 440 check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap"); 441 check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); 442 check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap"); 443 check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap"); 444 445 check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap"); 446 check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap"); 447 448 gr.erase(n1); 449 450 if (nrmap[n0] == 1) nrmap.swap(n0, n2); 451 nrmap.swap(n2, n0); 452 if (armap[a1] == 1) armap.swap(a1, a3); 453 armap.swap(a3, a1); 454 455 check(nrmap.size() == 2 && armap.size() == 2, 456 "Wrong RangeIdMap::size()"); 457 458 check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap"); 459 check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap"); 460 461 check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); 462 check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap"); 463 464 check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap"); 465 check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap"); 466 } 467 468 // SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap 469 { 470 typedef ListGraph Graph; 471 GRAPH_TYPEDEFS(Graph); 472 473 checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >(); 474 checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >(); 475 checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >(); 476 checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >(); 477 checkConcept<ReadMap<Node, int>, InDegMap<Graph> >(); 478 checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >(); 479 480 Graph gr; 481 Node n0 = gr.addNode(); 482 Node n1 = gr.addNode(); 483 Node n2 = gr.addNode(); 484 485 gr.addEdge(n0,n1); 486 gr.addEdge(n1,n2); 487 gr.addEdge(n0,n2); 488 gr.addEdge(n2,n1); 489 gr.addEdge(n1,n2); 490 gr.addEdge(n0,n1); 491 492 for (EdgeIt e(gr); e != INVALID; ++e) { 493 check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap"); 494 check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap"); 495 } 496 497 compareMap(sourceMap(orienter(gr, constMap<Edge, bool>(true))), 498 targetMap(orienter(gr, constMap<Edge, bool>(false))), 499 EdgeIt(gr)); 500 501 typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph; 502 Digraph dgr(gr, constMap<Edge, bool>(true)); 503 OutDegMap<Digraph> odm(dgr); 504 InDegMap<Digraph> idm(dgr); 505 506 check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap"); 507 check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); 508 509 gr.addEdge(n2, n0); 510 511 check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap"); 512 check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); 513 } 514 515 // CrossRefMap 516 { 517 typedef ListDigraph Graph; 518 DIGRAPH_TYPEDEFS(Graph); 519 520 checkConcept<ReadWriteMap<Node, int>, 521 CrossRefMap<Graph, Node, int> >(); 522 checkConcept<ReadWriteMap<Node, bool>, 523 CrossRefMap<Graph, Node, bool> >(); 524 checkConcept<ReadWriteMap<Node, double>, 525 CrossRefMap<Graph, Node, double> >(); 526 527 Graph gr; 528 typedef CrossRefMap<Graph, Node, char> CRMap; 529 CRMap map(gr); 530 531 Node n0 = gr.addNode(); 532 Node n1 = gr.addNode(); 533 Node n2 = gr.addNode(); 534 535 map.set(n0, 'A'); 536 map.set(n1, 'B'); 537 map.set(n2, 'C'); 538 539 check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0, 540 "Wrong CrossRefMap"); 541 check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1, 542 "Wrong CrossRefMap"); 543 check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2, 544 "Wrong CrossRefMap"); 545 check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, 546 "Wrong CrossRefMap::count()"); 547 548 CRMap::ValueIt it = map.beginValue(); 549 check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && 550 it == map.endValue(), "Wrong value iterator"); 551 552 map.set(n2, 'A'); 553 554 check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', 555 "Wrong CrossRefMap"); 556 check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap"); 557 check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); 558 check(map('C') == INVALID && map.inverse()['C'] == INVALID, 559 "Wrong CrossRefMap"); 560 check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0, 561 "Wrong CrossRefMap::count()"); 562 563 it = map.beginValue(); 564 check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' && 565 it == map.endValue(), "Wrong value iterator"); 566 567 map.set(n0, 'C'); 568 569 check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', 570 "Wrong CrossRefMap"); 571 check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); 572 check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); 573 check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); 574 check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, 575 "Wrong CrossRefMap::count()"); 576 577 it = map.beginValue(); 578 check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && 579 it == map.endValue(), "Wrong value iterator"); 351 580 } 352 581 … … 547 776 } 548 777 549 for (Ivm::ValueIt eratorvit = map1.beginValue();778 for (Ivm::ValueIt vit = map1.beginValue(); 550 779 vit != map1.endValue(); ++vit) { 551 780 check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, 552 "Wrong ValueIt erator");781 "Wrong ValueIt"); 553 782 } 554 783
Note: See TracChangeset
for help on using the changeset viewer.