COIN-OR::LEMON - Graph Library

Changes in / [716:f47b6c94577e:717:684964884a2e] in lemon-1.2


Ignore:
Files:
9 added
22 edited

Legend:

Unmodified
Added
Removed
  • doc/groups.dox

    r663 r715  
    227227
    228228/**
    229 @defgroup matrices Matrices
    230 @ingroup datas
    231 \brief Two dimensional data storages implemented in LEMON.
    232 
    233 This group contains two dimensional data storages implemented in LEMON.
    234 */
    235 
    236 /**
    237229@defgroup paths Path Structures
    238230@ingroup datas
     
    247239any kind of path structure.
    248240
    249 \sa lemon::concepts::Path
     241\sa \ref concepts::Path "Path concept"
     242*/
     243
     244/**
     245@defgroup heaps Heap Structures
     246@ingroup datas
     247\brief %Heap structures implemented in LEMON.
     248
     249This group contains the heap structures implemented in LEMON.
     250
     251LEMON provides several heap classes. They are efficient implementations
     252of the abstract data type \e priority \e queue. They store items with
     253specified values called \e priorities in such a way that finding and
     254removing the item with minimum priority are efficient.
     255The basic operations are adding and erasing items, changing the priority
     256of an item, etc.
     257
     258Heaps are crucial in several algorithms, such as Dijkstra and Prim.
     259The heap implementations have the same interface, thus any of them can be
     260used easily in such algorithms.
     261
     262\sa \ref concepts::Heap "Heap concept"
     263*/
     264
     265/**
     266@defgroup matrices Matrices
     267@ingroup datas
     268\brief Two dimensional data storages implemented in LEMON.
     269
     270This group contains two dimensional data storages implemented in LEMON.
    250271*/
    251272
     
    257278This group contains some data structures implemented in LEMON in
    258279order to make it easier to implement combinatorial algorithms.
     280*/
     281
     282/**
     283@defgroup geomdat Geometric Data Structures
     284@ingroup auxdat
     285\brief Geometric data structures implemented in LEMON.
     286
     287This group contains geometric data structures implemented in LEMON.
     288
     289 - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
     290   vector with the usual operations.
     291 - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
     292   rectangular bounding box of a set of \ref lemon::dim2::Point
     293   "dim2::Point"'s.
     294*/
     295
     296/**
     297@defgroup matrices Matrices
     298@ingroup auxdat
     299\brief Two dimensional data storages implemented in LEMON.
     300
     301This group contains two dimensional data storages implemented in LEMON.
    259302*/
    260303
     
    299342
    300343/**
     344@defgroup spantree Minimum Spanning Tree Algorithms
     345@ingroup algs
     346\brief Algorithms for finding minimum cost spanning trees and arborescences.
     347
     348This group contains the algorithms for finding minimum cost spanning
     349trees and arborescences.
     350*/
     351
     352/**
    301353@defgroup max_flow Maximum Flow Algorithms
    302354@ingroup algs
     
    376428
    377429\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
    378     \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
     430    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
    379431
    380432LEMON contains several algorithms related to minimum cut problems:
     
    389441If you want to find minimum cut just between two distinict nodes,
    390442see the \ref max_flow "maximum flow problem".
    391 */
    392 
    393 /**
    394 @defgroup graph_properties Connectivity and Other Graph Properties
    395 @ingroup algs
    396 \brief Algorithms for discovering the graph properties
    397 
    398 This group contains the algorithms for discovering the graph properties
    399 like connectivity, bipartiteness, euler property, simplicity etc.
    400 
    401 \image html edge_biconnected_components.png
    402 \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
    403 */
    404 
    405 /**
    406 @defgroup planar Planarity Embedding and Drawing
    407 @ingroup algs
    408 \brief Algorithms for planarity checking, embedding and drawing
    409 
    410 This group contains the algorithms for planarity checking,
    411 embedding and drawing.
    412 
    413 \image html planar.png
    414 \image latex planar.eps "Plane graph" width=\textwidth
    415443*/
    416444
     
    456484
    457485/**
    458 @defgroup spantree Minimum Spanning Tree Algorithms
    459 @ingroup algs
    460 \brief Algorithms for finding minimum cost spanning trees and arborescences.
    461 
    462 This group contains the algorithms for finding minimum cost spanning
    463 trees and arborescences.
     486@defgroup graph_properties Connectivity and Other Graph Properties
     487@ingroup algs
     488\brief Algorithms for discovering the graph properties
     489
     490This group contains the algorithms for discovering the graph properties
     491like connectivity, bipartiteness, euler property, simplicity etc.
     492
     493\image html connected_components.png
     494\image latex connected_components.eps "Connected components" width=\textwidth
     495*/
     496
     497/**
     498@defgroup planar Planarity Embedding and Drawing
     499@ingroup algs
     500\brief Algorithms for planarity checking, embedding and drawing
     501
     502This group contains the algorithms for planarity checking,
     503embedding and drawing.
     504
     505\image html planar.png
     506\image latex planar.eps "Plane graph" width=\textwidth
     507*/
     508
     509/**
     510@defgroup approx Approximation Algorithms
     511@ingroup algs
     512\brief Approximation algorithms.
     513
     514This group contains the approximation and heuristic algorithms
     515implemented in LEMON.
    464516*/
    465517
     
    471523This group contains some algorithms implemented in LEMON
    472524in order to make it easier to implement complex algorithms.
    473 */
    474 
    475 /**
    476 @defgroup approx Approximation Algorithms
    477 @ingroup algs
    478 \brief Approximation algorithms.
    479 
    480 This group contains the approximation and heuristic algorithms
    481 implemented in LEMON.
    482525*/
    483526
     
    588631
    589632/**
    590 @defgroup dimacs_group DIMACS format
     633@defgroup dimacs_group DIMACS Format
    591634@ingroup io_group
    592635\brief Read and write files in DIMACS format
     
    650693
    651694/**
     695@defgroup tools Standalone Utility Applications
     696
     697Some utility applications are listed here.
     698
     699The standard compilation procedure (<tt>./configure;make</tt>) will compile
     700them, as well.
     701*/
     702
     703/**
    652704\anchor demoprograms
    653705
     
    661713*/
    662714
    663 /**
    664 @defgroup tools Standalone Utility Applications
    665 
    666 Some utility applications are listed here.
    667 
    668 The standard compilation procedure (<tt>./configure;make</tt>) will compile
    669 them, as well.
    670 */
    671 
    672715}
  • lemon/Makefile.am

    r667 r708  
    5858        lemon/arg_parser.h \
    5959        lemon/assert.h \
     60        lemon/bellman_ford.h \
    6061        lemon/bfs.h \
    6162        lemon/bin_heap.h \
     63        lemon/binom_heap.h \
     64        lemon/bucket_heap.h \
    6265        lemon/cbc.h \
    6366        lemon/circulation.h \
     
    7780        lemon/error.h \
    7881        lemon/euler.h \
     82        lemon/fib_heap.h \
     83        lemon/fourary_heap.h \
    7984        lemon/full_graph.h \
    8085        lemon/glpk.h \
     
    8388        lemon/grid_graph.h \
    8489        lemon/hypercube_graph.h \
     90        lemon/kary_heap.h \
    8591        lemon/kruskal.h \
    8692        lemon/hao_orlin.h \
     
    9197        lemon/lp_base.h \
    9298        lemon/lp_skeleton.h \
    93         lemon/list_graph.h \
    9499        lemon/maps.h \
    95100        lemon/matching.h \
     
    98103        lemon/nauty_reader.h \
    99104        lemon/network_simplex.h \
     105        lemon/pairing_heap.h \
    100106        lemon/path.h \
    101107        lemon/preflow.h \
     108        lemon/radix_heap.h \
    102109        lemon/radix_sort.h \
    103110        lemon/random.h \
  • lemon/bfs.h

    r716 r717  
    415415    ///The simplest way to execute the BFS algorithm is to use one of the
    416416    ///member functions called \ref run(Node) "run()".\n
    417     ///If you need more control on the execution, first you have to call
    418     ///\ref init(), then you can add several source nodes with
     417    ///If you need better control on the execution, you have to call
     418    ///\ref init() first, then you can add several source nodes with
    419419    ///\ref addSource(). Finally the actual path computation can be
    420420    ///performed with one of the \ref start() functions.
     
    14231423    /// The simplest way to execute the BFS algorithm is to use one of the
    14241424    /// member functions called \ref run(Node) "run()".\n
    1425     /// If you need more control on the execution, first you have to call
    1426     /// \ref init(), then you can add several source nodes with
     1425    /// If you need better control on the execution, you have to call
     1426    /// \ref init() first, then you can add several source nodes with
    14271427    /// \ref addSource(). Finally the actual path computation can be
    14281428    /// performed with one of the \ref start() functions.
  • lemon/bin_heap.h

    r584 r711  
    2020#define LEMON_BIN_HEAP_H
    2121
    22 ///\ingroup auxdat
     22///\ingroup heaps
    2323///\file
    24 ///\brief Binary Heap implementation.
     24///\brief Binary heap implementation.
    2525
    2626#include <vector>
     
    3030namespace lemon {
    3131
    32   ///\ingroup auxdat
     32  /// \ingroup heaps
    3333  ///
    34   ///\brief A Binary Heap implementation.
     34  /// \brief Binary heap data structure.
    3535  ///
    36   ///This class implements the \e binary \e heap data structure.
    37   ///
    38   ///A \e heap is a data structure for storing items with specified values
    39   ///called \e priorities in such a way that finding the item with minimum
    40   ///priority is efficient. \c Comp specifies the ordering of the priorities.
    41   ///In a heap one can change the priority of an item, add or erase an
    42   ///item, etc.
     36  /// This class implements the \e binary \e heap data structure.
     37  /// It fully conforms to the \ref concepts::Heap "heap concept".
    4338  ///
    44   ///\tparam PR Type of the priority of the items.
    45   ///\tparam IM A read and writable item map with int values, used internally
    46   ///to handle the cross references.
    47   ///\tparam Comp A functor class for the ordering of the priorities.
    48   ///The default is \c std::less<PR>.
    49   ///
    50   ///\sa FibHeap
    51   ///\sa Dijkstra
    52   template <typename PR, typename IM, typename Comp = std::less<PR> >
     39  /// \tparam PR Type of the priorities of the items.
     40  /// \tparam IM A read-writable item map with \c int values, used
     41  /// internally to handle the cross references.
     42  /// \tparam CMP A functor class for comparing the priorities.
     43  /// The default is \c std::less<PR>.
     44#ifdef DOXYGEN
     45  template <typename PR, typename IM, typename CMP>
     46#else
     47  template <typename PR, typename IM, typename CMP = std::less<PR> >
     48#endif
    5349  class BinHeap {
    54 
    5550  public:
    56     ///\e
     51
     52    /// Type of the item-int map.
    5753    typedef IM ItemIntMap;
    58     ///\e
     54    /// Type of the priorities.
    5955    typedef PR Prio;
    60     ///\e
     56    /// Type of the items stored in the heap.
    6157    typedef typename ItemIntMap::Key Item;
    62     ///\e
     58    /// Type of the item-priority pairs.
    6359    typedef std::pair<Item,Prio> Pair;
    64     ///\e
    65     typedef Comp Compare;
    66 
    67     /// \brief Type to represent the items states.
    68     ///
    69     /// Each Item element have a state associated to it. It may be "in heap",
    70     /// "pre heap" or "post heap". The latter two are indifferent from the
     60    /// Functor type for comparing the priorities.
     61    typedef CMP Compare;
     62
     63    /// \brief Type to represent the states of the items.
     64    ///
     65    /// Each item has a state associated to it. It can be "in heap",
     66    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    7167    /// heap's point of view, but may be useful to the user.
    7268    ///
     
