Changes in / [377:97070bd10b98:378:51c1d11cbde9] in lemon-1.0
- Files:
-
- 1 added
- 14 edited
Legend:
- Unmodified
- Added
- Removed
-
CMakeLists.txt
r377 r378 11 11 12 12 SET(CMAKE_MODULE_PATH ${CMAKE_SOURCE_DIR}/cmake) 13 14 IF(MSVC) 15 SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4250 /wd4355 /wd4800 /wd4996") 16 # Suppressed warnings: 17 # C4250: 'class1' : inherits 'class2::member' via dominance 18 # C4355: 'this' : used in base member initializer list 19 # C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) 20 # C4996: 'function': was declared deprecated 21 ENDIF(MSVC) 13 22 14 23 INCLUDE(FindDoxygen) -
NEWS
r332 r362 1 2009-01-23 Version 1.0.2 released 2 3 Bugfix release. 4 5 #193: Bugfix in GraphReader::skipSection() 6 #195: Bugfix in ConEdgeIt() 7 #197: Bugfix in heap unionfind 8 * This bug affects Edmond's general matching algorithms. 9 (Not available in this release.) 10 #207: Fix 'make install' without 'make html' using CMAKE 11 #208: Suppress or fix VS2008 compilation warnings 12 ----: Update the LEMON icon 13 ----: Enable the component-based installer 14 (in installers made by CPACK) 15 ----: Set the proper version for CMAKE in the tarballs 16 (made by autotools). 17 18 2008-12-06 Version 1.0.1 released 19 20 Bugfix release. 21 22 #170: Bugfix SmartDigraph::split() 23 #171: Bugfix in SmartGraph::restoreSnapshot() 24 #172: Extended test cases for graphs and digraphs 25 #173: Bugfix in Random 26 * operator()s always return a double now 27 * the faulty real<Num>(Num) and real<Num>(Num,Num) 28 have been removed 29 #187: Remove DijkstraWidestPathOperationTraits 30 #61: Bugfix in DfsVisit 31 1 32 2008-10-13 Version 1.0 released 2 33 -
doc/groups.dox
r325 r326 41 41 some graph features like arc/edge or node deletion. 42 42 43 Alteration of standard containers need a very limited number of44 operations, these together satisfy the everyday requirements.45 In the case of graph structures, different operations are needed which do46 not alter the physical graph, but gives another view. If some nodes or47 arcs have to be hidden or the reverse oriented graph have to be used, then48 this is the case. It also may happen that in a flow implementation49 the residual graph can be accessed by another algorithm, or a node-set50 is to be shrunk for another algorithm.51 LEMON also provides a variety of graphs for these requirements called52 \ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only53 in conjunction with other graph representations.54 55 43 You are free to use the graph structure that fit your requirements 56 44 the best, most graph algorithms and auxiliary data structures can be used … … 58 46 59 47 <b>See also:</b> \ref graph_concepts "Graph Structure Concepts". 60 */61 62 /**63 @defgroup semi_adaptors Semi-Adaptor Classes for Graphs64 @ingroup graphs65 \brief Graph types between real graphs and graph adaptors.66 67 This group describes some graph types between real graphs and graph adaptors.68 These classes wrap graphs to give new functionality as the adaptors do it.69 On the other hand they are not light-weight structures as the adaptors.70 48 */ 71 49 … … 156 134 157 135 /** 158 @defgroup matrices Matrices159 @ingroup datas160 \brief Two dimensional data storages implemented in LEMON.161 162 This group describes two dimensional data storages implemented in LEMON.163 */164 165 /**166 136 @defgroup paths Path Structures 167 137 @ingroup datas … … 215 185 216 186 /** 217 @defgroup max_flow Maximum Flow Algorithms218 @ingroup algs219 \brief Algorithms for finding maximum flows.220 221 This group describes the algorithms for finding maximum flows and222 feasible circulations.223 224 The maximum flow problem is to find a flow between a single source and225 a single target that is maximum. Formally, there is a \f$G=(V,A)\f$226 directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity227 function and given \f$s, t \in V\f$ source and target node. The228 maximum flow is the \f$f_a\f$ solution of the next optimization problem:229 230 \f[ 0 \le f_a \le c_a \f]231 \f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv}232 \qquad \forall u \in V \setminus \{s,t\}\f]233 \f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f]234 235 LEMON contains several algorithms for solving maximum flow problems:236 - \ref lemon::EdmondsKarp "Edmonds-Karp"237 - \ref lemon::Preflow "Goldberg's Preflow algorithm"238 - \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees"239 - \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees"240 241 In most cases the \ref lemon::Preflow "Preflow" algorithm provides the242 fastest method to compute the maximum flow. All impelementations243 provides functions to query the minimum cut, which is the dual linear244 programming problem of the maximum flow.245 */246 247 /**248 @defgroup min_cost_flow Minimum Cost Flow Algorithms249 @ingroup algs250 251 \brief Algorithms for finding minimum cost flows and circulations.252 253 This group describes the algorithms for finding minimum cost flows and254 circulations.255 */256 257 /**258 @defgroup min_cut Minimum Cut Algorithms259 @ingroup algs260 261 \brief Algorithms for finding minimum cut in graphs.262 263 This group describes the algorithms for finding minimum cut in graphs.264 265 