COIN-OR::LEMON - Graph Library

Changeset 683:9f529abcaebf in lemon-main


Ignore:
Timestamp:
06/11/09 23:13:24 (15 years ago)
Author:
Balazs Dezso <deba@…>
Branch:
default
Children:
686:7439dc5fe1b9, 691:9e54e3b27db0, 693:7bda7860e0a8, 696:c9b9da1a90a0, 701:d1a9224f1e30, 709:0747f332c478, 713:4ac30454f1c1, 718:703ebf476a1d, 758:b31e130db13d
Phase:
public
Message:

Unification of names in heaps (#50)

Location:
lemon
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • lemon/bin_heap.h

    r584 r683  
    3434  ///\brief A Binary Heap implementation.
    3535  ///
    36   ///This class implements the \e binary \e heap data structure. 
    37   /// 
     36  ///This class implements the \e binary \e heap data structure.
     37  ///
    3838  ///A \e heap is a data structure for storing items with specified values
    3939  ///called \e priorities in such a way that finding the item with minimum
    40   ///priority is efficient. \c Comp specifies the ordering of the priorities.
     40  ///priority is efficient. \c CMP specifies the ordering of the priorities.
    4141  ///In a heap one can change the priority of an item, add or erase an
    4242  ///item, etc.
     
    4545  ///\tparam IM A read and writable item map with int values, used internally
    4646  ///to handle the cross references.
    47   ///\tparam Comp A functor class for the ordering of the priorities.
     47  ///\tparam CMP A functor class for the ordering of the priorities.
    4848  ///The default is \c std::less<PR>.
    4949  ///
    5050  ///\sa FibHeap
    5151  ///\sa Dijkstra
    52   template <typename PR, typename IM, typename Comp = std::less<PR> >
     52  template <typename PR, typename IM, typename CMP = std::less<PR> >
    5353  class BinHeap {
    5454
     
    6363    typedef std::pair<Item,Prio> Pair;
    6464    ///\e
    65     typedef Comp Compare;
     65    typedef CMP Compare;
    6666
    6767    /// \brief Type to represent the items states.
  • lemon/bucket_heap.h

    r682 r683  
    3232  namespace _bucket_heap_bits {
    3333
    34     template <bool minimize>
     34    template <bool MIN>
    3535    struct DirectionTraits {
    3636      static bool less(int left, int right) {
     
    6666  /// the priorities are small. It is not intended to use as dijkstra heap.
    6767  ///
    68   /// \param _ItemIntMap A read and writable Item int map, used internally
     68  /// \param IM A read and write Item int map, used internally
    6969  /// to handle the cross references.
    70   /// \param minimize If the given parameter is true then the heap gives back
    71   /// the lowest priority.
    72   template <typename _ItemIntMap, bool minimize = true>
     70  /// \param MIN If the given parameter is false then instead of the
     71  /// minimum value the maximum can be retrivied with the top() and
     72  /// prio() member functions.
     73  template <typename IM, bool MIN = true>
    7374  class BucketHeap {
    7475
    7576  public:
    7677    /// \e
    77     typedef typename _ItemIntMap::Key Item;
     78    typedef typename IM::Key Item;
    7879    /// \e
    7980    typedef int Prio;
     
    8182    typedef std::pair<Item, Prio> Pair;
    8283    /// \e
    83     typedef _ItemIntMap ItemIntMap;
     84    typedef IM ItemIntMap;
    8485
    8586  private:
    8687
    87     typedef _bucket_heap_bits::DirectionTraits<minimize> Direction;
     88    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
    8889
    8990  public:
     
    9596    /// heap's point of view, but may be useful to the user.
    9697    ///
    97     /// The ItemIntMap \e should be initialized in such way that it maps
    98     /// PRE_HEAP (-1) to any element to be put in the heap...
     98    /// The item-int map must be initialized in such way that it assigns
     99    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    99100    enum State {
    100       IN_HEAP = 0,
    101       PRE_HEAP = -1,
    102       POST_HEAP = -2
     101      IN_HEAP = 0,    ///< = 0.
     102      PRE_HEAP = -1,  ///< = -1.
     103      POST_HEAP = -2  ///< = -2.
    103104    };
    104105
     
    107108    ///
    108109    /// The constructor.
    109     /// \param _index should be given to the constructor, since it is used
     110    /// \param map should be given to the constructor, since it is used
    110111    /// internally to handle the cross references. The value of the map
    111112    /// should be PRE_HEAP (-1) for each element.
    112     explicit BucketHeap(ItemIntMap &_index) : index(_index), minimal(0) {}
     113    explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
    113114
    114115    /// The number of items stored in the heap.
    115116    ///
    116117    /// \brief Returns the number of items stored in the heap.
    117     int size() const { return data.size(); }
     118    int size() const { return _data.size(); }
    118119
    119120    /// \brief Checks if the heap stores no items.
    120121    ///
    121122    /// Returns \c true if and only if the heap stores no items.
    122     bool empty() const { return data.empty(); }
     123    bool empty() const { return _data.empty(); }
    123124
    124125    /// \brief Make empty this heap.
     