    8581
    8682  public:
    87     /// \brief The constructor.
    88     ///
    89     /// The constructor.
    90     /// \param map should be given to the constructor, since it is used
    91     /// internally to handle the cross references. The value of the map
    92     /// must be \c PRE_HEAP (<tt>-1</tt>) for every item.
     83
     84    /// \brief Constructor.
     85    ///
     86    /// Constructor.
     87    /// \param map A map that assigns \c int values to the items.
     88    /// It is used internally to handle the cross references.
     89    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
    9390    explicit BinHeap(ItemIntMap &map) : _iim(map) {}
    9491
    95     /// \brief The constructor.
    96     ///
    97     /// The constructor.
    98     /// \param map should be given to the constructor, since it is used
    99     /// internally to handle the cross references. The value of the map
    100     /// should be PRE_HEAP (-1) for each element.
    101     ///
    102     /// \param comp The comparator function object.
     92    /// \brief Constructor.
     93    ///
     94    /// Constructor.
     95    /// \param map A map that assigns \c int values to the items.
     96    /// It is used internally to handle the cross references.
     97    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
     98    /// \param comp The function object used for comparing the priorities.
    10399    BinHeap(ItemIntMap &map, const Compare &comp)
    104100      : _iim(map), _comp(comp) {}
    105101
    106102
    107     /// The number of items stored in the heap.
    108     ///
    109     /// \brief Returns the number of items stored in the heap.
     103    /// \brief The number of items stored in the heap.
     104    ///
     105    /// This function returns the number of items stored in the heap.
    110106    int size() const { return _data.size(); }
    111107
    112     /// \brief Checks if the heap stores no items.
    113     ///
    114     /// Returns \c true if and only if the heap stores no items.
     108    /// \brief Check if the heap is empty.
     109    ///
     110    /// This function returns \c true if the heap is empty.
    115111    bool empty() const { return _data.empty(); }
    116112
    117     /// \brief Make empty this heap.
    118     ///
    119     /// Make empty this heap. It does not change the cross reference map.
    120     /// If you want to reuse what is not surely empty you should first clear
    121     /// the heap and after that you should set the cross reference map for
    122     /// each item to \c PRE_HEAP.
     113    /// \brief Make the heap empty.
     114    ///
     115    /// This functon makes the heap empty.
     116    /// It does not change the cross reference map. If you want to reuse
     117    /// a heap that is not surely empty, you should first clear it and
     118    /// then you should set the cross reference map to \c PRE_HEAP
     119    /// for each item.
    123120    void clear() {
    124121      _data.clear();
     
    128125    static int parent(int i) { return (i-1)/2; }
    129126
    130     static int second_child(int i) { return 2*i+2; }
     127    static int secondChild(int i) { return 2*i+2; }
    131128    bool less(const Pair &p1, const Pair &p2) const {
    132129      return _comp(p1.second, p2.second);
    133130    }
    134131
    135     int bubble_up(int hole, Pair p) {
     132    int bubbleUp(int hole, Pair p) {
    136133      int par = parent(hole);
    137134      while( hole>0 && less(p,_data[par]) ) {
     
    144141    }
    145142
    146     int bubble_down(int hole, Pair p, int length) {
    147       int child = second_child(hole);
     143    int bubbleDown(int hole, Pair p, int length) {
     144      int child = secondChild(hole);
    148145      while(child < length) {
    149146        if( less(_data[child-1], _data[child]) ) {
     
    154151        move(_data[child], hole);
    155152        hole = child;
    156         child = second_child(hole);
     153        child = secondChild(hole);
    157154      }
    158155      child--;
     
    172169
    173170  public:
     171
    174172    /// \brief Insert a pair of item and priority into the heap.
    175173    ///
    176     /// Adds \c p.first to the heap with priority \c p.second.
     174    /// This function inserts \c p.first to the heap with priority
     175    /// \c p.second.
    177176    /// \param p The pair to insert.
     177    /// \pre \c p.first must not be stored in the heap.
    178178    void push(const Pair &p) {
    179179      int n = _data.size();
    180180      _data.resize(n+1);
    181       bubble_up(n, p);
    182     }
    183 
    184     /// \brief Insert an item into the heap with the given heap.
    185     ///
    186     /// Adds \c i to the heap with priority \c p.
     181      bubbleUp(n, p);
     182    }
     183
     184    /// \brief Insert an item into the heap with the given priority.
     185    ///
     186    /// This function inserts the given item into the heap with the
     187    /// given priority.
    187188    /// \param i The item to insert.
    188189    /// \param p The priority of the item.
     190    /// \pre \e i must not be stored in the heap.
    189191    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
    190192
    191     /// \brief Returns the item with minimum priority relative to \c Compare.
    192     ///
    193     /// This method returns the item with minimum priority relative to \c
    194     /// Compare.
    195     /// \pre The heap must be nonempty.
     193    /// \brief Return the item having minimum priority.
     194    ///
     195    /// This function returns the item having minimum priority.
     196    /// \pre The heap must be non-empty.
    196197    Item top() const {
    197198      return _data[0].first;
    198199    }
    199200
    200     /// \brief Returns the minimum priority relative to \c Compare.
    201     ///
    202     /// It returns the minimum priority relative to \c Compare.
    203     /// \pre The heap must be nonempty.
     201    /// \brief The minimum priority.
     202    ///
     203    /// This function returns the minimum priority.
     204    /// \pre The heap must be non-empty.
    204205    Prio prio() const {
    205206      return _data[0].second;
    206207    }
    207208
    208     /// \brief Deletes the item with minimum priority relative to \c Compare.
    209     ///
    210     /// This method deletes the item with minimum priority relative to \c
    211     /// Compare from the heap.
     209    /// \brief Remove the item having minimum priority.
     210    ///
     211    /// This function removes the item having minimum priority.
    212212    /// \pre The heap must be non-empty.
    213213    void pop() {
     
    215215      _iim.set(_data[0].first, POST_HEAP);
    216216      if (n > 0) {
    217         bubble_down(0, _data[n], n);
     217        bubbleDown(0, _data[n], n);
    218218      }
    219219      _data.pop_back();
    220220    }
    221221
    222     /// \brief Deletes \c i from the heap.
    223     ///
    224     /// This method deletes item \c i from the heap.
    225     /// \param i The item to erase.
    226     /// \pre The item should be in the heap.
     222    /// \brief Remove the given item from the heap.
     223    ///
     224    /// This function removes the given item from the heap if it is
     225    /// already stored.
     226    /// \param i The item to delete.
     227    /// \pre \e i must be in the heap.
    227228    void erase(const Item &i) {
    228229      int h = _iim[i];
     
    230231      _iim.set(_data[h].first, POST_HEAP);
    231232      if( h < n ) {
    232         if ( bubble_up(h, _data[n]) == h) {
    233           bubble_down(h, _data[n], n);
     233        if ( bubbleUp(h, _data[n]) == h) {
     234          bubbleDown(h, _data[n], n);
    234235        }
    235236      }
     
    237238    }
    238239
    239 
    240     /// \brief Returns the priority of \c i.
    241     ///
    242     /// This function returns the priority of item \c i.
    243     /// \param i The item.
    244     /// \pre \c i must be in the heap.
     240    /// \brief The priority of the given item.
     241    ///
     242    /// This function returns the priority of the given item.
     243    /// \param i The item.
     244    /// \pre \e i must be in the heap.
    245245    Prio operator[](const Item &i) const {
    246246      int idx = _iim[i];
     
    248248    }
    249249
    250     /// \brief \c i gets to the heap with priority \c p independently
    251     /// if \c i was already there.
    252     ///
    253     /// This method calls \ref push(\c i, \c p) if \c i is not stored
    254     /// in the heap and sets the priority of \c i to \c p otherwise.
     250    /// \brief Set the priority of an item or insert it, if it is
     251    /// not stored in the heap.
     252    ///
     253    /// This method sets the priority of the given item if it is
     254    /// already stored in the heap. Otherwise it inserts the given
     255    /// item into the heap with the given priority.
    255256    /// \param i The item.
    256257    /// \param p The priority.
     
    261262      }
    262263      else if( _comp(p, _data[idx].second) ) {
    263         bubble_up(idx, Pair(i,p));
     264        bubbleUp(idx, Pair(i,p));
    264265      }
    265266      else {
    266         bubble_down(idx, Pair(i,p), _data.size());
    267       }
    268     }
    269 
    270     /// \brief Decreases the priority of \c i to \c p.
    271     ///
    272     /// This method decreases the priority of item \c i to \c p.
     267        bubbleDown(idx, Pair(i,p), _data.size());
     268      }
     269    }
     270
     271    /// \brief Decrease the priority of an item to the given value.
     272    ///
     273    /// This function decreases the priority of an item to the given value.
    273274    /// \param i The item.
    274275    /// \param p The priority.
    275     /// \pre \c i must be stored in the heap with priority at least \c
    276     /// p relative to \c Compare.
     276    /// \pre \e i must be stored in the heap with priority at least \e p.
    277277    void decrease(const Item &i, const Prio &p) {
    278278      int idx = _iim[i];
    279       bubble_up(idx, Pair(i,p));
    280     }
    281 
    282     /// \brief Increases the priority of \c i to \c p.
    283     ///
    284     /// This method sets the priority of item \c i to \c p.
     279      bubbleUp(idx, Pair(i,p));
     280    }
     281
     282    /// \brief Increase the priority of an item to the given value.
     283    ///
     284    /// This function increases the priority of an item to the given value.
    285285    /// \param i The item.
    286286    /// \param p The priority.
    287     /// \pre \c i must be stored in the heap with priority at most \c
    288     /// p relative to \c Compare.
     287    /// \pre \e i must be stored in the heap with priority at most \e p.
    289288    void increase(const Item &i, const Prio &p) {
    290289      int idx = _iim[i];
    291       bubble_down(idx, Pair(i,p), _data.size());
    292     }
    293 
    294     /// \brief Returns if \c item is in, has already been in, or has
    295     /// never been in the heap.
    296     ///
    297     /// This method returns PRE_HEAP if \c item has never been in the
    298     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
    299     /// otherwise. In the latter case it is possible that \c item will
    300     /// get back to the heap again.
     290      bubbleDown(idx, Pair(i,p), _data.size());
     291    }
     292
     293    /// \brief Return the state of an item.
     294    ///
     295    /// This method returns \c PRE_HEAP if the given item has never
     296    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
     297    /// and \c POST_HEAP otherwise.
     298    /// In the latter case it is possible that the item will get back
     299    /// to the heap again.
    301300    /// \param i The item.
    302301    State state(const Item &i) const {
     
    307306    }
    308307
    309     /// \brief Sets the state of the \c item in the heap.
    310     ///
    311     /// Sets the state of the \c item in the heap. It can be used to
    312     /// manually clear the heap when it is important to achive the
    313     /// better time complexity.
     308    /// \brief Set the state of an item in the heap.
     309    ///
     310    /// This function sets the state of the given item in the heap.
     311    /// It can be used to manually clear the heap when it is important
     312    /// to achive better time complexity.
    314313    /// \param i The item.
    315314    /// \param st The state. It should not be \c IN_HEAP.
     