The minimum cut problem is to find a non-empty and non-complete266 \f$X\f$ subset of the vertices with minimum overall capacity on267 outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an268 \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum269 cut is the \f$X\f$ solution of the next optimization problem:270 271 \f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}272 \sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f]273 274 LEMON contains several algorithms related to minimum cut problems:275 276 - \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut277 in directed graphs278 - \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to279 calculate minimum cut in undirected graphs280 - \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all281 pairs minimum cut in undirected graphs282 283 If you want to find minimum cut just between two distinict nodes,284 please see the \ref max_flow "Maximum Flow page".285 */286 287 /**288 @defgroup graph_prop Connectivity and Other Graph Properties289 @ingroup algs290 \brief Algorithms for discovering the graph properties291 292 This group describes the algorithms for discovering the graph properties293 like connectivity, bipartiteness, euler property, simplicity etc.294 295 \image html edge_biconnected_components.png296 \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth297 */298 299 /**300 @defgroup planar Planarity Embedding and Drawing301 @ingroup algs302 \brief Algorithms for planarity checking, embedding and drawing303 304 This group describes the algorithms for planarity checking,305 embedding and drawing.306 307 \image html planar.png308 \image latex planar.eps "Plane graph" width=\textwidth309 */310 311 /**312 @defgroup matching Matching Algorithms313 @ingroup algs314 \brief Algorithms for finding matchings in graphs and bipartite graphs.315 316 This group contains algorithm objects and functions to calculate317 matchings in graphs and bipartite graphs. The general matching problem is318 finding a subset of the arcs which does not shares common endpoints.319 320 There are several different algorithms for calculate matchings in321 graphs. The matching problems in bipartite graphs are generally322 easier than in general graphs. The goal of the matching optimization323 can be the finding maximum cardinality, maximum weight or minimum cost324 matching. The search can be constrained to find perfect or325 maximum cardinality matching.326 327 LEMON contains the next algorithms:328 - \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp329 augmenting path algorithm for calculate maximum cardinality matching in330 bipartite graphs331 - \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel332 algorithm for calculate maximum cardinality matching in bipartite graphs333 - \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching"334 Successive shortest path algorithm for calculate maximum weighted matching335 and maximum weighted bipartite matching in bipartite graph336 - \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching"337 Successive shortest path algorithm for calculate minimum cost maximum338 matching in bipartite graph339 - \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm340 for calculate maximum cardinality matching in general graph341 - \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom342 shrinking algorithm for calculate maximum weighted matching in general343 graph344 - \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching"345 Edmond's blossom shrinking algorithm for calculate maximum weighted346 perfect matching in general graph347 348 \image html bipartite_matching.png349 \image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth350 */351 352 /**353 187 @defgroup spantree Minimum Spanning Tree Algorithms 354 188 @ingroup algs … … 360 194 361 195 /** 362 @defgroup auxalg Auxiliary Algorithms363 @ingroup algs364 \brief Auxiliary algorithms implemented in LEMON.365 366 This group describes some algorithms implemented in LEMON367 in order to make it easier to implement complex algorithms.368 */369 370 /**371 @defgroup approx Approximation Algorithms372 @ingroup algs373 \brief Approximation algorithms.374 375 This group describes the approximation and heuristic algorithms376 implemented in LEMON.377 */378 379 /**380 @defgroup gen_opt_group General Optimization Tools381 \brief This group describes some general optimization frameworks382 implemented in LEMON.383 384 This group describes some general optimization frameworks385 implemented in LEMON.386 */387 388 /**389 @defgroup lp_group Lp and Mip Solvers390 @ingroup gen_opt_group391 \brief Lp and Mip solver interfaces for LEMON.392 393 This group describes Lp and Mip solver interfaces for LEMON. The394 various LP solvers could be used in the same manner with this395 interface.396 */397 398 /**399 @defgroup lp_utils Tools for Lp and Mip Solvers400 @ingroup lp_group401 \brief Helper tools to the Lp and Mip solvers.402 403 This group adds some helper tools to general optimization framework404 implemented in LEMON.405 */406 407 /**408 @defgroup metah Metaheuristics409 @ingroup gen_opt_group410 \brief Metaheuristics for LEMON library.411 412 This group describes some metaheuristic optimization tools.413 */414 415 /**416 196 @defgroup utils Tools and Utilities 417 197 \brief Tools and utilities for programming in LEMON … … 459 239 460 240 This group describes the tools for importing and exporting graphs 461 and graph related data. Now it supports the \ref lgf-format462 "LEMON Graph Format", the \c DIMACS format and the encapsulated 241 and graph related data. Now it supports the LEMON format 242 and the encapsulated postscript (EPS) format. 