    129130    /// cross reference map for each item to \c PRE_HEAP.
    130131    void clear() {
    131       data.clear(); first.clear(); minimal = 0;
     132      _data.clear(); _first.clear(); _minimum = 0;
    132133    }
    133134
     
    135136
    136137    void relocate_last(int idx) {
    137       if (idx + 1 < int(data.size())) {
    138         data[idx] = data.back();
    139         if (data[idx].prev != -1) {
    140           data[data[idx].prev].next = idx;
     138      if (idx + 1 < int(_data.size())) {
     139        _data[idx] = _data.back();
     140        if (_data[idx].prev != -1) {
     141          _data[_data[idx].prev].next = idx;
    141142        } else {
    142           first[data[idx].value] = idx;
     143          _first[_data[idx].value] = idx;
    143144        }
    144         if (data[idx].next != -1) {
    145           data[data[idx].next].prev = idx;
     145        if (_data[idx].next != -1) {
     146          _data[_data[idx].next].prev = idx;
    146147        }
    147         index[data[idx].item] = idx;
    148       }
    149       data.pop_back();
     148        _iim[_data[idx].item] = idx;
     149      }
     150      _data.pop_back();
    150151    }
    151152
    152153    void unlace(int idx) {
    153       if (data[idx].prev != -1) {
    154         data[data[idx].prev].next = data[idx].next;
     154      if (_data[idx].prev != -1) {
     155        _data[_data[idx].prev].next = _data[idx].next;
    155156      } else {
    156         first[data[idx].value] = data[idx].next;
    157       }
    158       if (data[idx].next != -1) {
    159         data[data[idx].next].prev = data[idx].prev;
     157        _first[_data[idx].value] = _data[idx].next;
     158      }
     159      if (_data[idx].next != -1) {
     160        _data[_data[idx].next].prev = _data[idx].prev;
    160161      }
    161162    }
    162163
    163164    void lace(int idx) {
    164       if (int(first.size()) <= data[idx].value) {
    165         first.resize(data[idx].value + 1, -1);
    166       }
    167       data[idx].next = first[data[idx].value];
    168       if (data[idx].next != -1) {
    169         data[data[idx].next].prev = idx;
    170       }
    171       first[data[idx].value] = idx;
    172       data[idx].prev = -1;
     165      if (int(_first.size()) <= _data[idx].value) {
     166        _first.resize(_data[idx].value + 1, -1);
     167      }
     168      _data[idx].next = _first[_data[idx].value];
     169      if (_data[idx].next != -1) {
     170        _data[_data[idx].next].prev = idx;
     171      }
     172      _first[_data[idx].value] = idx;
     173      _data[idx].prev = -1;
    173174    }
    174175
     
    188189    /// \param p The priority of the item.
    189190    void push(const Item &i, const Prio &p) {
    190       int idx = data.size();
    191       index[i] = idx;
    192       data.push_back(BucketItem(i, p));
     191      int idx = _data.size();
     192      _iim[i] = idx;
     193      _data.push_back(BucketItem(i, p));
    193194      lace(idx);
    194       if (Direction::less(p, minimal)) {
    195         minimal = p;
     195      if (Direction::less(p, _minimum)) {
     196        _minimum = p;
    196197      }
    197198    }
     
    202203    /// \pre The heap must be nonempty.
    203204    Item top() const {
    204       while (first[minimal] == -1) {
    205         Direction::increase(minimal);
    206       }
    207       return data[first[minimal]].item;
     205      while (_first[_minimum] == -1) {
     206        Direction::increase(_minimum);
     207      }
     208      return _data[_first[_minimum]].item;
    208209    }
    209210
     
    213214    /// \pre The heap must be nonempty.
    214215    Prio prio() const {
    215       while (first[minimal] == -1) {
    216         Direction::increase(minimal);
    217       }
    218       return minimal;
     216      while (_first[_minimum] == -1) {
     217        Direction::increase(_minimum);
     218      }
     219      return _minimum;
    219220    }
    220221
     
    224225    /// \pre The heap must be non-empty.
    225226    void pop() {
    226       while (first[minimal] == -1) {
    227         Direction::increase(minimal);
    228       }
    229       int idx = first[minimal];
    230       index[data[idx].item] = -2;
     227      while (_first[_minimum] == -1) {
     228        Direction::increase(_minimum);
     229      }
     230      int idx = _first[_minimum];
     231      _iim[_data[idx].item] = -2;
    231232      unlace(idx);
    232233      relocate_last(idx);
     
    239240    /// \param i The item to erase.
    240241    void erase(const Item &i) {
    241       int idx = index[i];
    242       index[data[idx].item] = -2;
     242      int idx = _iim[i];
     243      _iim[_data[idx].item] = -2;
    243244      unlace(idx);
    244245      relocate_last(idx);
     
    252253    /// \param i The item.
    253254    Prio operator[](const Item &i) const {
    254       int idx = index[i];
    255       return data[idx].value;
     255      int idx = _iim[i];
     256      return _data[idx].value;
    256257    }
    257258
     