    328327    }
    329328
    330     /// \brief Replaces an item in the heap.
    331     ///
    332     /// The \c i item is replaced with \c j item. The \c i item should
    333     /// be in the heap, while the \c j should be out of the heap. The
    334     /// \c i item will out of the heap and \c j will be in the heap
    335     /// with the same prioriority as prevoiusly the \c i item.
     329    /// \brief Replace an item in the heap.
     330    ///
     331    /// This function replaces item \c i with item \c j.
     332    /// Item \c i must be in the heap, while \c j must be out of the heap.
     333    /// After calling this method, item \c i will be out of the
     334    /// heap and \c j will be in the heap with the same prioriority
     335    /// as item \c i had before.
    336336    void replace(const Item& i, const Item& j) {
    337337      int idx = _iim[i];
  • lemon/bits/edge_set_extender.h

    r617 r685  
    538538
    539539    public:
    540       ArcMap(const Graph& _g)
     540      explicit ArcMap(const Graph& _g)
    541541        : Parent(_g) {}
    542542      ArcMap(const Graph& _g, const _Value& _v)
     
    562562
    563563    public:
    564       EdgeMap(const Graph& _g)
     564      explicit EdgeMap(const Graph& _g)
    565565        : Parent(_g) {}
    566566
  • lemon/bits/graph_extender.h

    r617 r685  
    605605
    606606    public:
    607       NodeMap(const Graph& graph)
     607      explicit NodeMap(const Graph& graph)
    608608        : Parent(graph) {}
    609609      NodeMap(const Graph& graph, const _Value& value)
     
    629629
    630630    public:
    631       ArcMap(const Graph& graph)
     631      explicit ArcMap(const Graph& graph)
    632632        : Parent(graph) {}
    633633      ArcMap(const Graph& graph, const _Value& value)
     
    653653
    654654    public:
    655       EdgeMap(const Graph& graph)
     655      explicit EdgeMap(const Graph& graph)
    656656        : Parent(graph) {}
    657657
  • lemon/circulation.h

    r641 r715  
    7373    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
    7474    /// concept.
     75#ifdef DOXYGEN
     76    typedef GR::ArcMap<Value> FlowMap;
     77#else
    7578    typedef typename Digraph::template ArcMap<Value> FlowMap;
     79#endif
    7680
    7781    /// \brief Instantiates a FlowMap.
     
    8892    /// The elevator type used by the algorithm.
    8993    ///
    90     /// \sa Elevator
    91     /// \sa LinkedElevator
     94    /// \sa Elevator, LinkedElevator
     95#ifdef DOXYGEN
     96    typedef lemon::Elevator<GR, GR::Node> Elevator;
     97#else
    9298    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
     99#endif
    93100
    94101    /// \brief Instantiates an Elevator.
     
    451458    }
    452459
    453     /// \brief Sets the tolerance used by algorithm.
    454     ///
    455     /// Sets the tolerance used by algorithm.
    456     Circulation& tolerance(const Tolerance& tolerance) const {
     460    /// \brief Sets the tolerance used by the algorithm.
     461    ///
     462    /// Sets the tolerance object used by the algorithm.
     463    /// \return <tt>(*this)</tt>
     464    Circulation& tolerance(const Tolerance& tolerance) {
    457465      _tol = tolerance;
    458466      return *this;
     
    461469    /// \brief Returns a const reference to the tolerance.
    462470    ///
    463     /// Returns a const reference to the tolerance.
     471    /// Returns a const reference to the tolerance object used by
     472    /// the algorithm.
    464473    const Tolerance& tolerance() const {
    465       return tolerance;
     474      return _tol;
    466475    }
    467476
    468477    /// \name Execution Control
    469478    /// The simplest way to execute the algorithm is to call \ref run().\n
    470     /// If you need more control on the initial solution or the execution,
    471     /// first you have to call one of the \ref init() functions, then
     479    /// If you need better control on the initial solution or the execution,
     480    /// you have to call one of the \ref init() functions first, then
    472481    /// the \ref start() function.
    473482
  • lemon/concepts/heap.h

    r584 r710  
    1717 */
    1818
     19#ifndef LEMON_CONCEPTS_HEAP_H
     20#define LEMON_CONCEPTS_HEAP_H
     21
    1922///\ingroup concept
    2023///\file
    2124///\brief The concept of heaps.
    2225
    23 #ifndef LEMON_CONCEPTS_HEAP_H
    24 #define LEMON_CONCEPTS_HEAP_H
    25 
    2626#include <lemon/core.h>
    2727#include <lemon/concept_check.h>
     
    3636    /// \brief The heap concept.
    3737    ///
    38     /// Concept class describing the main interface of heaps. A \e heap
    39     /// is a data structure for storing items with specified values called
    40     /// \e priorities in such a way that finding the item with minimum
    41     /// priority is efficient. In a heap one can change the priority of an
    42     /// item, add or erase an item, etc.
     38    /// This concept class describes the main interface of heaps.
     39    /// The various \ref heaps "heap structures" are efficient
     40    /// implementations of the abstract data type \e priority \e queue.
     41    /// They store items with specified values called \e priorities
     42    /// in such a way that finding and removing the item with minimum
     43    /// priority are efficient. The basic operations are adding and
     44    /// erasing items, changing the priority of an item, etc.
    4345    ///
    44     /// \tparam PR Type of the priority of the items.
    45     /// \tparam IM A read and writable item map with int values, used
     46    /// Heaps are crucial in several algorithms, such as Dijkstra and Prim.
     47    /// Any class that conforms to this concept can be used easily in such
     48    /// algorithms.
     49    ///
     50    /// \tparam PR Type of the priorities of the items.
     51    /// \tparam IM A read-writable item map with \c int values, used
    4652    /// internally to handle the cross references.
    47     /// \tparam Comp A functor class for the ordering of the priorities.
     53    /// \tparam CMP A functor class for comparing the priorities.
    4854    /// The default is \c std::less<PR>.
    4955#ifdef DOXYGEN
    50     template <typename PR, typename IM, typename Comp = std::less<PR> >
     56    template <typename PR, typename IM, typename CMP>
    5157#else
    52     template <typename PR, typename IM>
     58    template <typename PR, typename IM, typename CMP = std::less<PR> >
    5359#endif
    5460    class Heap {
     
    6571      ///
    6672      /// Each item has a state associated to it. It can be "in heap",
    67       /// "pre heap" or "post heap". The later two are indifferent
    68       /// from the point of view of the heap, but may be useful for
    69       /// the user.
     73      /// "pre-heap" or "post-heap". The latter two are indifferent from the
     74      /// heap's point of view, but may be useful to the user.
    7075      ///
    7176      /// The item-int map must be initialized in such way that it assigns
     
    7378      enum State {
    7479        IN_HEAP = 0,    ///< = 0. The "in heap" state constant.
    75         PRE_HEAP = -1,  ///< = -1. The "pre heap" state constant.
    76         POST_HEAP = -2  ///< = -2. The "post heap" state constant.
     80        PRE_HEAP = -1,  ///< = -1. The "pre-heap" state constant.
     81        POST_HEAP = -2  ///< = -2. The "post-heap" state constant.
    7782      };
    7883
    79       /// \brief The constructor.
    80       ///
    81       /// The constructor.
     84      /// \brief Constructor.
     85      ///
     86      /// Constructor.
    8287      /// \param map A map that assigns \c int values to keys of type
    8388      /// \c Item. It is used internally by the heap implementations to
    8489      /// handle the cross references. The assigned value must be
    85       /// \c PRE_HEAP (<tt>-1</tt>) for every item.
     90      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
    8691      explicit Heap(ItemIntMap &map) {}
    8792
     93      /// \brief Constructor.
     94      ///
     95      /// Constructor.
     96      /// \param map A map that assigns \c int values to keys of type
     97      /// \c Item. It is used internally by the heap implementations to
     98      /// handle the cross references. The assigned value must be
     99      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
     100      /// \param comp The function object used for comparing the priorities.
     101      explicit Heap(ItemIntMap &map, const CMP &comp) {}
     102
    88103      /// \brief The number of items stored in the heap.
    89104      ///
    90       /// Returns the number of items stored in the heap.
     105      /// This function returns the number of items stored in the heap.
    91106      int size() const { return 0; }
    92107
    93       /// \brief Checks if the heap is empty.
    94       ///
    95       /// Returns \c true if the heap is empty.
     108      /// \brief Check if the heap is empty.
     109      ///
     110      /// This function returns \c true if the heap is empty.
    96111      bool empty() const { return false; }
    97112
    98       /// \brief Makes the heap empty.
    99       ///
    100       /// Makes the heap empty.
    101       void clear();
    102 
    103       /// \brief Inserts an item into the heap with the given priority.
    104       ///
    105       /// Inserts the given item into the heap with the given priority.
     113      /// \brief Make the heap empty.
     114      ///
     115      /// This functon makes the heap empty.
     116      /// It does not change the cross reference map. If you want to reuse
     117      /// a heap that is not surely empty, you should first clear it and
     118      /// then you should set the cross reference map to \c PRE_HEAP
     119      /// for each item.
     120      void clear() {}
     121
     122      /// \brief Insert an item into the heap with the given priority.
     123      ///
     124      /// This function inserts the given item into the heap with the
     125      /// given priority.
    106126      /// \param i The item to insert.
    107127      /// \param p The priority of the item.
     128      /// \pre \e i must not be stored in the heap.
    108129      void push(const Item &i, const Prio &p) {}
    109130
    110       /// \brief Returns the item having minimum priority.
    111       ///
    112       /// Returns the item having minimum priority.
     131      /// \brief Return the item having minimum priority.
     132      ///
     133      /// This function returns the item having minimum priority.
    113134      /// \pre The heap must be non-empty.
    114135      Item top() const {}
     
    116137      /// \brief The minimum priority.
    117138      ///
    118       /// Returns the minimum priority.
     139      /// This function returns the minimum priority.
    119140      /// \pre The heap must be non-empty.
    120141      Prio prio() const {}
    121142
    122       /// \brief Removes the item having minimum priority.
    123       ///
    124       /// Removes the item having minimum priority.
     143      /// \brief Remove the item having minimum priority.
     144      ///
     145      /// This function removes the item having minimum priority.
    125146      /// \pre The heap must be non-empty.
    126147      void pop() {}
    127148
    128       /// \brief Removes an item from the heap.
    129       ///
    130       /// Removes the given item from the heap if it is already stored.
     149      /// \brief Remove the given item from the heap.
     150      ///
     151      /// This function removes the given item from the heap if it is
     152      /// already stored.
    131153      /// \param i The item to delete.
     154      /// \pre \e i must be in the heap.
    132155      void erase(const Item &i) {}
    133156
    134       /// \brief The priority of an item.
    135       ///
    136       /// Returns the priority of the given item.
    137       /// \param i The item.
    138       /// \pre \c i must be in the heap.
     157      /// \brief The priority of the given item.
     158      ///
     159      /// This function returns the priority of the given item.
     160      /// \param i The item.
     161      /// \pre \e i must be in the heap.
    139162      Prio operator[](const Item &i) const {}
    140163
    141       /// \brief Sets the priority of an item or inserts it, if it is
     164      /// \brief Set the priority of an item or insert it, if it is
    142165      /// not stored in the heap.
    143166      ///
    144167      /// This method sets the priority of the given item if it is
    145       /// already stored in the heap.
    146       /// Otherwise it inserts the given item with the given priority.
     168      /// already stored in the heap. Otherwise it inserts the given
     169      /// item into the heap with the given priority.
    147170      ///
    148171      /// \param i The item.
     