463 243 postscript (EPS) format. 464 244 */ … … 524 304 @ingroup concept 525 305 \brief Skeleton and concept checking classes for maps 526 306 527 307 This group describes the skeletons and concept checking classes of maps. 528 308 */ … … 539 319 build the library. 540 320 */ 541 542 /**543 @defgroup tools Standalone utility applications544 545 Some utility applications are listed here.546 547 The standard compilation procedure (<tt>./configure;make</tt>) will compile548 them, as well.549 */550 -
doc/mainpage.dox
r318 r329 42 42 \subsection howtoread How to read the documentation 43 43 44 If you want to get a quick start and see the most important features then45 take a look at our \ref quicktour46 "Quick Tour to LEMON" which will guide you along.47 48 If you already feel like using our library, see the page that tells you49 \ref getstart "How to start using LEMON".50 51 If you52 want to see how LEMON works, see53 some \ref demoprograms "demo programs".54 55 44 If you know what you are looking for then try to find it under the 56 45 <a class="el" href="modules.html">Modules</a> -
lemon/base.cc
r220 r357 24 24 namespace lemon { 25 25 26 float Tolerance<float>::def_epsilon = 1e-4;26 float Tolerance<float>::def_epsilon = static_cast<float>(1e-4); 27 27 double Tolerance<double>::def_epsilon = 1e-10; 28 28 long double Tolerance<long double>::def_epsilon = 1e-14; -
lemon/dfs.h
r327 r344 1414 1414 } else { 1415 1415 _visitor->leave(s); 1416 _visitor->stop(s); 1416 1417 } 1417 1418 } -
lemon/lgf_reader.h
r374 r376 848 848 readLine(); 849 849 } 850 line.putback(c); 850 if (readSuccess()) { 851 line.putback(c); 852 } 851 853 } 852 854 … … 1688 1690 readLine(); 1689 1691 } 1690 line.putback(c); 1692 if (readSuccess()) { 1693 line.putback(c); 1694 } 1691 1695 } 1692 1696 … … 2245 2249 readLine(); 2246 2250 } 2247 line.putback(c); 2251 if (readSuccess()) { 2252 line.putback(c); 2253 } 2248 2254 } 2249 2255 … … 2586 2592 readLine(); 2587 2593 } 2588 line.putback(c); 2594 if (readSuccess()) { 2595 line.putback(c); 2596 } 2589 2597 } 2590 2598 -
lemon/maps.h
r318 r320 1856 1856 InverseMap inverse() const { return InverseMap(*_graph);} 1857 1857 1858 };1859 1860 1861 /// \brief General invertable graph-map type.1862 1863 /// This type provides simple invertable graph-maps.1864 /// The InvertableMap wraps an arbitrary ReadWriteMap1865 /// and if a key is set to a new value then store it1866 /// in the inverse map.1867 ///1868 /// The values of the map can be accessed1869 /// with stl compatible forward iterator.1870 ///1871 /// \tparam _Graph The graph type.1872 /// \tparam _Item The item type of the graph.1873 /// \tparam _Value The value type of the map.1874 ///1875 /// \see IterableValueMap1876 template <typename _Graph, typename _Item, typename _Value>1877 class InvertableMap1878 : protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type {1879 private:1880 1881 typedef typename ItemSetTraits<_Graph, _Item>::1882 template Map<_Value>::Type Map;1883 typedef _Graph Graph;1884 1885 typedef std::map<_Value, _Item> Container;1886 Container _inv_map;1887 1888 public:1889 1890 /// The key type of InvertableMap (Node, Arc, Edge).1891 typedef typename Map::Key Key;1892 /// The value type of the InvertableMap.1893 typedef typename Map::Value Value;1894 1895 /// \brief Constructor.1896 ///1897 /// Construct a new InvertableMap for the graph.1898 ///1899 explicit InvertableMap(const Graph& graph) : Map(graph) {}1900 1901 /// \brief Forward iterator for values.1902 ///1903 /// This iterator is an stl compatible forward1904 /// iterator on the values of the map. The values can1905 /// be accessed in the [beginValue, endValue) range.1906 ///1907 class ValueIterator1908 : public std::iterator<std::forward_iterator_tag, Value> {1909 friend class InvertableMap;1910 private:1911 ValueIterator(typename Container::const_iterator _it)1912 : it(_it) {}1913 public:1914 1915 ValueIterator() {}1916 1917 ValueIterator& operator++() { ++it; return *this; }1918 ValueIterator operator++(int) {1919 ValueIterator tmp(*this);1920 operator++();1921 return tmp;1922 }1923 1924 const Value& operator*() const { return it->first; }1925 const Value* operator->() const { return &(it->first); }1926 1927 bool operator==(ValueIterator jt) const { return it == jt.it; }1928 bool operator!