Changeset 635:933f593824c2 in lemon-0.x for src/work/athos/mincostflow.h
- Timestamp:
- 05/13/04 19:42:23 (20 years ago)
- Branch:
- default
- Phase:
- public
- Convert:
- svn:c9d7d8f5-90d6-0310-b91f-818b3a526b0e/lemon/trunk@826
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/work/athos/mincostflow.h
r633 r635 37 37 /// 38 38 ///\author Attila Bernath 39 template <typename Graph, typename LengthMap, typename Supply Map>39 template <typename Graph, typename LengthMap, typename SupplyDemandMap> 40 40 class MinCostFlow { 41 41 … … 43 43 44 44 45 typedef typename Supply Map::ValueType Supply;45 typedef typename SupplyDemandMap::ValueType SupplyDemand; 46 46 47 47 typedef typename Graph::Node Node; … … 85 85 const Graph& G; 86 86 const LengthMap& length; 87 const Supply Map& supply;//supply or demand of nodes87 const SupplyDemandMap& supply_demand;//supply or demand of nodes 88 88 89 89 … … 95 95 typename Graph::template NodeMap<Length> potential; 96 96 //To store excess-deficit values 97 Supply Map excess;97 SupplyDemandMap excess_deficit; 98 98 99 99 … … 104 104 105 105 106 MinCostFlow(Graph& _G, LengthMap& _length, Supply Map& _supply) : G(_G),107 length(_length), supply (_supply), flow(_G), potential(_G){ }106 MinCostFlow(Graph& _G, LengthMap& _length, SupplyDemandMap& _supply_demand) : G(_G), 107 length(_length), supply_demand(_supply_demand), flow(_G), potential(_G){ } 108 108 109 109 … … 111 111 112 112 ///Runs the algorithm. 113 ///Returns k if there are at least k edge-disjoint paths from s to t. 114 ///Otherwise it returns the number of found edge-disjoint paths from s to t. 113 115 114 ///\todo May be it does make sense to be able to start with a nonzero 116 115 /// feasible primal-dual solution pair as well. … … 118 117 119 118 //Resetting variables from previous runs 120 total_length = 0; 119 //total_length = 0; 120 121 typedef typename Graph::template NodeMap<int> HeapMap; 122 typedef Heap<Node, SupplyDemand, typename Graph::template NodeMap<int>, 123 std::greater<SupplyDemand> > HeapType; 124 125 //A heap for the excess nodes 126 HeapMap excess_nodes_map(G,-1); 127 HeapType excess_nodes(excess_nodes_map); 128 129 //A heap for the deficit nodes 130 HeapMap deficit_nodes_map(G,-1); 131 HeapType deficit_nodes(deficit_nodes_map); 132 121 133 122 134 FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ … … 125 137 126 138 //Initial value for delta 127 Supply delta = 0;128 139 SupplyDemand delta = 0; 140 129 141 FOR_EACH_LOC(typename Graph::NodeIt, n, G){ 130 if (delta < abs(supply[e])){ 131 delta = abs(supply[e]); 132 } 133 excess.set(n,supply[e]); 142 excess_deficit.set(n,supply_demand[n]); 143 //A supply node 144 if (excess_deficit[n] > 0){ 145 excess_nodes.push(n,excess_deficit[n]); 146 } 147 //A demand node 148 if (excess_deficit[n] < 0){ 149 deficit_nodes.push(n, - excess_deficit[n]); 150 } 151 //Finding out starting value of delta 152 if (delta < abs(excess_deficit[n])){ 153 delta = abs(excess_deficit[n]); 154 } 134 155 //Initialize the copy of the Dijkstra potential to zero 135 156 potential.set(n,0); 136 157 } 137 138 158 159 //It'll be allright as an initial value, though this value 160 //can be the maximum deficit here 161 SupplyDemand max_excess = delta; 139 162 140 163 //We need a residual graph which is uncapacitated … … 148 171 149 172 150 int i; 151 for (i=0; i<k; ++i){ 152 dijkstra.run(s); 153 if (!dijkstra.reached(t)){ 154 //There are no k paths from s to t 155 break; 156 }; 173 while (max_excess > 0){ 174 157 175 158 //We have to copy the potential 159 FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){ 160 potential[n] += dijkstra.distMap()[n]; 176 //Merge and stuff 177 178 Node s = excess_nodes.top(); 179 SupplyDemand max_excess = excess_nodes[s]; 180 Node t = deficit_nodes.top(); 181 if (max_excess < dificit_nodes[t]){ 182 max_excess = dificit_nodes[t]; 183 } 184 185 186 while(max_excess > ){ 187 188 189 //s es t valasztasa 190 191 //Dijkstra part 192 dijkstra.run(s); 193 194 /*We know from theory that t can be reached 195 if (!dijkstra.reached(t)){ 196 //There are no k paths from s to t 197 break; 198 }; 199 */ 200 201 //We have to change the potential 202 FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){ 203 potential[n] += dijkstra.distMap()[n]; 204 } 205 206 207 //Augmenting on the sortest path 208 Node n=t; 209 ResGraphEdge e; 210 while (n!=s){ 211 e = dijkstra.pred(n); 212 n = dijkstra.predNode(n); 213 res_graph.augment(e,delta); 214 /* 215 //Let's update the total length 216 if (res_graph.forward(e)) 217 total_length += length[e]; 218 else 219 total_length -= length[e]; 220 */ 221 } 222 223 //Update the excess_nodes heap 224 if (delta >= excess_nodes[s]){ 225 if (delta > excess_nodes[s]) 226 deficit_nodes.push(s,delta - excess_nodes[s]); 227 excess_nodes.pop(); 228 229 } 230 else{ 231 excess_nodes[s] -= delta; 232 } 233 //Update the deficit_nodes heap 234 if (delta >= deficit_nodes[t]){ 235 if (delta > deficit_nodes[t]) 236 excess_nodes.push(t,delta - deficit_nodes[t]); 237 deficit_nodes.pop(); 238 239 } 240 else{ 241 deficit_nodes[t] -= delta; 242 } 243 //Dijkstra part ends here 161 244 } 162 245 163 246 /* 164 { 165 166 typename ResGraphType::NodeIt n; 167 for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) { 168 potential[n] += dijkstra.distMap()[n]; 169 } 170 } 247 * End of the delta scaling phase 171 248 */ 172 249 173 //Augmenting on the sortest path 174 Node n=t; 175 ResGraphEdge e; 176 while (n!=s){ 177 e = dijkstra.pred(n); 178 n = dijkstra.predNode(n); 179 res_graph.augment(e,delta); 180 //Let's update the total length 181 if (res_graph.forward(e)) 182 total_length += length[e]; 183 else 184 total_length -= length[e]; 185 } 186 250 //Whatever this means 251 delta = delta / 2; 252 253 /*This is not necessary here 254 //Update the max_excess 255 max_excess = 0; 256 FOR_EACH_LOC(typename Graph::NodeIt, n, G){ 257 if (max_excess < excess_deficit[n]){ 258 max_excess = excess_deficit[n]; 259 } 260 } 261 */ 262 //Reset delta if still too big 263 if (8*number_of_nodes*max_excess <= delta){ 264 delta = max_excess; 187 265 188 } 266 } 267 268 }//while(max_excess > 0) 189 269 190 270
Note: See TracChangeset
for help on using the changeset viewer.