    150173      void set(const Item &i, const Prio &p) {}
    151174
    152       /// \brief Decreases the priority of an item to the given value.
    153       ///
    154       /// Decreases the priority of an item to the given value.
     175      /// \brief Decrease the priority of an item to the given value.
     176      ///
     177      /// This function decreases the priority of an item to the given value.
    155178      /// \param i The item.
    156179      /// \param p The priority.
    157       /// \pre \c i must be stored in the heap with priority at least \c p.
     180      /// \pre \e i must be stored in the heap with priority at least \e p.
    158181      void decrease(const Item &i, const Prio &p) {}
    159182
    160       /// \brief Increases the priority of an item to the given value.
    161       ///
    162       /// Increases the priority of an item to the given value.
     183      /// \brief Increase the priority of an item to the given value.
     184      ///
     185      /// This function increases the priority of an item to the given value.
    163186      /// \param i The item.
    164187      /// \param p The priority.
    165       /// \pre \c i must be stored in the heap with priority at most \c p.
     188      /// \pre \e i must be stored in the heap with priority at most \e p.
    166189      void increase(const Item &i, const Prio &p) {}
    167190
    168       /// \brief Returns if an item is in, has already been in, or has
    169       /// never been in the heap.
     191      /// \brief Return the state of an item.
    170192      ///
    171193      /// This method returns \c PRE_HEAP if the given item has never
     
    177199      State state(const Item &i) const {}
    178200
    179       /// \brief Sets the state of an item in the heap.
    180       ///
    181       /// Sets the state of the given item in the heap. It can be used
    182       /// to manually clear the heap when it is important to achive the
    183       /// better time complexity.
     201      /// \brief Set the state of an item in the heap.
     202      ///
     203      /// This function sets the state of the given item in the heap.
     204      /// It can be used to manually clear the heap when it is important
     205      /// to achive better time complexity.
    184206      /// \param i The item.
    185207      /// \param st The state. It should not be \c IN_HEAP.
  • lemon/dfs.h

    r716 r717  
    413413    ///The simplest way to execute the DFS algorithm is to use one of the
    414414    ///member functions called \ref run(Node) "run()".\n
    415     ///If you need more control on the execution, first you have to call
    416     ///\ref init(), then you can add a source node with \ref addSource()
     415    ///If you need better control on the execution, you have to call
     416    ///\ref init() first, then you can add a source node with \ref addSource()
    417417    ///and perform the actual computation with \ref start().
    418418    ///This procedure can be repeated if there are nodes that have not
     
    13651365    /// The simplest way to execute the DFS algorithm is to use one of the
    13661366    /// member functions called \ref run(Node) "run()".\n
    1367     /// If you need more control on the execution, first you have to call
    1368     /// \ref init(), then you can add a source node with \ref addSource()
     1367    /// If you need better control on the execution, you have to call
     1368    /// \ref init() first, then you can add a source node with \ref addSource()
    13691369    /// and perform the actual computation with \ref start().
    13701370    /// This procedure can be repeated if there are nodes that have not
  • lemon/dijkstra.h

    r716 r717  
    590590    ///The simplest way to execute the %Dijkstra algorithm is to use
    591591    ///one of the member functions called \ref run(Node) "run()".\n
    592     ///If you need more control on the execution, first you have to call
    593     ///\ref init(), then you can add several source nodes with
     592    ///If you need better control on the execution, you have to call
     593    ///\ref init() first, then you can add several source nodes with
    594594    ///\ref addSource(). Finally the actual path computation can be
    595595    ///performed with one of the \ref start() functions.
  • lemon/dim2.h

    r440 r714  
    2222#include <iostream>
    2323
    24 ///\ingroup misc
     24///\ingroup geomdat
    2525///\file
    2626///\brief A simple two dimensional vector and a bounding box implementation
    27 ///
    28 /// The class \ref lemon::dim2::Point "dim2::Point" implements
    29 /// a two dimensional vector with the usual operations.
    30 ///
    31 /// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine
    32 /// the rectangular bounding box of a set of
    33 /// \ref lemon::dim2::Point "dim2::Point"'s.
    3427
    3528namespace lemon {
     
    4134  namespace dim2 {
    4235
    43   /// \addtogroup misc
     36  /// \addtogroup geomdat
    4437  /// @{
    4538
  • lemon/gomory_hu.h

    r596 r713  
    360360    /// \c t.
    361361    /// \code
    362     /// GomoruHu<Graph> gom(g, capacities);
     362    /// GomoryHu<Graph> gom(g, capacities);
    363363    /// gom.run();
    364364    /// int cnt=0;
    365     /// for(GomoruHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
     365    /// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
    366366    /// \endcode
    367367    class MinCutNodeIt
     
    457457    /// \c t.
    458458    /// \code
    459     /// GomoruHu<Graph> gom(g, capacities);
     459    /// GomoryHu<Graph> gom(g, capacities);
    460460    /// gom.run();
    461461    /// int value=0;
    462     /// for(GomoruHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
     462    /// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
    463463    ///   value+=capacities[e];
    464464    /// \endcode
  • lemon/maps.h

    r716 r717  
    2323#include <functional>
    2424#include <vector>
     25#include <map>
    2526
    2627#include <lemon/core.h>
     
    2930///\ingroup maps
    3031///\brief Miscellaneous property maps
    31 
    32 #include <map>
    3332
    3433namespace lemon {
     
    18191818  ///
    18201819  /// IdMap provides a unique and immutable id for each item of the
    1821   /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is 
     1820  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
    18221821  ///  - \b unique: different items get different ids,
    18231822  ///  - \b immutable: the id of an item does not change (even if you
     
    19031902
    19041903  /// This class provides simple invertable graph maps.
    1905   /// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap"
    1906   /// and if a key is set to a new value then store it
    1907   /// in the inverse map.
    1908   ///
     1904  /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
     1905  /// and if a key is set to a new value, then stores it in the inverse map.
    19091906  /// The values of the map can be accessed
    19101907  /// with stl compatible forward iterator.
     1908  ///
     1909  /// This type is not reference map, so it cannot be modified with
     1910  /// the subscript operator.
    19111911  ///
    19121912  /// \tparam GR The graph type.
     
    19241924      template Map<V>::Type Map;
    19251925
    1926     typedef std::map<V, K> Container;
     1926    typedef std::multimap<V, K> Container;
    19271927    Container _inv_map;
    19281928
     
    19491949    /// iterator on the values of the map. The values can
    19501950    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
     1951    /// They are considered with multiplicity, so each value is
     1952    /// traversed for each item it is assigned to.
    19511953    class ValueIterator
    19521954      : public std::iterator<std::forward_iterator_tag, Value> {
     
    20012003    void set(const Key& key, const Value& val) {
    20022004      Value oldval = Map::operator[](key);
    2003       typename Container::iterator it = _inv_map.find(oldval);
    2004       if (it != _inv_map.end() && it->second == key) {
    2005         _inv_map.erase(it);
    2006       }
    2007       _inv_map.insert(make_pair(val, key));
     2005      typename Container::iterator it;
     2006      for (it = _inv_map.equal_range(oldval).first;
     2007           it != _inv_map.equal_range(oldval).second; ++it) {
     2008        if (it->second == key) {
     2009          _inv_map.erase(it);
     2010          break;
     2011        }
     2012      }
     2013      _inv_map.insert(std::make_pair(val, key));
    20082014      Map::set(key, val);
    20092015    }
     
    20172023    }
    20182024
    2019     /// \brief Gives back the item by its value.
    2020     ///
    2021     /// Gives back the item by its value.
    2022     Key operator()(const Value& key) const {
    2023       typename Container::const_iterator it = _inv_map.find(key);
     2025    /// \brief Gives back an item by its value.
     2026    ///
     2027    /// This function gives back an item that is assigned to
     2028    /// the given value or \c INVALID if no such item exists.
     2029    /// If there are more items with the same associated value,
     2030    /// only one of them is returned.
     2031    Key operator()(const Value& val) const {
     2032      typename Container::const_iterator it = _inv_map.find(val);
    20242033      return it != _inv_map.end() ? it->second : INVALID;
    20252034    }
     
    20332042    virtual void erase(const Key& key) {
    20342043      Value val = Map::operator[](key);
    2035       typename Container::iterator it = _inv_map.find(val);
    2036       if (it != _inv_map.end() && it->second == key) {
    2037         _inv_map.erase(it);
     2044      typename Container::iterator it;
     2045      for (it = _inv_map.equal_range(val).first;
     2046           it != _inv_map.equal_range(val).second; ++it) {
     2047        if (it->second == key) {
     2048          _inv_map.erase(it);
     2049          break;
     2050        }
    20382051      }
    20392052      Map::erase(key);
     
    20472060      for (int i = 0; i < int(keys.size()); ++i) {
    20482061        Value val = Map::operator[](keys[i]);
    2049         typename Container::iterator it = _inv_map.find(val);
    2050         if (it != _inv_map.end() && it->second == keys[i]) {
    2051           _inv_map.erase(it);
     2062        typename Container::iterator it;
     2063        for (it = _inv_map.equal_range(val).first;
     2064             it != _inv_map.equal_range(val).second; ++it) {
     2065          if (it->second == keys[i]) {
     2066            _inv_map.erase(it);
     2067            break;
     2068          }
    20522069        }
    20532070      }
     
    20852102      /// \brief Subscript operator.
    20862103      ///
    2087       /// Subscript operator. It gives back the item
    2088       /// that was last assigned to the given value.
     2104      /// Subscript operator. It gives back an item
     2105      /// that is assigned to the given value or \c INVALID
     2106      /// if no such item exists.
    20892107      Value operator[](const Key& key) const {
    20902108        return _inverted(key);
     
    22552273
    22562274    /// \brief Gives back the item belonging to a \e RangeId
    2257     /// 
     2275    ///
    22582276    /// Gives back the item belonging to a \e RangeId.
    22592277    Item operator()(int id) const {
     