=(ValueIterator jt) const { return it != jt.it; }1929 1930 private:1931 typename Container::const_iterator it;1932 };1933 1934 /// \brief Returns an iterator to the first value.1935 ///1936 /// Returns an stl compatible iterator to the1937 /// first value of the map. The values of the1938 /// map can be accessed in the [beginValue, endValue)1939 /// range.1940 ValueIterator beginValue() const {1941 return ValueIterator(_inv_map.begin());1942 }1943 1944 /// \brief Returns an iterator after the last value.1945 ///1946 /// Returns an stl compatible iterator after the1947 /// last value of the map. The values of the1948 /// map can be accessed in the [beginValue, endValue)1949 /// range.1950 ValueIterator endValue() const {1951 return ValueIterator(_inv_map.end());1952 }1953 1954 /// \brief The setter function of the map.1955 ///1956 /// Sets the mapped value.1957 void set(const Key& key, const Value& val) {1958 Value oldval = Map::operator[](key);1959 typename Container::iterator it = _inv_map.find(oldval);1960 if (it != _inv_map.end() && it->second == key) {1961 _inv_map.erase(it);1962 }1963 _inv_map.insert(make_pair(val, key));1964 Map::set(key, val);1965 }1966 1967 /// \brief The getter function of the map.1968 ///1969 /// It gives back the value associated with the key.1970 typename MapTraits<Map>::ConstReturnValue1971 operator[](const Key& key) const {1972 return Map::operator[](key);1973 }1974 1975 /// \brief Gives back the item by its value.1976 ///1977 /// Gives back the item by its value.1978 Key operator()(const Value& key) const {1979 typename Container::const_iterator it = _inv_map.find(key);1980 return it != _inv_map.end() ? it->second : INVALID;1981 }1982 1983 protected:1984 1985 /// \brief Erase the key from the map.1986 ///1987 /// Erase the key to the map. It is called by the1988 /// \c AlterationNotifier.1989 virtual void erase(const Key& key) {1990 Value val = Map::operator[](key);1991 typename Container::iterator it = _inv_map.find(val);1992 if (it != _inv_map.end() && it->second == key) {1993 _inv_map.erase(it);1994 }1995 Map::erase(key);1996 }1997 1998 /// \brief Erase more keys from the map.1999 ///2000 /// Erase more keys from the map. It is called by the2001 /// \c AlterationNotifier.2002 virtual void erase(const std::vector<Key>& keys) {2003 for (int i = 0; i < int(keys.size()); ++i) {2004 Value val = Map::operator[](keys[i]);2005 typename Container::iterator it = _inv_map.find(val);2006 if (it != _inv_map.end() && it->second == keys[i]) {2007 _inv_map.erase(it);2008 }2009 }2010 Map::erase(keys);2011 }2012 2013 /// \brief Clear the keys from the map and inverse map.2014 ///2015 /// Clear the keys from the map and inverse map. It is called by the2016 /// \c AlterationNotifier.2017 virtual void clear() {2018 _inv_map.clear();2019 Map::clear();2020 }2021 2022 public:2023 2024 /// \brief The inverse map type.2025 ///2026 /// The inverse of this map. The subscript operator of the map2027 /// gives back always the item what was last assigned to the value.2028 class InverseMap {2029 public:2030 /// \brief Constructor of the InverseMap.2031 ///2032 /// Constructor of the InverseMap.2033 explicit InverseMap(const InvertableMap& inverted)2034 : _inverted(inverted) {}2035 2036 /// The value type of the InverseMap.2037 typedef typename InvertableMap::Key Value;2038 /// The key type of the InverseMap.2039 typedef typename InvertableMap::Value Key;2040 2041 /// \brief Subscript operator.2042 ///2043 /// Subscript operator. It gives back always the item2044 /// what was last assigned to the value.2045 Value operator[](const Key& key) const {2046 return _inverted(key);2047 }2048 2049 private:2050 const InvertableMap& _inverted;2051 };2052 2053 /// \brief It gives back the just readable inverse map.2054 ///2055 /// It gives back the just readable inverse map.2056 InverseMap inverse() const {2057 return InverseMap(*this);2058 }2059 2060 };2061 2062 /// \brief Provides a mutable, continuous and unique descriptor for each2063 /// item in the graph.2064 ///2065 /// The DescriptorMap class provides a unique and continuous (but mutable)2066 /// descriptor (id) for each item of the same type (e.g. node) in the2067 /// graph. This id is <ul><li>\b unique: different items (nodes) get2068 /// different ids <li>\b continuous: the range of the ids is the set of2069 /// integers between 0 and \c n-1, where \c n is the number of the items of2070 /// this type (e.g. nodes) (so the id of a node can change if you delete an2071 /// other node, i.e. this id is mutable). </ul> This map can be inverted2072 /// with its member class \c InverseMap, or with the \c operator() member.2073 ///2074 /// \tparam _Graph The graph class the \c DescriptorMap belongs to.2075 /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or2076 /// Edge.2077 template <typename _Graph, typename _Item>2078 class DescriptorMap2079 : protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type {2080 2081 typedef _Item Item;2082 typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map;2083 2084 public:2085 /// The graph class of DescriptorMap.2086 typedef _Graph Graph;2087 2088 /// The key type of DescriptorMap (Node, Arc, Edge).2089 typedef typename Map::Key Key;2090 /// The value type of DescriptorMap.2091 typedef typename Map::Value Value;2092 2093 /// \brief Constructor.2094 ///2095 /// Constructor for descriptor map.2096 explicit DescriptorMap(const Graph& _graph) : Map(_graph) {2097 Item it;2098 const typename Map::Notifier* nf = Map::notifier();2099 for (nf->first(it); it != INVALID; nf->next(it)) {2100 Map::set(it, _inv_map.size());2101 _inv_map.push_back(it);2102 }2103 }2104 2105 protected:2106 2107 /// \brief Add a new key to the map.2108 ///2109 /// Add a new key to the map. It is called by the2110 /// \c AlterationNotifier.2111 