    264265    /// \param p The priority.
    265266    void set(const Item &i, const Prio &p) {
    266       int idx = index[i];
     267      int idx = _iim[i];
    267268      if (idx < 0) {
    268269        push(i, p);
    269       } else if (Direction::less(p, data[idx].value)) {
     270      } else if (Direction::less(p, _data[idx].value)) {
    270271        decrease(i, p);
    271272      } else {
     
    282283    /// \param p The priority.
    283284    void decrease(const Item &i, const Prio &p) {
    284       int idx = index[i];
     285      int idx = _iim[i];
    285286      unlace(idx);
    286       data[idx].value = p;
    287       if (Direction::less(p, minimal)) {
    288         minimal = p;
     287      _data[idx].value = p;
     288      if (Direction::less(p, _minimum)) {
     289        _minimum = p;
    289290      }
    290291      lace(idx);
     
    299300    /// \param p The priority.
    300301    void increase(const Item &i, const Prio &p) {
    301       int idx = index[i];
     302      int idx = _iim[i];
    302303      unlace(idx);
    303       data[idx].value = p;
     304      _data[idx].value = p;
    304305      lace(idx);
    305306    }
     
    314315    /// \param i The item.
    315316    State state(const Item &i) const {
    316       int idx = index[i];
     317      int idx = _iim[i];
    317318      if (idx >= 0) idx = 0;
    318319      return State(idx);
     
    333334          erase(i);
    334335        }
    335         index[i] = st;
     336        _iim[i] = st;
    336337        break;
    337338      case IN_HEAP:
     
    352353    };
    353354
    354     ItemIntMap& index;
    355     std::vector<int> first;
    356     std::vector<BucketItem> data;
    357     mutable int minimal;
     355    ItemIntMap& _iim;
     356    std::vector<int> _first;
     357    std::vector<BucketItem> _data;
     358    mutable int _minimum;
    358359
    359360  }; // class BucketHeap
     
    371372  /// minimal and it does not supports key increasing, decreasing.
    372373  ///
    373   /// \param _ItemIntMap A read and writable Item int map, used internally
     374  /// \param IM A read and write Item int map, used internally
    374375  /// to handle the cross references.
    375   /// \param minimize If the given parameter is true then the heap gives back
    376   /// the lowest priority.
     376  /// \param MIN If the given parameter is false then instead of the
     377  /// minimum value the maximum can be retrivied with the top() and
     378  /// prio() member functions.
    377379  ///
    378380  /// \sa BucketHeap
    379   template <typename _ItemIntMap, bool minimize = true >
     381  template <typename IM, bool MIN = true >
    380382  class SimpleBucketHeap {
    381383
    382384  public:
    383     typedef typename _ItemIntMap::Key Item;
     385    typedef typename IM::Key Item;
    384386    typedef int Prio;
    385387    typedef std::pair<Item, Prio> Pair;
    386     typedef _ItemIntMap ItemIntMap;
     388    typedef IM ItemIntMap;
    387389
    388390  private:
    389391
    390     typedef _bucket_heap_bits::DirectionTraits<minimize> Direction;
     392    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
    391393
    392394  public:
     
    398400    /// heap's point of view, but may be useful to the user.
    399401    ///
    400     /// The ItemIntMap \e should be initialized in such way that it maps
    401     /// PRE_HEAP (-1) to any element to be put in the heap...
     402    /// The item-int map must be initialized in such way that it assigns
     403    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    402404    enum State {
    403       IN_HEAP = 0,
    404       PRE_HEAP = -1,
    405       POST_HEAP = -2
     405      IN_HEAP = 0,    ///< = 0.
     406      PRE_HEAP = -1,  ///< = -1.
     407      POST_HEAP = -2  ///< = -2.
    406408    };
    407409
     
    411413    ///
    412414    /// The constructor.
    413     /// \param _index should be given to the constructor, since it is used
     415    /// \param map should be given to the constructor, since it is used
    414416    /// internally to handle the cross references. The value of the map
    415417    /// should be PRE_HEAP (-1) for each element.
    416     explicit SimpleBucketHeap(ItemIntMap &_index)
    417       : index(_index), free(-1), num(0), minimal(0) {}
     418    explicit SimpleBucketHeap(ItemIntMap &map)
     419      : _iim(map), _free(-1), _num(0), _minimum(0) {}
    418420
    419421    /// \brief Returns the number of items stored in the heap.
    420422    ///
    421423    /// The number of items stored in the heap.
    422     int size() const { return num; }
     424    int size() const { return _num; }
    423425
    424426    /// \brief Checks if the heap stores no items.
    425427    ///
    426428    /// Returns \c true if and only if the heap stores no items.
    427     bool empty() const { return num == 0; }
     429    bool empty() const { return _num == 0; }
    428430
    429431    /// \brief Make empty this heap.
     