    23122330  };
    23132331
     2332  /// \brief Dynamic iterable \c bool map.
     2333  ///
     2334  /// This class provides a special graph map type which can store a
     2335  /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
     2336  /// For both \c true and \c false values it is possible to iterate on
     2337  /// the keys.
     2338  ///
     2339  /// This type is a reference map, so it can be modified with the
     2340  /// subscript operator.
     2341  ///
     2342  /// \tparam GR The graph type.
     2343  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
     2344  /// \c GR::Edge).
     2345  ///
     2346  /// \see IterableIntMap, IterableValueMap
     2347  /// \see CrossRefMap
     2348  template <typename GR, typename K>
     2349  class IterableBoolMap
     2350    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
     2351  private:
     2352    typedef GR Graph;
     2353
     2354    typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
     2355    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
     2356
     2357    std::vector<K> _array;
     2358    int _sep;
     2359
     2360  public:
     2361
     2362    /// Indicates that the map is reference map.
     2363    typedef True ReferenceMapTag;
     2364
     2365    /// The key type
     2366    typedef K Key;
     2367    /// The value type
     2368    typedef bool Value;
     2369    /// The const reference type.
     2370    typedef const Value& ConstReference;
     2371
     2372  private:
     2373
     2374    int position(const Key& key) const {
     2375      return Parent::operator[](key);
     2376    }
     2377
     2378  public:
     2379
     2380    /// \brief Reference to the value of the map.
     2381    ///
     2382    /// This class is similar to the \c bool type. It can be converted to
     2383    /// \c bool and it provides the same operators.
     2384    class Reference {
     2385      friend class IterableBoolMap;
     2386    private:
     2387      Reference(IterableBoolMap& map, const Key& key)
     2388        : _key(key), _map(map) {}
     2389    public:
     2390
     2391      Reference& operator=(const Reference& value) {
     2392        _map.set(_key, static_cast<bool>(value));
     2393         return *this;
     2394      }
     2395
     2396      operator bool() const {
     2397        return static_cast<const IterableBoolMap&>(_map)[_key];
     2398      }
     2399
     2400      Reference& operator=(bool value) {
     2401        _map.set(_key, value);
     2402        return *this;
     2403      }
     2404      Reference& operator&=(bool value) {
     2405        _map.set(_key, _map[_key] & value);
     2406        return *this;
     2407      }
     2408      Reference& operator|=(bool value) {
     2409        _map.set(_key, _map[_key] | value);
     2410        return *this;
     2411      }
     2412      Reference& operator^=(bool value) {
     2413        _map.set(_key, _map[_key] ^ value);
     2414        return *this;
     2415      }
     2416    private:
     2417      Key _key;
     2418      IterableBoolMap& _map;
     2419    };
     2420
     2421    /// \brief Constructor of the map with a default value.
     2422    ///
     2423    /// Constructor of the map with a default value.
     2424    explicit IterableBoolMap(const Graph& graph, bool def = false)
     2425      : Parent(graph) {
     2426      typename Parent::Notifier* nf = Parent::notifier();
     2427      Key it;
     2428      for (nf->first(it); it != INVALID; nf->next(it)) {
     2429        Parent::set(it, _array.size());
     2430        _array.push_back(it);
     2431      }
     2432      _sep = (def ? _array.size() : 0);
     2433    }
     2434
     2435    /// \brief Const subscript operator of the map.
     2436    ///
     2437    /// Const subscript operator of the map.
     2438    bool operator[](const Key& key) const {
     2439      return position(key) < _sep;
     2440    }
     2441
     2442    /// \brief Subscript operator of the map.
     2443    ///
     2444    /// Subscript operator of the map.
     2445    Reference operator[](const Key& key) {
     2446      return Reference(*this, key);
     2447    }
     2448
     2449    /// \brief Set operation of the map.
     2450    ///
     2451    /// Set operation of the map.
     2452    void set(const Key& key, bool value) {
     2453      int pos = position(key);
     2454      if (value) {
     2455        if (pos < _sep) return;
     2456        Key tmp = _array[_sep];
     2457        _array[_sep] = key;
     2458        Parent::set(key, _sep);
     2459        _array[pos] = tmp;
     2460        Parent::set(tmp, pos);
     2461        ++_sep;
     2462      } else {
     2463        if (pos >= _sep) return;
     2464        --_sep;
     2465        Key tmp = _array[_sep];
     2466        _array[_sep] = key;
     2467        Parent::set(key, _sep);
     2468        _array[pos] = tmp;
     2469        Parent::set(tmp, pos);
     2470      }
     2471    }
     2472
     2473    /// \brief Set all items.
     2474    ///
     2475    /// Set all items in the map.
     2476    /// \note Constant time operation.
     2477    void setAll(bool value) {
     2478      _sep = (value ? _array.size() : 0);
     2479    }
     2480
     2481    /// \brief Returns the number of the keys mapped to \c true.
     2482    ///
     2483    /// Returns the number of the keys mapped to \c true.
     2484    int trueNum() const {
     2485      return _sep;
     2486    }
     2487
     2488    /// \brief Returns the number of the keys mapped to \c false.
     2489    ///
     2490    /// Returns the number of the keys mapped to \c false.
     2491    int falseNum() const {
     2492      return _array.size() - _sep;
     2493    }
     2494
     2495    /// \brief Iterator for the keys mapped to \c true.
     2496    ///
     2497    /// Iterator for the keys mapped to \c true. It works
     2498    /// like a graph item iterator, it can be converted to
     2499    /// the key type of the map, incremented with \c ++ operator, and
     2500    /// if the iterator leaves the last valid key, it will be equal to
     2501    /// \c INVALID.
     2502    class TrueIt : public Key {
     2503    public:
     2504      typedef Key Parent;
     2505
     2506      /// \brief Creates an iterator.
     2507      ///
     2508      /// Creates an iterator. It iterates on the
     2509      /// keys mapped to \c true.
     2510      /// \param map The IterableBoolMap.
     2511      explicit TrueIt(const IterableBoolMap& map)
     2512        : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
     2513          _map(&map) {}
     2514
     2515      /// \brief Invalid constructor \& conversion.
     2516      ///
     2517      /// This constructor initializes the iterator to be invalid.
     2518      /// \sa Invalid for more details.
     2519      TrueIt(Invalid) : Parent(INVALID), _map(0) {}
     2520
     2521      /// \brief Increment operator.
     2522      ///
     2523      /// Increment operator.
     2524      TrueIt& operator++() {
     2525        int pos = _map->position(*this);
     2526        Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
     2527        return *this;
     2528      }
     2529
     2530    private:
     2531      const IterableBoolMap* _map;
     2532    };
     2533
     2534    /// \brief Iterator for the keys mapped to \c false.
     2535    ///
     2536    /// Iterator for the keys mapped to \c false. It works
     2537    /// like a graph item iterator, it can be converted to
     2538    /// the key type of the map, incremented with \c ++ operator, and
     2539    /// if the iterator leaves the last valid key, it will be equal to
     2540    /// \c INVALID.
     2541    class FalseIt : public Key {
     2542    public:
     2543      typedef Key Parent;
     2544
     2545      /// \brief Creates an iterator.
     2546      ///
     2547      /// Creates an iterator. It iterates on the
     2548      /// keys mapped to \c false.
     2549      /// \param map The IterableBoolMap.
     2550      explicit FalseIt(const IterableBoolMap& map)
     2551        : Parent(map._sep < int(map._array.size()) ?
     2552                 map._array.back() : INVALID), _map(&map) {}
     2553
     2554      /// \brief Invalid constructor \& conversion.
     2555      ///
     2556      /// This constructor initializes the iterator to be invalid.
     2557      /// \sa Invalid for more details.
     2558      FalseIt(Invalid) : Parent(INVALID), _map(0) {}
     2559
     2560      /// \brief Increment operator.
     2561      ///
     2562      /// Increment operator.
     2563      FalseIt& operator++() {
     2564        int pos = _map->position(*this);
     2565        Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
     2566        return *this;
     2567      }
     2568
     2569    private:
     2570      const IterableBoolMap* _map;
     2571    };
     2572
     2573    /// \brief Iterator for the keys mapped to a given value.
     2574    ///
     2575    /// Iterator for the keys mapped to a given value. It works
     2576    /// like a graph item iterator, it can be converted to
     2577    /// the key type of the map, incremented with \c ++ operator, and
     2578    /// if the iterator leaves the last valid key, it will be equal to
     2579    /// \c INVALID.
     2580    class ItemIt : public Key {
     2581    public:
     2582      typedef Key Parent;
     2583
     2584      /// \brief Creates an iterator with a value.
     2585      ///
     2586      /// Creates an iterator with a value. It iterates on the
     2587      /// keys mapped to the given value.
     2588      /// \param map The IterableBoolMap.
     2589      /// \param value The value.
     2590      ItemIt(const IterableBoolMap& map, bool value)
     2591        : Parent(value ?
     2592                 (map._sep > 0 ?
     2593                  map._array[map._sep - 1] : INVALID) :
     2594                 (map._sep < int(map._array.size()) ?
     2595                  map._array.back() : INVALID)), _map(&map) {}
     2596
     2597      /// \brief Invalid constructor \& conversion.
     2598      ///
     2599      /// This constructor initializes the iterator to be invalid.
     2600      /// \sa Invalid for more details.
     2601      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
     2602
     2603      /// \brief Increment operator.
     2604      ///
     2605      /// Increment operator.
     2606      ItemIt& operator++() {
     2607        int pos = _map->position(*this);
     2608        int _sep = pos >= _map->_sep ? _map->_sep : 0;
     2609        Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
     2610        return *this;
     2611      }
     2612
     2613    private:
     2614      const IterableBoolMap* _map;
     2615    };
     2616
     2617  protected:
     2618
     2619    virtual void add(const Key& key) {
     2620      Parent::add(key);
     2621      Parent::set(key, _array.size());
     2622      _array.push_back(key);
     2623    }
     2624
     2625    virtual void add(const std::vector<Key>& keys) {
     2626      Parent::add(keys);
     2627      for (int i = 0; i < int(keys.size()); ++i) {
     2628        Parent::set(keys[i], _array.size());
     2629        _array.push_back(keys[i]);
     2630      }
     2631    }
     2632
     2633    virtual void erase(const Key& key) {
     2634      int pos = position(key);
     2635      if (pos < _sep) {
     2636        --_sep;
     2637        Parent::set(_array[_sep], pos);
     2638        _array[pos] = _array[_sep];
     2639        Parent::set(_array.back(), _sep);
     2640        _array[_sep] = _array.back();
     2641        _array.pop_back();
     2642      } else {
     2643        Parent::set(_array.back(), pos);
     2644        _array[pos] = _array.back();
     2645        _array.pop_back();
     2646      }
     2647      Parent::erase(key);
     2648    }
     2649
     2650    virtual void erase(const std::vector<Key>& keys) {
     2651      for (int i = 0; i < int(keys.size()); ++i) {
     2652        int pos = position(keys[i]);
     2653        if (pos < _sep) {
     2654          --_sep;
     2655          Parent::set(_array[_sep], pos);
     2656          _array[pos] = _array[_sep];
     2657          Parent::set(_array.back(), _sep);
     2658          _array[_sep] = _array.back();
     2659          _array.pop_back();
     2660        } else {
     2661          Parent::set(_array.back(), pos);
     2662          _array[pos] = _array.back();
     2663          _array.pop_back();
     2664        }
     2665      }
     2666      Parent::erase(keys);
     2667    }
     2668
     2669    virtual void build() {
     2670      Parent::build();
     2671      typename Parent::Notifier* nf = Parent::notifier();
     2672      Key it;
     2673      for (nf->first(it); it != INVALID; nf->next(it)) {
     2674        Parent::set(it, _array.size());
     2675        _array.push_back(it);
     2676      }
     2677      _sep = 0;
     2678    }
     2679
     2680    virtual void clear() {
     2681      _array.clear();
     2682      _sep = 0;
     2683      Parent::clear();
     2684    }
     2685
     2686  };
     2687
     2688
     2689  namespace _maps_bits {
     2690    template <typename Item>
     2691    struct IterableIntMapNode {
     2692      IterableIntMapNode() : value(-1) {}
     2693      IterableIntMapNode(int _value) : value(_value) {}
     2694      Item prev, next;
     2695      int value;
     2696    };
     2697  }
     2698
     2699  /// \brief Dynamic iterable integer map.
     2700  ///
     2701  /// This class provides a special graph map type which can store an
     2702  /// integer value for graph items (\c Node, \c Arc or \c Edge).
     2703  /// For each non-negative value it is possible to iterate on the keys
     2704  /// mapped to the value.
     2705  ///
     2706  /// This type is a reference map, so it can be modified with the
     2707  /// subscript operator.
     2708  ///
     2709  /// \note The size of the data structure depends on the largest
     2710  /// value in the map.
     2711  ///
     2712  /// \tparam GR The graph type.
     2713  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
     2714  /// \c GR::Edge).
     2715  ///
     2716  /// \see IterableBoolMap, IterableValueMap
     2717  /// \see CrossRefMap
     2718  template <typename GR, typename K>
     2719  class IterableIntMap
     2720    : protected ItemSetTraits<GR, K>::
     2721        template Map<_maps_bits::IterableIntMapNode<K> >::Type {
     2722  public:
     2723    typedef typename ItemSetTraits<GR, K>::
     2724      template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
     2725
     2726    /// The key type
     2727    typedef K Key;
     2728    /// The value type
     2729    typedef int Value;
     2730    /// The graph type
     2731    typedef GR Graph;
     2732
     2733    /// \brief Constructor of the map.
     2734    ///
     2735    /// Constructor of the map. It sets all values to -1.
     2736    explicit IterableIntMap(const Graph& graph)
     2737      : Parent(graph) {}
     2738
     2739    /// \brief Constructor of the map with a given value.
     2740    ///
     2741    /// Constructor of the map with a given value.
     2742    explicit IterableIntMap(const Graph& graph, int value)
     2743      : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
     2744      if (value >= 0) {
     2745        for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
     2746          lace(it);
     2747        }
     2748      }
     2749    }
     2750
     2751  private:
     2752
     2753    void unlace(const Key& key) {
     2754      typename Parent::Value& node = Parent::operator[](key);
     2755      if (node.value < 0) return;
     2756      if (node.prev != INVALID) {
     2757        Parent::operator[](node.prev).next = node.next;
     2758      } else {
     2759        _first[node.value] = node.next;
     2760      }
     2761      if (node.next != INVALID) {
     2762        Parent::operator[](node.next).prev = node.prev;
     2763      }
     2764      while (!_first.empty() && _first.back() == INVALID) {
     2765        _first.pop_back();
     2766      }
     2767    }
     2768
     2769    void lace(const Key& key) {
     2770      typename Parent::Value& node = Parent::operator[](key);
     2771      if (node.value < 0) return;
     2772      if (node.value >= int(_first.size())) {
     2773        _first.resize(node.value + 1, INVALID);
     2774      }
     2775      node.prev = INVALID;
     2776      node.next = _first[node.value];