virtual void add(const Item& item) {2112 Map::add(item);2113 Map::set(item, _inv_map.size());2114 _inv_map.push_back(item);2115 }2116 2117 /// \brief Add more new keys to the map.2118 ///2119 /// Add more new keys to the map. It is called by the2120 /// \c AlterationNotifier.2121 virtual void add(const std::vector<Item>& items) {2122 Map::add(items);2123 for (int i = 0; i < int(items.size()); ++i) {2124 Map::set(items[i], _inv_map.size());2125 _inv_map.push_back(items[i]);2126 }2127 }2128 2129 /// \brief Erase the key from the map.2130 ///2131 /// Erase the key from the map. It is called by the2132 /// \c AlterationNotifier.2133 virtual void erase(const Item& item) {2134 Map::set(_inv_map.back(), Map::operator[](item));2135 _inv_map[Map::operator[](item)] = _inv_map.back();2136 _inv_map.pop_back();2137 Map::erase(item);2138 }2139 2140 /// \brief Erase more keys from the map.2141 ///2142 /// Erase more keys from the map. It is called by the2143 /// \c AlterationNotifier.2144 virtual void erase(const std::vector<Item>& items) {2145 for (int i = 0; i < int(items.size()); ++i) {2146 Map::set(_inv_map.back(), Map::operator[](items[i]));2147 _inv_map[Map::operator[](items[i])] = _inv_map.back();2148 _inv_map.pop_back();2149 }2150 Map::erase(items);2151 }2152 2153 /// \brief Build the unique map.2154 ///2155 /// Build the unique map. It is called by the2156 /// \c AlterationNotifier.2157 virtual void build() {2158 Map::build();2159 Item it;2160 const typename Map::Notifier* nf = Map::notifier();2161 for (nf->first(it); it != INVALID; nf->next(it)) {2162 Map::set(it, _inv_map.size());2163 _inv_map.push_back(it);2164 }2165 }2166 2167 /// \brief Clear the keys from the map.2168 ///2169 /// Clear the keys from the map. It is called by the2170 /// \c AlterationNotifier.2171 virtual void clear() {2172 _inv_map.clear();2173 Map::clear();2174 }2175 2176 public:2177 2178 /// \brief Returns the maximal value plus one.2179 ///2180 /// Returns the maximal value plus one in the map.2181 unsigned int size() const {2182 return _inv_map.size();2183 }2184 2185 /// \brief Swaps the position of the two items in the map.2186 ///2187 /// Swaps the position of the two items in the map.2188 void swap(const Item& p, const Item& q) {2189 int pi = Map::operator[](p);2190 int qi = Map::operator[](q);2191 Map::set(p, qi);2192 _inv_map[qi] = p;2193 Map::set(q, pi);2194 _inv_map[pi] = q;2195 }2196 2197 /// \brief Gives back the \e descriptor of the item.2198 ///2199 /// Gives back the mutable and unique \e descriptor of the map.2200 int operator[](const Item& item) const {2201 return Map::operator[](item);2202 }2203 2204 /// \brief Gives back the item by its descriptor.2205 ///2206 /// Gives back th item by its descriptor.2207 Item operator()(int id) const {2208 return _inv_map[id];2209 }2210 2211 private:2212 2213 typedef std::vector<Item> Container;2214 Container _inv_map;2215 2216 public:2217 /// \brief The inverse map type of DescriptorMap.2218 ///2219 /// The inverse map type of DescriptorMap.2220 class InverseMap {2221 public:2222 /// \brief Constructor of the InverseMap.2223 ///2224 /// Constructor of the InverseMap.2225 explicit InverseMap(const DescriptorMap& inverted)2226 : _inverted(inverted) {}2227 2228 2229 /// The value type of the InverseMap.2230 typedef typename DescriptorMap::Key Value;2231 /// The key type of the InverseMap.2232 typedef typename DescriptorMap::Value Key;2233 2234 /// \brief Subscript operator.2235 ///2236 /// Subscript operator. It gives back the item2237 /// that the descriptor belongs to currently.2238 Value operator[](const Key& key) const {2239 return _inverted(key);2240 }2241 2242 /// \brief Size of the map.2243 ///2244 /// Returns the size of the map.2245 unsigned int size() const {2246 return _inverted.size();2247 }2248 2249 private:2250 const DescriptorMap& _inverted;2251 };2252 2253 /// \brief Gives back the inverse of the map.2254 ///2255 /// Gives back the inverse of the map.2256 const InverseMap inverse() const {2257 return InverseMap(*this);2258 }2259 1858 }; 2260 1859 -
lemon/smart_graph.h
r317 r337 306 306 nodes[b._id].first_out=nodes[n._id].first_out; 307 307 nodes[n._id].first_out=-1; 308 for(int i=nodes[b._id].first_out;i!=-1;i++) arcs[i].source=b._id; 308 for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) { 309 arcs[i].source=b._id; 310 } 309 311 if(connect) addArc(n,b); 310 312 return b; … … 729 731 dir.push_back(arcFromId(n-1)); 730 732 Parent::notifier(Arc()).erase(dir); 731 nodes[arcs[n ].target].first_out=arcs[n].next_out;732 nodes[arcs[n -1].target].first_out=arcs[n-1].next_out;733 nodes[arcs[n-1].target].first_out=arcs[n].next_out; 734 nodes[arcs[n].target].first_out=arcs[n-1].next_out; 733 735 arcs.pop_back(); 734 736 arcs.pop_back(); -
test/digraph_test.cc