    434436    /// cross reference map for each item to \c PRE_HEAP.
    435437    void clear() {
    436       data.clear(); first.clear(); free = -1; num = 0; minimal = 0;
     438      _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;
    437439    }
    438440
     
    452454    void push(const Item &i, const Prio &p) {
    453455      int idx;
    454       if (free == -1) {
    455         idx = data.size();
    456         data.push_back(BucketItem(i));
     456      if (_free == -1) {
     457        idx = _data.size();
     458        _data.push_back(BucketItem(i));
    457459      } else {
    458         idx = free;
    459         free = data[idx].next;
    460         data[idx].item = i;
    461       }
    462       index[i] = idx;
    463       if (p >= int(first.size())) first.resize(p + 1, -1);
    464       data[idx].next = first[p];
    465       first[p] = idx;
    466       if (Direction::less(p, minimal)) {
    467         minimal = p;
    468       }
    469       ++num;
     460        idx = _free;
     461        _free = _data[idx].next;
     462        _data[idx].item = i;
     463      }
     464      _iim[i] = idx;
     465      if (p >= int(_first.size())) _first.resize(p + 1, -1);
     466      _data[idx].next = _first[p];
     467      _first[p] = idx;
     468      if (Direction::less(p, _minimum)) {
     469        _minimum = p;
     470      }
     471      ++_num;
    470472    }
    471473
     
    475477    /// \pre The heap must be nonempty.
    476478    Item top() const {
    477       while (first[minimal] == -1) {
    478         Direction::increase(minimal);
    479       }
    480       return data[first[minimal]].item;
     479      while (_first[_minimum] == -1) {
     480        Direction::increase(_minimum);
     481      }
     482      return _data[_first[_minimum]].item;
    481483    }
    482484
     
    486488    /// \pre The heap must be nonempty.
    487489    Prio prio() const {
    488       while (first[minimal] == -1) {
    489         Direction::increase(minimal);
    490       }
    491       return minimal;
     490      while (_first[_minimum] == -1) {
     491        Direction::increase(_minimum);
     492      }
     493      return _minimum;
    492494    }
    493495
     
    497499    /// \pre The heap must be non-empty.
    498500    void pop() {
    499       while (first[minimal] == -1) {
    500         Direction::increase(minimal);
    501       }
    502       int idx = first[minimal];
    503       index[data[idx].item] = -2;
    504       first[minimal] = data[idx].next;
    505       data[idx].next = free;
    506       free = idx;
    507       --num;
     501      while (_first[_minimum] == -1) {
     502        Direction::increase(_minimum);
     503      }
     504      int idx = _first[_minimum];
     505      _iim[_data[idx].item] = -2;
     506      _first[_minimum] = _data[idx].next;
     507      _data[idx].next = _free;
     508      _free = idx;
     509      --_num;
    508510    }
    509511
     
    517519    /// \param i The item.
    518520    Prio operator[](const Item &i) const {
    519       for (int k = 0; k < first.size(); ++k) {
    520         int idx = first[k];
     521      for (int k = 0; k < _first.size(); ++k) {
     522        int idx = _first[k];
    521523        while (idx != -1) {
    522           if (data[idx].item == i) {
     524          if (_data[idx].item == i) {
    523525            return k;
    524526          }
    525           idx = data[idx].next;
     527          idx = _data[idx].next;
    526528        }
    527529      }
     
    538540    /// \param i The item.
    539541    State state(const Item &i) const {
    540       int idx = index[i];
     542      int idx = _iim[i];
    541543      if (idx >= 0) idx = 0;
    542544      return State(idx);
     
    553555    };
    554556
    555     ItemIntMap& index;
    556     std::vector<int> first;
    557     std::vector<BucketItem> data;
    558     int free, num;
    559     mutable int minimal;
     557    ItemIntMap& _iim;
     558    std::vector<int> _first;
     559    std::vector<BucketItem> _data;
     560    int _free, _num;
     561    mutable int _minimum;
    560562
    561563  }; // class SimpleBucketHeap
  • lemon/fib_heap.h

    r681 r683  
    3737  ///is a data structure for storing items with specified values called \e
    3838  ///priorities in such a way that finding the item with minimum priority is
    39   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
     39  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
    4040  ///one can change the priority of an item, add or erase an item, etc.
    4141  ///
     
    4444  ///\ref BinHeap "binary heap".
    4545  ///
    46   ///\param _Prio Type of the priority of the items.
    47   ///\param _ItemIntMap A read and writable Item int map, used internally
     46  ///\param PRIO Type of the priority of the items.
     47  ///\param IM A read and writable Item int map, used internally
    4848  ///to handle the cross references.
    49   ///\param _Compare A class for the ordering of the priorities. The
    50   ///default is \c std::less<_Prio>.
     49  ///\param CMP A class for the ordering of the priorities. The
     50  ///default is \c std::less<PRIO>.
    5151  ///
    5252  ///\sa BinHeap
    5353  ///\sa Dijkstra
    5454#ifdef DOXYGEN
    55   template <typename _Prio,
    56             typename _ItemIntMap,
    57             typename _Compare>
     55  template <typename PRIO, typename IM, typename CMP>
    5856#else
    59   template <typename _Prio,
    60             typename _ItemIntMap,
    61             typename _Compare = std::less<_Prio> >
     57  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
    6258#endif
    6359  class FibHeap {
    6460  public:
    6561    ///\e
    66     typedef _ItemIntMap ItemIntMap;
     62    typedef IM ItemIntMap;
    6763    ///\e
    68     typedef _Prio Prio;
     64    typedef PRIO Prio;
    6965    ///\e
    7066    typedef typename ItemIntMap::Key Item;
     