     2777      if (node.next != INVALID) {
     2778        Parent::operator[](node.next).prev = key;
     2779      }
     2780      _first[node.value] = key;
     2781    }
     2782
     2783  public:
     2784
     2785    /// Indicates that the map is reference map.
     2786    typedef True ReferenceMapTag;
     2787
     2788    /// \brief Reference to the value of the map.
     2789    ///
     2790    /// This class is similar to the \c int type. It can
     2791    /// be converted to \c int and it has the same operators.
     2792    class Reference {
     2793      friend class IterableIntMap;
     2794    private:
     2795      Reference(IterableIntMap& map, const Key& key)
     2796        : _key(key), _map(map) {}
     2797    public:
     2798
     2799      Reference& operator=(const Reference& value) {
     2800        _map.set(_key, static_cast<const int&>(value));
     2801         return *this;
     2802      }
     2803
     2804      operator const int&() const {
     2805        return static_cast<const IterableIntMap&>(_map)[_key];
     2806      }
     2807
     2808      Reference& operator=(int value) {
     2809        _map.set(_key, value);
     2810        return *this;
     2811      }
     2812      Reference& operator++() {
     2813        _map.set(_key, _map[_key] + 1);
     2814        return *this;
     2815      }
     2816      int operator++(int) {
     2817        int value = _map[_key];
     2818        _map.set(_key, value + 1);
     2819        return value;
     2820      }
     2821      Reference& operator--() {
     2822        _map.set(_key, _map[_key] - 1);
     2823        return *this;
     2824      }
     2825      int operator--(int) {
     2826        int value = _map[_key];
     2827        _map.set(_key, value - 1);
     2828        return value;
     2829      }
     2830      Reference& operator+=(int value) {
     2831        _map.set(_key, _map[_key] + value);
     2832        return *this;
     2833      }
     2834      Reference& operator-=(int value) {
     2835        _map.set(_key, _map[_key] - value);
     2836        return *this;
     2837      }
     2838      Reference& operator*=(int value) {
     2839        _map.set(_key, _map[_key] * value);
     2840        return *this;
     2841      }
     2842      Reference& operator/=(int value) {
     2843        _map.set(_key, _map[_key] / value);
     2844        return *this;
     2845      }
     2846      Reference& operator%=(int value) {
     2847        _map.set(_key, _map[_key] % value);
     2848        return *this;
     2849      }
     2850      Reference& operator&=(int value) {
     2851        _map.set(_key, _map[_key] & value);
     2852        return *this;
     2853      }
     2854      Reference& operator|=(int value) {
     2855        _map.set(_key, _map[_key] | value);
     2856        return *this;
     2857      }
     2858      Reference& operator^=(int value) {
     2859        _map.set(_key, _map[_key] ^ value);
     2860        return *this;
     2861      }
     2862      Reference& operator<<=(int value) {
     2863        _map.set(_key, _map[_key] << value);
     2864        return *this;
     2865      }
     2866      Reference& operator>>=(int value) {
     2867        _map.set(_key, _map[_key] >> value);
     2868        return *this;
     2869      }
     2870
     2871    private:
     2872      Key _key;
     2873      IterableIntMap& _map;
     2874    };
     2875
     2876    /// The const reference type.
     2877    typedef const Value& ConstReference;
     2878
     2879    /// \brief Gives back the maximal value plus one.
     2880    ///
     2881    /// Gives back the maximal value plus one.
     2882    int size() const {
     2883      return _first.size();
     2884    }
     2885
     2886    /// \brief Set operation of the map.
     2887    ///
     2888    /// Set operation of the map.
     2889    void set(const Key& key, const Value& value) {
     2890      unlace(key);
     2891      Parent::operator[](key).value = value;
     2892      lace(key);
     2893    }
     2894
     2895    /// \brief Const subscript operator of the map.
     2896    ///
     2897    /// Const subscript operator of the map.
     2898    const Value& operator[](const Key& key) const {
     2899      return Parent::operator[](key).value;
     2900    }
     2901
     2902    /// \brief Subscript operator of the map.
     2903    ///
     2904    /// Subscript operator of the map.
     2905    Reference operator[](const Key& key) {
     2906      return Reference(*this, key);
     2907    }
     2908
     2909    /// \brief Iterator for the keys with the same value.
     2910    ///
     2911    /// Iterator for the keys with the same value. It works
     2912    /// like a graph item iterator, it can be converted to
     2913    /// the item type of the map, incremented with \c ++ operator, and
     2914    /// if the iterator leaves the last valid item, it will be equal to
     2915    /// \c INVALID.
     2916    class ItemIt : public Key {
     2917    public:
     2918      typedef Key Parent;
     2919
     2920      /// \brief Invalid constructor \& conversion.
     2921      ///
     2922      /// This constructor initializes the iterator to be invalid.
     2923      /// \sa Invalid for more details.
     2924      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
     2925
     2926      /// \brief Creates an iterator with a value.
     2927      ///
     2928      /// Creates an iterator with a value. It iterates on the
     2929      /// keys mapped to the given value.
     2930      /// \param map The IterableIntMap.
     2931      /// \param value The value.
     2932      ItemIt(const IterableIntMap& map, int value) : _map(&map) {
     2933        if (value < 0 || value >= int(_map->_first.size())) {
     2934          Parent::operator=(INVALID);
     2935        } else {
     2936          Parent::operator=(_map->_first[value]);
     2937        }
     2938      }
     2939
     2940      /// \brief Increment operator.
     2941      ///
     2942      /// Increment operator.
     2943      ItemIt& operator++() {
     2944        Parent::operator=(_map->IterableIntMap::Parent::
     2945                          operator[](static_cast<Parent&>(*this)).next);
     2946        return *this;
     2947      }
     2948
     2949    private:
     2950      const IterableIntMap* _map;
     2951    };
     2952
     2953  protected:
     2954
     2955    virtual void erase(const Key& key) {
     2956      unlace(key);
     2957      Parent::erase(key);
     2958    }
     2959
     2960    virtual void erase(const std::vector<Key>& keys) {
     2961      for (int i = 0; i < int(keys.size()); ++i) {
     2962        unlace(keys[i]);
     2963      }
     2964      Parent::erase(keys);
     2965    }
     2966
     2967    virtual void clear() {
     2968      _first.clear();
     2969      Parent::clear();
     2970    }
     2971
     2972  private:
     2973    std::vector<Key> _first;
     2974  };
     2975
     2976  namespace _maps_bits {
     2977    template <typename Item, typename Value>
     2978    struct IterableValueMapNode {
     2979      IterableValueMapNode(Value _value = Value()) : value(_value) {}
     2980      Item prev, next;
     2981      Value value;
     2982    };
     2983  }
     2984
     2985  /// \brief Dynamic iterable map for comparable values.
     2986  ///
     2987  /// This class provides a special graph map type which can store an
     2988  /// comparable value for graph items (\c Node, \c Arc or \c Edge).
     2989  /// For each value it is possible to iterate on the keys mapped to
     2990  /// the value.
     2991  ///
     2992  /// The map stores for each value a linked list with
     2993  /// the items which mapped to the value, and the values are stored
     2994  /// in balanced binary tree. The values of the map can be accessed
     2995  /// with stl compatible forward iterator.
     2996  ///
     2997  /// This type is not reference map, so it cannot be modified with
     2998  /// the subscript operator.
     2999  ///
     3000  /// \tparam GR The graph type.
     3001  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
     3002  /// \c GR::Edge).
     3003  /// \tparam V The value type of the map. It can be any comparable
     3004  /// value type.
     3005  ///
     3006  /// \see IterableBoolMap, IterableIntMap
     3007  /// \see CrossRefMap
     3008  template <typename GR, typename K, typename V>
     3009  class IterableValueMap
     3010    : protected ItemSetTraits<GR, K>::
     3011        template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
     3012  public:
     3013    typedef typename ItemSetTraits<GR, K>::
     3014      template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
     3015
     3016    /// The key type
     3017    typedef K Key;
     3018    /// The value type
     3019    typedef V Value;
     3020    /// The graph type
     3021    typedef GR Graph;
     3022
     3023  public:
     3024
     3025    /// \brief Constructor of the map with a given value.
     3026    ///
     3027    /// Constructor of the map with a given value.
     3028    explicit IterableValueMap(const Graph& graph,
     3029                              const Value& value = Value())
     3030      : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
     3031      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
     3032        lace(it);
     3033      }
     3034    }
     3035
     3036  protected:
     3037
     3038    void unlace(const Key& key) {
     3039      typename Parent::Value& node = Parent::operator[](key);
     3040      if (node.prev != INVALID) {
     3041        Parent::operator[](node.prev).next = node.next;
     3042      } else {
     3043        if (node.next != INVALID) {
     3044          _first[node.value] = node.next;
     3045        } else {
     3046          _first.erase(node.value);
     3047        }
     3048      }
     3049      if (node.next != INVALID) {
     3050        Parent::operator[](node.next).prev = node.prev;
     3051      }
     3052    }
     3053
     3054    void lace(const Key& key) {
     3055      typename Parent::Value& node = Parent::operator[](key);
     3056      typename std::map<Value, Key>::iterator it = _first.find(node.value);
     3057      if (it == _first.end()) {
     3058        node.prev = node.next = INVALID;
     3059        _first.insert(std::make_pair(node.value, key));
     3060      } else {
     3061        node.prev = INVALID;
     3062        node.next = it->second;
     3063        if (node.next != INVALID) {
     3064          Parent::operator[](node.next).prev = key;
     3065        }
     3066        it->second = key;
     3067      }
     3068    }
     3069
     3070  public:
     3071
     3072    /// \brief Forward iterator for values.
     3073    ///
     3074    /// This iterator is an stl compatible forward
     3075    /// iterator on the values of the map. The values can
     3076    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
     3077    class ValueIterator
     3078      : public std::iterator<std::forward_iterator_tag, Value> {
     3079      friend class IterableValueMap;
     3080    private:
     3081      ValueIterator(typename std::map<Value, Key>::const_iterator _it)
     3082        : it(_it) {}
     3083    public:
     3084
     3085      ValueIterator() {}
     3086
     3087      ValueIterator& operator++() { ++it; return *this; }
     3088      ValueIterator operator++(int) {
     3089        ValueIterator tmp(*this);
     3090        operator++();
     3091        return tmp;
     3092      }
     3093
     3094      const Value& operator*() const { return it->first; }
     3095      const Value* operator->() const { return &(it->first); }
     3096
     3097      bool operator==(ValueIterator jt) const { return it == jt.it; }
     3098      bool operator!=(ValueIterator jt) const { return it != jt.it; }
     3099
     3100    private:
     3101      typename std::map<Value, Key>::const_iterator it;
     3102    };
     3103
     3104    /// \brief Returns an iterator to the first value.
     3105    ///
     3106    /// Returns an stl compatible iterator to the
     3107    /// first value of the map. The values of the
     3108    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
     3109    /// range.
     3110    ValueIterator beginValue() const {
     3111      return ValueIterator(_first.begin());
     3112    }
     3113
     3114    /// \brief Returns an iterator after the last value.
     3115    ///
     3116    /// Returns an stl compatible iterator after the
     3117    /// last value of the map. The values of the
     3118    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
     3119    /// range.
     3120    ValueIterator endValue() const {
     3121      return ValueIterator(_first.end());
     3122    }
     3123
     3124    /// \brief Set operation of the map.
     3125    ///
     3126    /// Set operation of the map.
     3127    void set(const Key& key, const Value& value) {
     3128      unlace(key);
     3129      Parent::operator[](key).value = value;
     3130      lace(key);
     3131    }
     3132
     3133    /// \brief Const subscript operator of the map.
     3134    ///
     3135    /// Const subscript operator of the map.
     3136    const Value& operator[](const Key& key) const {
     3137      return Parent::operator[](key).value;
     3138    }
     3139
     3140    /// \brief Iterator for the keys with the same value.
     3141    ///
     3142    /// Iterator for the keys with the same value. It works
     3143    /// like a graph item iterator, it can be converted to
     3144    /// the item type of the map, incremented with \c ++ operator, and
     3145    /// if the iterator leaves the last valid item, it will be equal to
     3146    /// \c INVALID.
     3147    class ItemIt : public Key {
     3148    public:
     3149      typedef Key Parent;
     3150
     3151      /// \brief Invalid constructor \& conversion.
     3152      ///
     3153      /// This constructor initializes the iterator to be invalid.
     3154      /// \sa Invalid for more details.
     3155      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
     3156
     3157      /// \brief Creates an iterator with a value.
     3158      ///
     3159      /// Creates an iterator with a value. It iterates on the
     3160      /// keys which have the given value.
     3161      /// \param map The IterableValueMap
     3162      /// \param value The value
     3163      ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
     3164        typename std::map<Value, Key>::const_iterator it =
     3165          map._first.find(value);
     3166        if (it == map._first.end()) {
     3167          Parent::operator=(INVALID);
     3168        } else {
     3169          Parent::operator=(it->second);
     3170        }
     3171      }
     3172
     3173      /// \brief Increment operator.
     3174      ///
     3175      /// Increment Operator.
     3176      ItemIt& operator++() {
     3177        Parent::operator=(_map->IterableValueMap::Parent::
     3178                          operator[](static_cast<Parent&>(*this)).next);
     3179        return *this;
     3180      }
     3181
     3182
     3183    private:
     3184      const IterableValueMap* _map;
     3185    };
     3186
     3187  protected:
     3188
     3189    virtual void add(const Key& key) {
     3190      Parent::add(key);
     3191      unlace(key);
     3192    }
     3193
     3194    virtual void add(const std::vector<Key>& keys) {
     3195      Parent::add(keys);
     3196      for (int i = 0; i < int(keys.size()); ++i) {
     3197        lace(keys[i]);
     3198      }
     3199    }
     3200
     3201    virtual void erase(const Key& key) {
     3202      unlace(key);
     3203      Parent::erase(key);
     3204    }
     3205
     3206    virtual void erase(const std::vector<Key>& keys) {
     3207      for (int i = 0; i < int(keys.size()); ++i) {
     3208        unlace(keys[i]);
     3209      }
     3210      Parent::erase(keys);
     3211    }
     3212
     3213    virtual void build() {
     3214      Parent::build();
     3215      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
     3216        lace(it);
     3217      }
     3218    }
     3219
     3220    virtual void clear() {
     3221      _first.clear();
     3222      Parent::clear();
     3223    }
     3224
     3225  private:
     3226    std::map<Value, Key> _first;
     3227  };
     3228
    23143229  /// \brief Map of the source nodes of arcs in a digraph.
    23153230  ///
     