r228 r338 30 30 31 31 template <class Digraph> 32 void checkDigraph () {32 void checkDigraphBuild() { 33 33 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); 34 34 Digraph G; … … 59 59 checkGraphConArcList(G, 1); 60 60 61 Arc a2 = G.addArc(n2, n1), a3 = G.addArc(n2, n3), a4 = G.addArc(n2, n3); 61 Arc a2 = G.addArc(n2, n1), 62 a3 = G.addArc(n2, n3), 63 a4 = G.addArc(n2, n3); 64 62 65 checkGraphNodeList(G, 3); 63 66 checkGraphArcList(G, 4); … … 77 80 checkGraphNodeMap(G); 78 81 checkGraphArcMap(G); 79 80 } 81 82 } 83 84 template <class Digraph> 85 void checkDigraphSplit() { 86 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); 87 88 Digraph G; 89 Node n1 = G.addNode(), n2 = G.addNode(), n3 = G.addNode(); 90 Arc a1 = G.addArc(n1, n2), a2 = G.addArc(n2, n1), 91 a3 = G.addArc(n2, n3), a4 = G.addArc(n2, n3); 92 93 Node n4 = G.split(n2); 94 95 check(G.target(OutArcIt(G, n2)) == n4 && 96 G.source(InArcIt(G, n4)) == n2, 97 "Wrong split."); 98 99 checkGraphNodeList(G, 4); 100 checkGraphArcList(G, 5); 101 102 checkGraphOutArcList(G, n1, 1); 103 checkGraphOutArcList(G, n2, 1); 104 checkGraphOutArcList(G, n3, 0); 105 checkGraphOutArcList(G, n4, 3); 106 107 checkGraphInArcList(G, n1, 1); 108 checkGraphInArcList(G, n2, 1); 109 checkGraphInArcList(G, n3, 2); 110 checkGraphInArcList(G, n4, 1); 111 112 checkGraphConArcList(G, 5); 113 } 114 115 template <class Digraph> 116 void checkDigraphAlter() { 117 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); 118 119 Digraph G; 120 Node n1 = G.addNode(), n2 = G.addNode(), 121 n3 = G.addNode(), n4 = G.addNode(); 122 Arc a1 = G.addArc(n1, n2), a2 = G.addArc(n4, n1), 123 a3 = G.addArc(n4, n3), a4 = G.addArc(n4, n3), 124 a5 = G.addArc(n2, n4); 125 126 checkGraphNodeList(G, 4); 127 checkGraphArcList(G, 5); 128 129 // Check changeSource() and changeTarget() 130 G.changeTarget(a4, n1); 131 132 checkGraphNodeList(G, 4); 133 checkGraphArcList(G, 5); 134 135 checkGraphOutArcList(G, n1, 1); 136 checkGraphOutArcList(G, n2, 1); 137 checkGraphOutArcList(G, n3, 0); 138 checkGraphOutArcList(G, n4, 3); 139 140 checkGraphInArcList(G, n1, 2); 141 checkGraphInArcList(G, n2, 1); 142 checkGraphInArcList(G, n3, 1); 143 checkGraphInArcList(G, n4, 1); 144 145 checkGraphConArcList(G, 5); 146 147 G.changeSource(a4, n3); 148 149 checkGraphNodeList(G, 4); 150 checkGraphArcList(G, 5); 151 152 checkGraphOutArcList(G, n1, 1); 153 checkGraphOutArcList(G, n2, 1); 154 checkGraphOutArcList(G, n3, 1); 155 checkGraphOutArcList(G, n4, 2); 156 157 checkGraphInArcList(G, n1, 2); 158 checkGraphInArcList(G, n2, 1); 159 checkGraphInArcList(G, n3, 1); 160 checkGraphInArcList(G, n4, 1); 161 162 checkGraphConArcList(G, 5); 163 164 // Check contract() 165 G.contract(n2, n4, false); 166 167 checkGraphNodeList(G, 3); 168 checkGraphArcList(G, 5); 169 170 checkGraphOutArcList(G, n1, 1); 171 checkGraphOutArcList(G, n2, 3); 172 checkGraphOutArcList(G, n3, 1); 173 174 checkGraphInArcList(G, n1, 2); 175 checkGraphInArcList(G, n2, 2); 176 checkGraphInArcList(G, n3, 1); 177 178 checkGraphConArcList(G, 5); 179 180 G.contract(n2, n1); 181 182 checkGraphNodeList(G, 2); 183 checkGraphArcList(G, 3); 184 185 checkGraphOutArcList(G, n2, 2); 186 checkGraphOutArcList(G, n3, 1); 187 188 checkGraphInArcList(G, n2, 2); 189 checkGraphInArcList(G, n3, 1); 190 191 checkGraphConArcList(G, 3); 192 } 193 194 template <class Digraph> 195 void checkDigraphErase() { 196 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); 197 198 Digraph G; 199 Node n1 = G.addNode(), n2 = G.addNode(), 200 n3 = G.addNode(), n4 = G.addNode(); 201 Arc a1 = G.addArc(n1, n2), a2 = G.addArc(n4, n1), 202 a3 = G.addArc(n4, n3), a4 = G.addArc(n3, n1), 203 a5 = G.addArc(n2, n4); 204 205 // Check arc deletion 206 G.erase(a1); 207 208 checkGraphNodeList(G, 4); 209 checkGraphArcList(G, 4); 210 211 checkGraphOutArcList(G, n1, 0); 212 checkGraphOutArcList(G, n2, 1); 213 checkGraphOutArcList(G, n3, 1); 214 checkGraphOutArcList(G, n4, 2); 215 216 checkGraphInArcList(G, n1, 2); 217 checkGraphInArcList(G, n2, 0); 218 checkGraphInArcList(G, n3, 1); 219 checkGraphInArcList(G, n4, 1); 220 221 checkGraphConArcList(G, 4); 222 223 // Check node deletion 224 G.erase(n4); 225 226 checkGraphNodeList(G, 3); 227 checkGraphArcList(G, 1); 228 229 checkGraphOutArcList(G, n1, 0); 230 checkGraphOutArcList(G, n2, 0); 231 checkGraphOutArcList(G, n3, 1); 232 checkGraphOutArcList(G, n4, 0); 233 234 checkGraphInArcList(G, n1, 1); 235 checkGraphInArcList(G, n2, 0); 236 checkGraphInArcList(G, n3, 0); 237 checkGraphInArcList(G, n4, 0); 238 239 checkGraphConArcList(G, 1); 240 } 241 242 243 template <class Digraph> 244 void checkDigraphSnapshot() { 245 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); 246 247 Digraph G; 248 Node n1 = G.addNode(), n2 = G.addNode(), n3 = G.addNode(); 249 Arc a1 = G.addArc(n1, n2), a2 = G.addArc(n2, n1), 250 a3 = G.addArc(n2, n3), a4 = G.addArc(n2, n3); 251 252 typename Digraph::Snapshot snapshot(G); 253 254 Node n = G.addNode(); 255 G.addArc(n3, n); 256 G.addArc(n, n3); 257 258 checkGraphNodeList(G, 4); 259 checkGraphArcList(G, 6); 260 261 snapshot.restore(); 262 263 checkGraphNodeList(G, 3); 264 checkGraphArcList(G, 4); 265 266 checkGraphOutArcList(G, n1, 1); 267 checkGraphOutArcList(G, n2, 3); 268 checkGraphOutArcList(G, n3, 0); 269 270 checkGraphInArcList(G, n1, 1); 271 checkGraphInArcList(G, n2, 1); 272 checkGraphInArcList(G, n3, 2); 273 274 checkGraphConArcList(G, 4); 275 276 checkNodeIds(G); 277 checkArcIds(G); 278 checkGraphNodeMap(G); 279 checkGraphArcMap(G); 280 281 G.addNode(); 282 snapshot.save(G); 283 284 G.addArc(G.addNode(), G.addNode()); 285 286 snapshot.restore(); 287 288 checkGraphNodeList(G, 4); 289 checkGraphArcList(G, 4); 290 } 82 291 83 292 void checkConcepts() { … … 170 379 void checkDigraphs() { 171 380 { // Checking ListDigraph 172 checkDigraph<ListDigraph>(); 381 checkDigraphBuild<ListDigraph>(); 382 checkDigraphSplit<ListDigraph>(); 383 checkDigraphAlter<ListDigraph>(); 384 checkDigraphErase<ListDigraph>(); 385 checkDigraphSnapshot<ListDigraph>(); 173 386 checkDigraphValidityErase<ListDigraph>(); 174 387 } 175 388 { // Checking SmartDigraph 176 checkDigraph<SmartDigraph>(); 389 checkDigraphBuild<SmartDigraph>(); 390 checkDigraphSplit<SmartDigraph>(); 391 checkDigraphSnapshot<SmartDigraph>(); 177 392 checkDigraphValidity<SmartDigraph>(); 178 393 } -