    7268    typedef std::pair<Item,Prio> Pair;
    7369    ///\e
    74     typedef _Compare Compare;
     70    typedef CMP Compare;
    7571
    7672  private:
    77     class store;
    78 
    79     std::vector<store> container;
    80     int minimum;
    81     ItemIntMap &iimap;
    82     Compare comp;
    83     int num_items;
     73    class Store;
     74
     75    std::vector<Store> _data;
     76    int _minimum;
     77    ItemIntMap &_iim;
     78    Compare _comp;
     79    int _num;
    8480
    8581  public:
    86     ///Status of the nodes
     82
     83    /// \brief Type to represent the items states.
     84    ///
     85    /// Each Item element have a state associated to it. It may be "in heap",
     86    /// "pre heap" or "post heap". The latter two are indifferent from the
     87    /// heap's point of view, but may be useful to the user.
     88    ///
     89    /// The item-int map must be initialized in such way that it assigns
     90    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    8791    enum State {
    88       ///The node is in the heap
    89       IN_HEAP = 0,
    90       ///The node has never been in the heap
    91       PRE_HEAP = -1,
    92       ///The node was in the heap but it got out of it
    93       POST_HEAP = -2
     92      IN_HEAP = 0,    ///< = 0.
     93      PRE_HEAP = -1,  ///< = -1.
     94      POST_HEAP = -2  ///< = -2.
    9495    };
    9596
    9697    /// \brief The constructor
    9798    ///
    98     /// \c _iimap should be given to the constructor, since it is
     99    /// \c map should be given to the constructor, since it is
    99100    ///   used internally to handle the cross references.
    100     explicit FibHeap(ItemIntMap &_iimap)
    101       : minimum(0), iimap(_iimap), num_items() {}
     101    explicit FibHeap(ItemIntMap &map)
     102      : _minimum(0), _iim(map), _num() {}
    102103
    103104    /// \brief The constructor
    104105    ///
    105     /// \c _iimap should be given to the constructor, since it is used
    106     /// internally to handle the cross references. \c _comp is an
     106    /// \c map should be given to the constructor, since it is used
     107    /// internally to handle the cross references. \c comp is an
    107108    /// object for ordering of the priorities.
    108     FibHeap(ItemIntMap &_iimap, const Compare &_comp)
    109       : minimum(0), iimap(_iimap), comp(_comp), num_items() {}
     109    FibHeap(ItemIntMap &map, const Compare &comp)
     110      : _minimum(0), _iim(map), _comp(comp), _num() {}
    110111
    111112    /// \brief The number of items stored in the heap.
    112113    ///
    113114    /// Returns the number of items stored in the heap.
    114     int size() const { return num_items; }
     115    int size() const { return _num; }
    115116
    116117    /// \brief Checks if the heap stores no items.
    117118    ///
    118119    ///   Returns \c true if and only if the heap stores no items.
    119     bool empty() const { return num_items==0; }
     120    bool empty() const { return _num==0; }
    120121
    121122    /// \brief Make empty this heap.
     
    126127    /// cross reference map for each item to \c PRE_HEAP.
    127128    void clear() {
    128       container.clear(); minimum = 0; num_items = 0;
     129      _data.clear(); _minimum = 0; _num = 0;
    129130    }
    130131
     
    136137    /// \ref increase(\c item, \c value) otherwise.
    137138    void set (const Item& item, const Prio& value) {
    138       int i=iimap[item];
    139       if ( i >= 0 && container[i].in ) {
    140         if ( comp(value, container[i].prio) ) decrease(item, value);
    141         if ( comp(container[i].prio, value) ) increase(item, value);
     139      int i=_iim[item];
     140      if ( i >= 0 && _data[i].in ) {
     141        if ( _comp(value, _data[i].prio) ) decrease(item, value);
     142        if ( _comp(_data[i].prio, value) ) increase(item, value);
    142143      } else push(item, value);
    143144    }
     