    24813396  /// whenever the digraph changes.
    24823397  ///
    2483   /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
     3398  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
    24843399  /// may provide alternative ways to modify the digraph.
    24853400  /// The correct behavior of InDegMap is not guarantied if these additional
     
    24973412
    24983413  public:
    2499    
     3414
    25003415    /// The graph type of InDegMap
    25013416    typedef GR Graph;
     
    26113526  /// whenever the digraph changes.
    26123527  ///
    2613   /// \warning Besides \c addNode() and \c addArc(), a digraph structure 
     3528  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
    26143529  /// may provide alternative ways to modify the digraph.
    26153530  /// The correct behavior of OutDegMap is not guarantied if these additional
  • lemon/min_cost_arborescence.h

    r625 r713  
    489489    /// The simplest way to execute the algorithm is to use
    490490    /// one of the member functions called \c run(...). \n
    491     /// If you need more control on the execution,
    492     /// first you must call \ref init(), then you can add several
     491    /// If you need better control on the execution,
     492    /// you have to call \ref init() first, then you can add several
    493493    /// source nodes with \ref addSource().
    494494    /// Finally \ref start() will perform the arborescence
  • lemon/preflow.h

    r641 r715  
    5353    /// The type of the map that stores the flow values.
    5454    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
     55#ifdef DOXYGEN
     56    typedef GR::ArcMap<Value> FlowMap;
     57#else
    5558    typedef typename Digraph::template ArcMap<Value> FlowMap;
     59#endif
    5660
    5761    /// \brief Instantiates a FlowMap.
     
    6872    /// The elevator type used by Preflow algorithm.
    6973    ///
    70     /// \sa Elevator
    71     /// \sa LinkedElevator
    72     typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator;
     74    /// \sa Elevator, LinkedElevator
     75#ifdef DOXYGEN
     76    typedef lemon::Elevator<GR, GR::Node> Elevator;
     77#else
     78    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
     79#endif
    7380
    7481    /// \brief Instantiates an Elevator.
     
    98105  /// "flow of maximum value" in a digraph.
    99106  /// The preflow algorithms are the fastest known maximum
    100   /// flow algorithms. The current implementation use a mixture of the
     107  /// flow algorithms. The current implementation uses a mixture of the
    101108  /// \e "highest label" and the \e "bound decrease" heuristics.
    102109  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
     
    372379    }
    373380
    374     /// \brief Sets the tolerance used by algorithm.
    375     ///
    376     /// Sets the tolerance used by algorithm.
    377     Preflow& tolerance(const Tolerance& tolerance) const {
     381    /// \brief Sets the tolerance used by the algorithm.
     382    ///
     383    /// Sets the tolerance object used by the algorithm.
     384    /// \return <tt>(*this)</tt>
     385    Preflow& tolerance(const Tolerance& tolerance) {
    378386      _tolerance = tolerance;
    379387      return *this;
     
    382390    /// \brief Returns a const reference to the tolerance.
    383391    ///
    384     /// Returns a const reference to the tolerance.
     392    /// Returns a const reference to the tolerance object used by
     393    /// the algorithm.
    385394    const Tolerance& tolerance() const {
    386       return tolerance;
     395      return _tolerance;
    387396    }
    388397
     
    390399    /// The simplest way to execute the preflow algorithm is to use
    391400    /// \ref run() or \ref runMinCut().\n
    392     /// If you need more control on the initial solution or the execution,
    393     /// first you have to call one of the \ref init() functions, then
     401    /// If you need better control on the initial solution or the execution,
     402    /// you have to call one of the \ref init() functions first, then
    394403    /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
    395404
  • test/CMakeLists.txt

    r679 r698  
    1010SET(TESTS
    1111  adaptors_test
     12  bellman_ford_test
    1213  bfs_test
    1314  circulation_test
  • test/Makefile.am

    r649 r698  
    88check_PROGRAMS += \
    99        test/adaptors_test \
     10        test/bellman_ford_test \
    1011        test/bfs_test \
    1112        test/circulation_test \
     
    5354
    5455test_adaptors_test_SOURCES = test/adaptors_test.cc
     56test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc
    5557test_bfs_test_SOURCES = test/bfs_test.cc
    5658test_circulation_test_SOURCES = test/circulation_test.cc
  • test/circulation_test.cc

    r611 r689  
    8888    .supplyMap(supply)
    8989    .flowMap(flow);
     90 
     91  const CirculationType::Elevator& elev = const_circ_test.elevator();
     92  circ_test.elevator(const_cast<CirculationType::Elevator&>(elev));
     93  CirculationType::Tolerance tol = const_circ_test.tolerance();
     94  circ_test.tolerance(tol);
    9095
    9196  circ_test.init();
  • test/heap_test.cc

    r440 r702  
    2626
    2727#include <lemon/smart_graph.h>
    28 
    2928#include <lemon/lgf_reader.h>
    3029#include <lemon/dijkstra.h>
     
    3231
    3332#include <lemon/bin_heap.h>
     33#include <lemon/fourary_heap.h>
     34#include <lemon/kary_heap.h>
     35#include <lemon/fib_heap.h>
     36#include <lemon/pairing_heap.h>
     37#include <lemon/radix_heap.h>
     38#include <lemon/binom_heap.h>
     39#include <lemon/bucket_heap.h>
    3440
    3541#include "test_tools.h"
     
    8793void heapSortTest() {
    8894  RangeMap<int> map(test_len, -1);
    89 
    9095  Heap heap(map);
    9196
    9297  std::vector<int> v(test_len);
    93 
    9498  for (int i = 0; i < test_len; ++i) {
    9599    v[i] = test_seq[i];
     
    98102  std::sort(v.begin(), v.end());
    99103  for (int i = 0; i < test_len; ++i) {
    100     check(v[i] == heap.prio() ,"Wrong order in heap sort.");
     104    check(v[i] == heap.prio(), "Wrong order in heap sort.");
    101105    heap.pop();
    102106  }
     
    110114
    111115  std::vector<int> v(test_len);
    112 
    113116  for (int i = 0; i < test_len; ++i) {
    114117    v[i] = test_seq[i];
     
    121124  std::sort(v.begin(), v.end());
    122125  for (int i = 0; i < test_len; ++i) {
    123     check(v[i] == heap.prio() ,"Wrong order in heap increase test.");
     126    check(v[i] == heap.prio(), "Wrong order in heap increase test.");
    124127    heap.pop();
    125128  }
    126129}
    127 
    128 
    129130
    130131template <typename Heap>
     
    142143    if (dijkstra.reached(s)) {
    143144      check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a],
    144              "Error in a shortest path tree!");
     145             "Error in shortest path tree.");
    145146    }
    146147  }
     
    151152      Node s = digraph.source(a);
    152153      check( dijkstra.dist(n) - dijkstra.dist(s) == length[a],
    153              "Error in a shortest path tree!");
     154             "Error in shortest path tree.");
    154155    }
    155156  }
     
    173174    run();
    174175
     176  // BinHeap
    175177  {
    176178    typedef BinHeap<Prio, ItemIntMap> IntHeap;
     