test/graph_test.cc
r228 r338 30 30 31 31 template <class Graph> 32 void checkGraph () {32 void checkGraphBuild() { 33 33 TEMPLATE_GRAPH_TYPEDEFS(Graph); 34 34 … … 36 36 checkGraphNodeList(G, 0); 37 37 checkGraphEdgeList(G, 0); 38 checkGraphArcList(G, 0); 38 39 39 40 Node … … 43 44 checkGraphNodeList(G, 3); 44 45 checkGraphEdgeList(G, 0); 46 checkGraphArcList(G, 0); 45 47 46 48 Edge e1 = G.addEdge(n1, n2); 47 49 check((G.u(e1) == n1 && G.v(e1) == n2) || (G.u(e1) == n2 && G.v(e1) == n1), 48 50 "Wrong edge"); 49 checkGraphNodeList(G, 3); 51 52 checkGraphNodeList(G, 3); 53 checkGraphEdgeList(G, 1); 50 54 checkGraphArcList(G, 2); 51 checkGraphEdgeList(G, 1); 52 53 checkGraphOutArcList(G, n1, 1); 54 checkGraphOutArcList(G, n2, 1); 55 checkGraphOutArcList(G, n3, 0); 56 57 checkGraphInArcList(G, n1, 1); 58 checkGraphInArcList(G, n2, 1); 59 checkGraphInArcList(G, n3, 0); 60 61 checkGraphIncEdgeList(G, n1, 1); 62 checkGraphIncEdgeList(G, n2, 1); 63 checkGraphIncEdgeList(G, n3, 0); 64 55 56 checkGraphIncEdgeArcLists(G, n1, 1); 57 checkGraphIncEdgeArcLists(G, n2, 1); 58 checkGraphIncEdgeArcLists(G, n3, 0); 59 60 checkGraphConEdgeList(G, 1); 65 61 checkGraphConArcList(G, 2); 66 checkGraphConEdgeList(G, 1); 67 68 Edge e2 = G.addEdge(n2, n1), e3 = G.addEdge(n2, n3); 69 checkGraphNodeList(G, 3); 62 63 Edge e2 = G.addEdge(n2, n1), 64 e3 = G.addEdge(n2, n3); 65 66 checkGraphNodeList(G, 3); 67 checkGraphEdgeList(G, 3); 70 68 checkGraphArcList(G, 6); 71 checkGraphEdgeList(G, 3); 72 73 checkGraphOutArcList(G, n1, 2); 74 checkGraphOutArcList(G, n2, 3); 75 checkGraphOutArcList(G, n3, 1); 76 77 checkGraphInArcList(G, n1, 2); 78 checkGraphInArcList(G, n2, 3); 79 checkGraphInArcList(G, n3, 1); 80 81 checkGraphIncEdgeList(G, n1, 2); 82 checkGraphIncEdgeList(G, n2, 3); 83 checkGraphIncEdgeList(G, n3, 1); 84 69 70 checkGraphIncEdgeArcLists(G, n1, 2); 71 checkGraphIncEdgeArcLists(G, n2, 3); 72 checkGraphIncEdgeArcLists(G, n3, 1); 73 74 checkGraphConEdgeList(G, 3); 85 75 checkGraphConArcList(G, 6); 86 checkGraphConEdgeList(G, 3);87 76 88 77 checkArcDirections(G); … … 94 83 checkGraphArcMap(G); 95 84 checkGraphEdgeMap(G); 85 } 86 87 template <class Graph> 88 void checkGraphAlter() { 89 TEMPLATE_GRAPH_TYPEDEFS(Graph); 90 91 Graph G; 92 Node n1 = G.addNode(), n2 = G.addNode(), 93 n3 = G.addNode(), n4 = G.addNode(); 94 Edge e1 = G.addEdge(n1, n2), e2 = G.addEdge(n2, n1), 95 e3 = G.addEdge(n2, n3), e4 = G.addEdge(n1, n4), 96 e5 = G.addEdge(n4, n3); 97 98 checkGraphNodeList(G, 4); 99 checkGraphEdgeList(G, 5); 100 checkGraphArcList(G, 10); 101 102 // Check changeU() and changeV() 103 if (G.u(e2) == n2) { 104 G.changeU(e2, n3); 105 } else { 106 G.changeV(e2, n3); 107 } 108 109 checkGraphNodeList(G, 4); 110 checkGraphEdgeList(G, 5); 111 checkGraphArcList(G, 10); 112 113 checkGraphIncEdgeArcLists(G, n1, 3); 114 checkGraphIncEdgeArcLists(G, n2, 2); 115 checkGraphIncEdgeArcLists(G, n3, 3); 116 checkGraphIncEdgeArcLists(G, n4, 2); 117 118 checkGraphConEdgeList(G, 5); 119 checkGraphConArcList(G, 10); 120 121 if (G.u(e2) == n1) { 122 G.changeU(e2, n2); 123 } else { 124 G.changeV(e2, n2); 125 } 126 127 checkGraphNodeList(G, 4); 128 checkGraphEdgeList(G, 5); 129 checkGraphArcList(G, 10); 130 131 checkGraphIncEdgeArcLists(G, n1, 2); 132 checkGraphIncEdgeArcLists(G, n2, 3); 133 checkGraphIncEdgeArcLists(G, n3, 3); 134 checkGraphIncEdgeArcLists(G, n4, 2); 135 136 checkGraphConEdgeList(G, 5); 137 checkGraphConArcList(G, 10); 138 139 // Check contract() 140 G.contract(n1, n4, false); 141 142 checkGraphNodeList(G, 3); 143 checkGraphEdgeList(G, 5); 144 checkGraphArcList(G, 10); 145 146 checkGraphIncEdgeArcLists(G, n1, 4); 147 checkGraphIncEdgeArcLists(G, n2, 3); 148 checkGraphIncEdgeArcLists(G, n3, 3); 149 150 checkGraphConEdgeList(G, 5); 151 checkGraphConArcList(G, 10); 152 153 G.contract(n2, n3); 154 155 checkGraphNodeList(G, 2); 156 checkGraphEdgeList(G, 3); 157 checkGraphArcList(G, 6); 158 159 checkGraphIncEdgeArcLists(G, n1, 4); 160 checkGraphIncEdgeArcLists(G, n2, 2); 161 162 checkGraphConEdgeList(G, 3); 163 checkGraphConArcList(G, 6); 164 } 165 166 template <class Graph> 167 void checkGraphErase() { 168 TEMPLATE_GRAPH_TYPEDEFS(Graph); 169 170 Graph G; 171 Node n1 = G.addNode(), n2 = G.addNode(), 172 n3 = G.addNode(), n4 = G.addNode(); 173 Edge e1 = G.addEdge(n1, n2), e2 = G.addEdge(n2, n1), 174 e3 = G.addEdge(n2, n3), e4 = G.addEdge(n1, n4), 175 e5 = G.addEdge(n4, n3); 176 177 // Check edge deletion 178 G.erase(e2); 179 180 checkGraphNodeList(G, 4); 181 checkGraphEdgeList(G, 4); 182 checkGraphArcList(G, 8); 183 184 checkGraphIncEdgeArcLists(G, n1, 2); 185 checkGraphIncEdgeArcLists(G, n2, 2); 186 checkGraphIncEdgeArcLists(G, n3, 2); 187 checkGraphIncEdgeArcLists(G, n4, 