    148149    /// \pre \c item must not be stored in the heap.
    149150    void push (const Item& item, const Prio& value) {
    150       int i=iimap[item];
     151      int i=_iim[item];
    151152      if ( i < 0 ) {
    152         int s=container.size();
    153         iimap.set( item, s );
    154         store st;
     153        int s=_data.size();
     154        _iim.set( item, s );
     155        Store st;
    155156        st.name=item;
    156         container.push_back(st);
     157        _data.push_back(st);
    157158        i=s;
    158159      } else {
    159         container[i].parent=container[i].child=-1;
    160         container[i].degree=0;
    161         container[i].in=true;
    162         container[i].marked=false;
    163       }
    164 
    165       if ( num_items ) {
    166         container[container[minimum].right_neighbor].left_neighbor=i;
    167         container[i].right_neighbor=container[minimum].right_neighbor;
    168         container[minimum].right_neighbor=i;
    169         container[i].left_neighbor=minimum;
    170         if ( comp( value, container[minimum].prio) ) minimum=i;
     160        _data[i].parent=_data[i].child=-1;
     161        _data[i].degree=0;
     162        _data[i].in=true;
     163        _data[i].marked=false;
     164      }
     165
     166      if ( _num ) {
     167        _data[_data[_minimum].right_neighbor].left_neighbor=i;
     168        _data[i].right_neighbor=_data[_minimum].right_neighbor;
     169        _data[_minimum].right_neighbor=i;
     170        _data[i].left_neighbor=_minimum;
     171        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
    171172      } else {
    172         container[i].right_neighbor=container[i].left_neighbor=i;
    173         minimum=i;
    174       }
    175       container[i].prio=value;
    176       ++num_items;
     173        _data[i].right_neighbor=_data[i].left_neighbor=i;
     174        _minimum=i;
     175      }
     176      _data[i].prio=value;
     177      ++_num;
    177178    }
    178179
     
    182183    /// Compare.
    183184    /// \pre The heap must be nonempty.
    184     Item top() const { return container[minimum].name; }
     185    Item top() const { return _data[_minimum].name; }
    185186
    186187    /// \brief Returns the minimum priority relative to \c Compare.
     
    188189    /// It returns the minimum priority relative to \c Compare.
    189190    /// \pre The heap must be nonempty.
    190     const Prio& prio() const { return container[minimum].prio; }
     191    const Prio& prio() const { return _data[_minimum].prio; }
    191192
    192193    /// \brief Returns the priority of \c item.
     
    195196    /// \pre \c item must be in the heap.
    196197    const Prio& operator[](const Item& item) const {
    197       return container[iimap[item]].prio;
     198      return _data[_iim[item]].prio;
    198199    }
    199200
     
    205206    void pop() {
    206207      /*The first case is that there are only one root.*/
    207       if ( container[minimum].left_neighbor==minimum ) {
    208         container[minimum].in=false;
    209         if ( container[minimum].degree!=0 ) {
    210           makeroot(container[minimum].child);
    211           minimum=container[minimum].child;
     208      if ( _data[_minimum].left_neighbor==_minimum ) {
     209        _data[_minimum].in=false;
     210        if ( _data[_minimum].degree!=0 ) {
     211          makeroot(_data[_minimum].child);
     212          _minimum=_data[_minimum].child;
    212213          balance();
    213214        }
    214215      } else {
    215         int right=container[minimum].right_neighbor;
    216         unlace(minimum);
    217         container[minimum].in=false;
    218         if ( container[minimum].degree > 0 ) {
    219           int left=container[minimum].left_neighbor;
    220           int child=container[minimum].child;
    221           int last_child=container[child].left_neighbor;
     216        int right=_data[_minimum].right_neighbor;
     217        unlace(_minimum);
     218        _data[_minimum].in=false;
     219        if ( _data[_minimum].degree > 0 ) {
     220          int left=_data[_minimum].left_neighbor;
     221          int child=_data[_minimum].child;
     222          int last_child=_data[child].left_neighbor;
    222223
    223224          makeroot(child);
    224225
    225           container[left].right_neighbor=child;
    226           container[child].left_neighbor=left;
    227           container[right].left_neighbor=last_child;
    228           container[last_child].right_neighbor=right;
    229         }
    230         minimum=right;
     226          _data[left].right_neighbor=child;
     227          _data[child].left_neighbor=left;
     228          _data[right].left_neighbor=last_child;
     229          _data[last_child].right_neighbor=right;
     230        }
     231        _minimum=right;
    231232        balance();
    232233      } // the case where there are more roots
    233       --num_items;
     234      --_num;
    234235    }
    235236
     
    239240    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
    240241    void erase (const Item& item) {
    241       int i=iimap[item];
    242 
    243       if ( i >= 0 && container[i].in ) {
    244         if ( container[i].parent!=-1 ) {
    245           int p=container[i].parent;
     242      int i=_iim[item];
     243
     244      if ( i >= 0 && _data[i].in ) {
     245        if ( _data[i].parent!=-1 ) {
     246          int p=_data[i].parent;
    246247          cut(i,p);
    247248          cascade(p);
    248249        }
    249         minimum=i;     //As if its prio would be -infinity
     250        _minimum=i;     //As if its prio would be -infinity
    250251        pop();
    251252      }
     
    258259    ///   value relative to \c Compare.
    259260    void decrease (Item item, const Prio& value) {
    260       int i=iimap[item];
    261       container[i].prio=value;
    262       int p=container[i].parent;
    263 
    264       if ( p!=-1 && comp(value, container[p].prio) ) {
     261      int i=_iim[item];
     262      _data[i].prio=value;
     263      int p=_data[i].parent;
     264
     265      if ( p!=-1 && _comp(value, _data[p].prio) ) {
    265266        cut(i,p);
    266267        cascade(p);
    267268      }
    268       if ( comp(value, container[minimum].prio) ) minimum=i;
     269      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
    269270    }
    270271
     
    290291    /// get back to the heap again.
    291292    State state(const Item &item) const {
    292       int i=iimap[item];
     293      int i=_iim[item];
    293294      if( i>=0 ) {
    294         if ( container[i].in ) i=0;
     295        if ( _data[i].in ) i=0;
    295296        else i=-2;
    296297      }
     
    302303    /// Sets the state of the \c item in the heap. It can be used to
    303304    /// manually clear the heap when it is important to achive the
    304     /// better time complexity.
     305    /// better time _complexity.
    305306    /// \param i The item.
    306307    /// \param st The state. It should not be \c IN_HEAP.
     