    184186  }
    185187
     188  // FouraryHeap
     189  {
     190    typedef FouraryHeap<Prio, ItemIntMap> IntHeap;
     191    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
     192    heapSortTest<IntHeap>();
     193    heapIncreaseTest<IntHeap>();
     194
     195    typedef FouraryHeap<Prio, IntNodeMap > NodeHeap;
     196    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
     197    dijkstraHeapTest<NodeHeap>(digraph, length, source);
     198  }
     199
     200  // KaryHeap
     201  {
     202    typedef KaryHeap<Prio, ItemIntMap> IntHeap;
     203    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
     204    heapSortTest<IntHeap>();
     205    heapIncreaseTest<IntHeap>();
     206
     207    typedef KaryHeap<Prio, IntNodeMap > NodeHeap;
     208    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
     209    dijkstraHeapTest<NodeHeap>(digraph, length, source);
     210  }
     211
     212  // FibHeap
     213  {
     214    typedef FibHeap<Prio, ItemIntMap> IntHeap;
     215    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
     216    heapSortTest<IntHeap>();
     217    heapIncreaseTest<IntHeap>();
     218
     219    typedef FibHeap<Prio, IntNodeMap > NodeHeap;
     220    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
     221    dijkstraHeapTest<NodeHeap>(digraph, length, source);
     222  }
     223
     224  // PairingHeap
     225  {
     226    typedef PairingHeap<Prio, ItemIntMap> IntHeap;
     227    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
     228    heapSortTest<IntHeap>();
     229    heapIncreaseTest<IntHeap>();
     230
     231    typedef PairingHeap<Prio, IntNodeMap > NodeHeap;
     232    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
     233    dijkstraHeapTest<NodeHeap>(digraph, length, source);
     234  }
     235
     236  // RadixHeap
     237  {
     238    typedef RadixHeap<ItemIntMap> IntHeap;
     239    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
     240    heapSortTest<IntHeap>();
     241    heapIncreaseTest<IntHeap>();
     242
     243    typedef RadixHeap<IntNodeMap > NodeHeap;
     244    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
     245    dijkstraHeapTest<NodeHeap>(digraph, length, source);
     246  }
     247
     248  // BinomHeap
     249  {
     250    typedef BinomHeap<Prio, ItemIntMap> IntHeap;
     251    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
     252    heapSortTest<IntHeap>();
     253    heapIncreaseTest<IntHeap>();
     254
     255    typedef BinomHeap<Prio, IntNodeMap > NodeHeap;
     256    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
     257    dijkstraHeapTest<NodeHeap>(digraph, length, source);
     258  }
     259
     260  // BucketHeap, SimpleBucketHeap
     261  {
     262    typedef BucketHeap<ItemIntMap> IntHeap;
     263    checkConcept<Heap<Prio, ItemIntMap>, IntHeap>();
     264    heapSortTest<IntHeap>();
     265    heapIncreaseTest<IntHeap>();
     266
     267    typedef BucketHeap<IntNodeMap > NodeHeap;
     268    checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>();
     269    dijkstraHeapTest<NodeHeap>(digraph, length, source);
     270
     271    typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap;
     272    heapSortTest<SimpleIntHeap>();
     273  }
     274
    186275  return 0;
    187276}
  • test/maps_test.cc

    r507 r695  
    2323#include <lemon/concepts/maps.h>
    2424#include <lemon/maps.h>
     25#include <lemon/smart_graph.h>
    2526
    2627#include "test_tools.h"
     
    350351  }
    351352
     353  // CrossRefMap
     354  {
     355    typedef SmartDigraph Graph;
     356    DIGRAPH_TYPEDEFS(Graph);
     357
     358    checkConcept<ReadWriteMap<Node, int>,
     359                 CrossRefMap<Graph, Node, int> >();
     360   
     361    Graph gr;
     362    typedef CrossRefMap<Graph, Node, char> CRMap;
     363    typedef CRMap::ValueIterator ValueIt;
     364    CRMap map(gr);
     365   
     366    Node n0 = gr.addNode();
     367    Node n1 = gr.addNode();
     368    Node n2 = gr.addNode();
     369   
     370    map.set(n0, 'A');
     371    map.set(n1, 'B');
     372    map.set(n2, 'C');
     373    map.set(n2, 'A');
     374    map.set(n0, 'C');
     375
     376    check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A',
     377          "Wrong CrossRefMap");
     378    check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
     379    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
     380    check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
     381
     382    ValueIt it = map.beginValue();
     383    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
     384          it == map.endValue(), "Wrong value iterator");
     385  }
     386 
     387  // Iterable bool map
     388  {
     389    typedef SmartGraph Graph;
     390    typedef SmartGraph::Node Item;
     391
     392    typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm;
     393    checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>();
     394
     395    const int num = 10;
     396    Graph g;
     397    std::vector<Item> items;
     398    for (int i = 0; i < num; ++i) {
     399      items.push_back(g.addNode());
     400    }
     401
     402    Ibm map1(g, true);
     403    int n = 0;
     404    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
     405      check(map1[static_cast<Item>(it)], "Wrong TrueIt");
     406      ++n;
     407    }
     408    check(n == num, "Wrong number");
     409
     410    n = 0;
     411    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
     412        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
     413        ++n;
     414    }
     415    check(n == num, "Wrong number");
     416    check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt");
     417    check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false");
     418
     419    map1[items[5]] = true;
     420
     421    n = 0;
     422    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
     423        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
     424        ++n;
     425    }
     426    check(n == num, "Wrong number");
     427
     428    map1[items[num / 2]] = false;
     429    check(map1[items[num / 2]] == false, "Wrong map value");
     430
     431    n = 0;
     432    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
     433        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
     434        ++n;
     435    }
     436    check(n == num - 1, "Wrong number");
     437
     438    n = 0;
     439    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
     440        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
     441        ++n;
     442    }
     443    check(n == 1, "Wrong number");
     444
     445    map1[items[0]] = false;
     446    check(map1[items[0]] == false, "Wrong map value");
     447
     448    map1[items[num - 1]] = false;
     449    check(map1[items[num - 1]] == false, "Wrong map value");
     450
     451    n = 0;
     452    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
     453        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
     454        ++n;
     455    }
     456    check(n == num - 3, "Wrong number");
     457    check(map1.trueNum() == num - 3, "Wrong number");
     458
     459    n = 0;
     460    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
     461        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
     462        ++n;
     463    }
     464    check(n == 3, "Wrong number");
     465    check(map1.falseNum() == 3, "Wrong number");
     466  }
     467
     468  // Iterable int map
     469  {
     470    typedef SmartGraph Graph;
     471    typedef SmartGraph::Node Item;
     472    typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim;
     473
     474    checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>();
     475
     476    const int num = 10;
     477    Graph g;
     478    std::vector<Item> items;
     479    for (int i = 0; i < num; ++i) {
     480      items.push_back(g.addNode());
     481    }
     482
     483    Iim map1(g);
     484    check(map1.size() == 0, "Wrong size");
     485
     486    for (int i = 0; i < num; ++i) {
     487      map1[items[i]] = i;
     488    }
     489    check(map1.size() == num, "Wrong size");
     490
     491    for (int i = 0; i < num; ++i) {
     492      Iim::ItemIt it(map1, i);
     493      check(static_cast<Item>(it) == items[i], "Wrong value");
     494      ++it;
     495      check(static_cast<Item>(it) == INVALID, "Wrong value");
     496    }
     497
     498    for (int i = 0; i < num; ++i) {
     499      map1[items[i]] = i % 2;
     500    }
     501    check(map1.size() == 2, "Wrong size");
     502
     503    int n = 0;
     504    for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
     505      check(map1[static_cast<Item>(it)] == 0, "Wrong value");
     506      ++n;
     507    }
     508    check(n == (num + 1) / 2, "Wrong number");
     509
     510    for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
     511      check(map1[static_cast<Item>(it)] == 1, "Wrong value");
     512      ++n;
     513    }
     514    check(n == num, "Wrong number");
     515
     516  }
     517
     518  // Iterable value map
     519  {
     520    typedef SmartGraph Graph;
     521    typedef SmartGraph::Node Item;
     522    typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm;
     523
     524    checkConcept<ReadWriteMap<Item, double>, Ivm>();
     525
     526    const int num = 10;
     527    Graph g;
     528    std::vector<Item> items;
     529    for (int i = 0; i < num; ++i) {
     530      items.push_back(g.addNode());
     531    }
     532
     533    Ivm map1(g, 0.0);
     534    check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size");
     535    check(*map1.beginValue() == 0.0, "Wrong value");
     536
     537    for (int i = 0; i < num; ++i) {
     538      map1.set(items[i], static_cast<double>(i));
     539    }
     540    check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size");
     541
     542    for (int i = 0; i < num; ++i) {
     543      Ivm::ItemIt it(map1, static_cast<double>(i));
     544      check(static_cast<Item>(it) == items[i], "Wrong value");
     545      ++it;
     546      check(static_cast<Item>(it) == INVALID, "Wrong value");
     547    }
     548
     549    for (Ivm::ValueIterator vit = map1.beginValue();
     550         vit != map1.endValue(); ++vit) {
     551      check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit,
     552            "Wrong ValueIterator");
     553    }
     554
     555    for (int i = 0; i < num; ++i) {
     556      map1.set(items[i], static_cast<double>(i % 2));
     557    }
     558    check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size");
     559
     560    int n = 0;
     561    for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
     562      check(map1[static_cast<Item>(it)] == 0.0, "Wrong value");
     563      ++n;
     564    }
     565    check(n == (num + 1) / 2, "Wrong number");
     566
     567    for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
     568      check(map1[static_cast<Item>(it)] == 1.0, "Wrong value");
     569      ++n;
     570    }
     571    check(n == num, "Wrong number");
     572
     573  }
    352574  return 0;
    353575}
  • test/preflow_test.cc

    r585 r689  
    9595  PreflowType preflow_test(g, cap, n, n);
    9696  const PreflowType& const_preflow_test = preflow_test;
     97 
     98  const PreflowType::Elevator& elev = const_preflow_test.elevator();
     99  preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev));
     100  PreflowType::Tolerance tol = const_preflow_test.tolerance();
     101  preflow_test.tolerance(tol);
    97102
    98103  preflow_test
  • tools/lemon-0.x-to-1.x.sh

    r574 r691  
    3636        -e "s/Edge\>/_Ar_c_label_/g"\
    3737        -e "s/\<edge\>/_ar_c_label_/g"\
    38         -e "s/_edge\>/_ar_c_label_/g"\
     38        -e "s/_edge\>/__ar_c_label_/g"\
    3939        -e "s/Edges\>/_Ar_c_label_s/g"\
    4040        -e "s/\<edges\>/_ar_c_label_s/g"\
    41         -e "s/_edges\>/_ar_c_label_s/g"\
     41        -e "s/_edges\>/__ar_c_label_s/g"\
    4242        -e "s/\([Ee]\)dge\([a-z]\)/_\1d_ge_label_\2/g"\
    4343        -e "s/\([a-z]\)edge/\1_ed_ge_label_/g"\
     
    6969        -e "s/_GR_APH_TY_PEDE_FS_label_/GRAPH_TYPEDEFS/g"\
    7070        -e "s/_DIGR_APH_TY_PEDE_FS_label_/DIGRAPH_TYPEDEFS/g"\
     71        -e "s/\<digraph_adaptor\.h\>/adaptors.h/g"\
     72        -e "s/\<digraph_utils\.h\>/core.h/g"\
     73        -e "s/\<digraph_reader\.h\>/lgf_reader.h/g"\
     74        -e "s/\<digraph_writer\.h\>/lgf_writer.h/g"\
     75        -e "s/\<topology\.h\>/connectivity.h/g"\
    7176        -e "s/DigraphToEps/GraphToEps/g"\
    7277        -e "s/digraphToEps/graphToEps/g"\
Note: See TracChangeset for help on using the changeset viewer.