2); 188 189 checkGraphConEdgeList(G, 4); 190 checkGraphConArcList(G, 8); 191 192 // Check node deletion 193 G.erase(n3); 194 195 checkGraphNodeList(G, 3); 196 checkGraphEdgeList(G, 2); 197 checkGraphArcList(G, 4); 198 199 checkGraphIncEdgeArcLists(G, n1, 2); 200 checkGraphIncEdgeArcLists(G, n2, 1); 201 checkGraphIncEdgeArcLists(G, n4, 1); 202 203 checkGraphConEdgeList(G, 2); 204 checkGraphConArcList(G, 4); 205 } 206 207 208 template <class Graph> 209 void checkGraphSnapshot() { 210 TEMPLATE_GRAPH_TYPEDEFS(Graph); 211 212 Graph G; 213 Node n1 = G.addNode(), n2 = G.addNode(), n3 = G.addNode(); 214 Edge e1 = G.addEdge(n1, n2), e2 = G.addEdge(n2, n1), 215 e3 = G.addEdge(n2, n3); 216 217 checkGraphNodeList(G, 3); 218 checkGraphEdgeList(G, 3); 219 checkGraphArcList(G, 6); 220 221 typename Graph::Snapshot snapshot(G); 222 223 Node n = G.addNode(); 224 G.addEdge(n3, n); 225 G.addEdge(n, n3); 226 G.addEdge(n3, n2); 227 228 checkGraphNodeList(G, 4); 229 checkGraphEdgeList(G, 6); 230 checkGraphArcList(G, 12); 231 232 snapshot.restore(); 233 234 checkGraphNodeList(G, 3); 235 checkGraphEdgeList(G, 3); 236 checkGraphArcList(G, 6); 237 238 checkGraphIncEdgeArcLists(G, n1, 2); 239 checkGraphIncEdgeArcLists(G, n2, 3); 240 checkGraphIncEdgeArcLists(G, n3, 1); 241 242 checkGraphConEdgeList(G, 3); 243 checkGraphConArcList(G, 6); 244 245 checkNodeIds(G); 246 checkEdgeIds(G); 247 checkArcIds(G); 248 checkGraphNodeMap(G); 249 checkGraphEdgeMap(G); 250 checkGraphArcMap(G); 251 252 G.addNode(); 253 snapshot.save(G); 254 255 G.addEdge(G.addNode(), G.addNode()); 256 257 snapshot.restore(); 258 259 checkGraphNodeList(G, 4); 260 checkGraphEdgeList(G, 3); 261 checkGraphArcList(G, 6); 96 262 } 97 263 … … 235 401 void checkGraphs() { 236 402 { // Checking ListGraph 237 checkGraph<ListGraph>(); 403 checkGraphBuild<ListGraph>(); 404 checkGraphAlter<ListGraph>(); 405 checkGraphErase<ListGraph>(); 406 checkGraphSnapshot<ListGraph>(); 238 407 checkGraphValidityErase<ListGraph>(); 239 408 } 240 409 { // Checking SmartGraph 241 checkGraph<SmartGraph>(); 410 checkGraphBuild<SmartGraph>(); 411 checkGraphSnapshot<SmartGraph>(); 242 412 checkGraphValidity<SmartGraph>(); 243 413 } -
test/graph_test.h
r263 r338 115 115 check(e==INVALID,"Wrong IncEdge list linking."); 116 116 check(countIncEdges(G,n)==cnt,"Wrong IncEdge number."); 117 } 118 119 template <class Graph> 120 void checkGraphIncEdgeArcLists(const Graph &G, typename Graph::Node n, 121 int cnt) 122 { 123 checkGraphIncEdgeList(G, n, cnt); 124 checkGraphOutArcList(G, n, cnt); 125 checkGraphInArcList(G, n, cnt); 117 126 } 118 127 -
test/graph_utils_test.cc
r220 r301 36 36 { 37 37 Digraph digraph; 38 typename Digraph::template NodeMap<int> nodes(digraph); 39 std::vector<Node> invNodes; 38 40 for (int i = 0; i < 10; ++i) { 39 digraph.addNode(); 40 } 41 DescriptorMap<Digraph, Node> nodes(digraph); 42 typename DescriptorMap<Digraph, Node>::InverseMap invNodes(nodes); 41 invNodes.push_back(digraph.addNode()); 42 nodes[invNodes.back()]=invNodes.size()-1; 43 } 43 44 for (int i = 0; i < 100; ++i) { 44 45 int src = rnd[invNodes.size()]; … … 47 48 } 48 49 typename Digraph::template ArcMap<bool> found(digraph, false); 49 DescriptorMap<Digraph, Arc> arcs(digraph);50 50 for (NodeIt src(digraph); src != INVALID; ++src) { 51 51 for (NodeIt trg(digraph); trg != INVALID; ++trg) { … … 111 111 TEMPLATE_GRAPH_TYPEDEFS(Graph); 112 112 Graph graph; 113 typename Graph::template NodeMap<int> nodes(graph); 114 std::vector<Node> invNodes; 113 115 for (int i = 0; i < 10; ++i) { 114 graph.addNode(); 115 } 116 DescriptorMap<Graph, Node> nodes(graph); 117 typename DescriptorMap<Graph, Node>::InverseMap invNodes(nodes); 116 invNodes.push_back(graph.addNode()); 117 nodes[invNodes.back()]=invNodes.size()-1; 118 } 118 119 for (int i = 0; i < 100; ++i) { 119 120 int src = rnd[invNodes.size()]; … … 122 123 } 123 124 typename Graph::template EdgeMap<int> found(graph, 0); 124 DescriptorMap<Graph, Edge> edges(graph);125 125 for (NodeIt src(graph); src != INVALID; ++src) { 126 126 for (NodeIt trg(graph); trg != INVALID; ++trg) { -
test/maps_test.cc
r210 r357 171 171 typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; 172 172 checkConcept<ReadMap<B,double>, CompMap>(); 173 CompMap map1 (DoubleMap(),ReadMap<B,A>());173 CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>()); 174 174 CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); 175 175 … … 184 184 typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; 185 185 checkConcept<ReadMap<A,double>, CombMap>(); 186 CombMap map1 (DoubleMap(), DoubleMap());186 CombMap map1 = CombMap(DoubleMap(), DoubleMap()); 187 187 CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); 188 188 … … 196 196 checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); 197 197 FunctorToMap<F> map1; 198 FunctorToMap<F> map2 (F());198 FunctorToMap<F> map2 = FunctorToMap<F>(F()); 199 199 B b = functorToMap(F())[A()]; 200 200 201 201 checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); 202 MapToFunctor<ReadMap<A,B> > map (ReadMap<A,B>());202 MapToFunctor<ReadMap<A,B> > map = MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>()); 203 203 204 204 check(functorToMap(&func)[A()] == 3,
Note: See TracChangeset
for help on using the changeset viewer.