    312313          erase(i);
    313314        }
    314         iimap[i] = st;
     315        _iim[i] = st;
    315316        break;
    316317      case IN_HEAP:
     
    323324    void balance() {
    324325
    325       int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
     326      int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
    326327
    327328      std::vector<int> A(maxdeg,-1);
     
    331332       *We set minimum to this during balance().
    332333       */
    333       int anchor=container[minimum].left_neighbor;
    334       int next=minimum;
     334      int anchor=_data[_minimum].left_neighbor;
     335      int next=_minimum;
    335336      bool end=false;
    336337
     
    338339        int active=next;
    339340        if ( anchor==active ) end=true;
    340         int d=container[active].degree;
    341         next=container[active].right_neighbor;
     341        int d=_data[active].degree;
     342        next=_data[active].right_neighbor;
    342343
    343344        while (A[d]!=-1) {
    344           if( comp(container[active].prio, container[A[d]].prio) ) {
     345          if( _comp(_data[active].prio, _data[A[d]].prio) ) {
    345346            fuse(active,A[d]);
    346347          } else {
     
    355356
    356357
    357       while ( container[minimum].parent >=0 )
    358         minimum=container[minimum].parent;
    359       int s=minimum;
    360       int m=minimum;
     358      while ( _data[_minimum].parent >=0 )
     359        _minimum=_data[_minimum].parent;
     360      int s=_minimum;
     361      int m=_minimum;
    361362      do {
    362         if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
    363         s=container[s].right_neighbor;
     363        if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
     364        s=_data[s].right_neighbor;
    364365      } while ( s != m );
    365366    }
     
    368369      int s=c;
    369370      do {
    370         container[s].parent=-1;
    371         s=container[s].right_neighbor;
     371        _data[s].parent=-1;
     372        s=_data[s].right_neighbor;
    372373      } while ( s != c );
    373374    }
     
    377378       *Replacing a from the children of b.
    378379       */
    379       --container[b].degree;
    380 
    381       if ( container[b].degree !=0 ) {
    382         int child=container[b].child;
     380      --_data[b].degree;
     381
     382      if ( _data[b].degree !=0 ) {
     383        int child=_data[b].child;
    383384        if ( child==a )
    384           container[b].child=container[child].right_neighbor;
     385          _data[b].child=_data[child].right_neighbor;
    385386        unlace(a);
    386387      }
     
    388389
    389390      /*Lacing a to the roots.*/
    390       int right=container[minimum].right_neighbor;
    391       container[minimum].right_neighbor=a;
    392       container[a].left_neighbor=minimum;
    393       container[a].right_neighbor=right;
    394       container[right].left_neighbor=a;
    395 
    396       container[a].parent=-1;
    397       container[a].marked=false;
     391      int right=_data[_minimum].right_neighbor;
     392      _data[_minimum].right_neighbor=a;
     393      _data[a].left_neighbor=_minimum;
     394      _data[a].right_neighbor=right;
     395      _data[right].left_neighbor=a;
     396
     397      _data[a].parent=-1;
     398      _data[a].marked=false;
    398399    }
    399400
    400401    void cascade(int a) {
    401       if ( container[a].parent!=-1 ) {
    402         int p=container[a].parent;
    403 
    404         if ( container[a].marked==false ) container[a].marked=true;
     402      if ( _data[a].parent!=-1 ) {
     403        int p=_data[a].parent;
     404
     405        if ( _data[a].marked==false ) _data[a].marked=true;
    405406        else {
    406407          cut(a,p);
     
    414415
    415416      /*Lacing b under a.*/
    416       container[b].parent=a;
    417 
    418       if (container[a].degree==0) {
    419         container[b].left_neighbor=b;
    420         container[b].right_neighbor=b;
    421         container[a].child=b;
     417      _data[b].parent=a;
     418
     419      if (_data[a].degree==0) {
     420        _data[b].left_neighbor=b;
     421        _data[b].right_neighbor=b;
     422        _data[a].child=b;
    422423      } else {
    423         int child=container[a].child;
    424         int last_child=container[child].left_neighbor;
    425         container[child].left_neighbor=b;
    426         container[b].right_neighbor=child;
    427         container[last_child].right_neighbor=b;
    428         container[b].left_neighbor=last_child;
    429       }
    430 
    431       ++container[a].degree;
    432 
    433       container[b].marked=false;
     424        int child=_data[a].child;
     425        int last_child=_data[child].left_neighbor;
     426        _data[child].left_neighbor=b;
     427        _data[b].right_neighbor=child;
     428        _data[last_child].right_neighbor=b;
     429        _data[b].left_neighbor=last_child;
     430      }
     431
     432      ++_data[a].degree;
     433
     434      _data[b].marked=false;
    434435    }
    435436
     
    438439     */
    439440    void unlace(int a) {
    440       int leftn=container[a].left_neighbor;
    441       int rightn=container[a].right_neighbor;
    442       container[leftn].right_neighbor=rightn;
    443       container[rightn].left_neighbor=leftn;
    444     }
    445 
    446 
    447     class store {
     441      int leftn=_data[a].left_neighbor;
     442      int rightn=_data[a].right_neighbor;
     443      _data[leftn].right_neighbor=rightn;
     444      _data[rightn].left_neighbor=leftn;
     445    }
     446
     447
     448    class Store {
    448449      friend class FibHeap;
    449450
     
    458459      Prio prio;
    459460
    460       store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
     461      Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
    461462    };
    462463  };
  • lemon/radix_heap.h

    r681 r683  
    4242  /// item's priority.
    4343  ///
    44   /// \param _ItemIntMap A read and writable Item int map, used internally
     44  /// \param IM A read and writable Item int map, used internally
    4545  /// to handle the cross references.
    4646  ///
    4747  /// \see BinHeap
    4848  /// \see Dijkstra
    49   template <typename _ItemIntMap>
     49  template <typename IM>
    5050  class RadixHeap {
    5151
    5252  public:
    53     typedef typename _ItemIntMap::Key Item;
     53    typedef typename IM::Key Item;
    5454    typedef int Prio;
    55     typedef _ItemIntMap ItemIntMap;
     55    typedef IM ItemIntMap;
    5656
    5757    /// \brief Exception thrown by RadixHeap.
     
    100100    std::vector<RadixBox> boxes;
    101101
    102     ItemIntMap &iim;
     102    ItemIntMap &_iim;
    103103
    104104
     
    108108    /// The constructor.
    109109    ///
    110     /// \param _iim It should be given to the constructor, since it is used
     110    /// \param map It should be given to the constructor, since it is used
    111111    /// internally to handle the cross references. The value of the map
    112112    /// should be PRE_HEAP (-1) for each element.
     
    114114    /// \param minimal The initial minimal value of the heap.
    115115    /// \param capacity It determines the initial capacity of the heap.
    116     RadixHeap(ItemIntMap &_iim, int minimal = 0, int capacity = 0)
    117       : iim(_iim) {
     116    RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
     117      : _iim(map) {
    118118      boxes.push_back(RadixBox(minimal, 1));
    119119      boxes.push_back(RadixBox(minimal + 1, 1));
     
    269269          data[data[index].next].prev = index;
    270270        }
    271         iim[data[index].item] = index;
     271        _iim[data[index].item] = index;
    272272      }
    273273      data.pop_back();
     
    283283    void push(const Item &i, const Prio &p) {
    284284      int n = data.size();
    285       iim.set(i, n);
     285      _iim.set(i, n);
    286286      data.push_back(RadixItem(i, p));
    287287      while (lower(boxes.size() - 1, p)) {
     
    317317      moveDown();
    318318      int index = boxes[0].first;
    319       iim[data[index].item] = POST_HEAP;
     319      _iim[data[index].item] = POST_HEAP;
    320320      remove(index);
    321321      relocate_last(index);
     
    328328    /// \param i The item to erase.
    329329    void erase(const Item &i) {
    330       int index = iim[i];
    331       iim[i] = POST_HEAP;
     330      int index = _iim[i];
     331      _iim[i] = POST_HEAP;
    332332      remove(index);
    333333      relocate_last(index);
     
    340340    /// \param i The item.
    341341    Prio operator[](const Item &i) const {
    342       int idx = iim[i];
     342      int idx = _iim[i];
    343343      return data[idx].prio;
    344344    }
     
    353353    /// \param p The priority.
    354354    void set(const Item &i, const Prio &p) {
    355       int idx = iim[i];
     355      int idx = _iim[i];
    356356      if( idx < 0 ) {
    357357        push(i, p);
     
    375375    /// \param p The priority.
    376376    void decrease(const Item &i, const Prio &p) {
    377       int idx = iim[i];
     377      int idx = _iim[i];
    378378      data[idx].prio = p;
    379379      bubble_down(idx);
     
    387387    /// \param p The priority.
    388388    void increase(const Item &i, const Prio &p) {
    389       int idx = iim[i];
     389      int idx = _iim[i];
    390390      data[idx].prio = p;
    391391      bubble_up(idx);
     
    401401    /// \param i The item.
    402402    State state(const Item &i) const {
    403       int s = iim[i];
     403      int s = _iim[i];
    404404      if( s >= 0 ) s = 0;
    405405      return State(s);
     
    420420          erase(i);
    421421        }
    422         iim[i] = st;
     422        _iim[i] = st;
    423423        break;
    424424      case IN_HEAP:
Note: See TracChangeset for help on using the changeset viewer.