Changes in / [726:3fc2a801c39e:719:ba79e8d64448] in lemon-main
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
lemon/maps.h
r726 r717 57 57 /// but data written to it is not required (i.e. it will be sent to 58 58 /// <tt>/dev/null</tt>). 59 /// It conforms t o the \ref concepts::ReadWriteMap "ReadWriteMap" concept.59 /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. 60 60 /// 61 61 /// \sa ConstMap … … 90 90 /// 91 91 /// In other aspects it is equivalent to \c NullMap. 92 /// So it conforms t o the \ref concepts::ReadWriteMap "ReadWriteMap"92 /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" 93 93 /// concept, but it absorbs the data written to it. 94 94 /// … … 159 159 /// 160 160 /// In other aspects it is equivalent to \c NullMap. 161 /// So it conforms t o the \ref concepts::ReadWriteMap "ReadWriteMap"161 /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" 162 162 /// concept, but it absorbs the data written to it. 163 163 /// … … 233 233 /// It can be used with some data structures, for example 234 234 /// \c UnionFind, \c BinHeap, when the used items are small 235 /// integers. This map conforms t o the \ref concepts::ReferenceMap235 /// integers. This map conforms the \ref concepts::ReferenceMap 236 236 /// "ReferenceMap" concept. 237 237 /// … … 341 341 /// stored actually. This value can be different from the default 342 342 /// contructed value (i.e. \c %Value()). 343 /// This type conforms t o the \ref concepts::ReferenceMap "ReferenceMap"343 /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" 344 344 /// concept. 345 345 /// … … 707 707 /// The \c Key type of it is inherited from \c M and the \c Value 708 708 /// type is \c V. 709 /// This type conforms t o the \ref concepts::ReadMap "ReadMap" concept.709 /// This type conforms the \ref concepts::ReadMap "ReadMap" concept. 710 710 /// 711 711 /// The simplest way of using this map is through the convertMap() … … 1826 1826 /// the items stored in the graph, which is returned by the \c id() 1827 1827 /// function of the graph. This map can be inverted with its member 1828 /// class \c InverseMap or with the \c operator() ()member.1828 /// class \c InverseMap or with the \c operator() member. 1829 1829 /// 1830 1830 /// \tparam GR The graph type. … … 1866 1866 public: 1867 1867 1868 /// \brief The inverse map type of IdMap. 1869 /// 1870 /// The inverse map type of IdMap. The subscript operator gives back 1871 /// an item by its id. 1872 /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. 1868 /// \brief This class represents the inverse of its owner (IdMap). 1869 /// 1870 /// This class represents the inverse of its owner (IdMap). 1873 1871 /// \see inverse() 1874 1872 class InverseMap { … … 1885 1883 explicit InverseMap(const IdMap& map) : _graph(map._graph) {} 1886 1884 1887 /// \brief Gives back an item byits id.1885 /// \brief Gives back the given item from its id. 1888 1886 /// 1889 /// Gives back an item byits id.1887 /// Gives back the given item from its id. 1890 1888 Item operator[](int id) const { return _graph->fromId(id, Item());} 1891 1889 … … 1900 1898 }; 1901 1899 1902 /// \brief Returns an \c IdMap class.1903 ///1904 /// This function just returns an \c IdMap class.1905 /// \relates IdMap1906 template <typename K, typename GR>1907 inline IdMap<GR, K> idMap(const GR& graph) {1908 return IdMap<GR, K>(graph);1909 }1910 1900 1911 1901 /// \brief General cross reference graph map type. … … 1914 1904 /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) 1915 1905 /// and if a key is set to a new value, then stores it in the inverse map. 1916 /// The graph items can be accessed by their values either using 1917 /// \c InverseMap or \c operator()(), and the values of the map can be 1918 /// accessed with an STL compatible forward iterator (\c ValueIt). 1919 /// 1920 /// This map is intended to be used when all associated values are 1921 /// different (the map is actually invertable) or there are only a few 1922 /// items with the same value. 1923 /// Otherwise consider to use \c IterableValueMap, which is more 1924 /// suitable and more efficient for such cases. It provides iterators 1925 /// to traverse the items with the same associated value, however 1926 /// it does not have \c InverseMap. 1906 /// The values of the map can be accessed 1907 /// with stl compatible forward iterator. 1927 1908 /// 1928 1909 /// This type is not reference map, so it cannot be modified with … … 1965 1946 /// \brief Forward iterator for values. 1966 1947 /// 1967 /// This iterator is an STLcompatible forward1948 /// This iterator is an stl compatible forward 1968 1949 /// iterator on the values of the map. The values can 1969 1950 /// be accessed in the <tt>[beginValue, endValue)</tt> range. 1970 1951 /// They are considered with multiplicity, so each value is 1971 1952 /// traversed for each item it is assigned to. 1972 class ValueIt 1953 class ValueIterator 1973 1954 : public std::iterator<std::forward_iterator_tag, Value> { 1974 1955 friend class CrossRefMap; 1975 1956 private: 1976 ValueIt (typename Container::const_iterator _it)1957 ValueIterator(typename Container::const_iterator _it) 1977 1958 : it(_it) {} 1978 1959 public: 1979 1960 1980 /// Constructor 1981 ValueIt() {} 1982 1983 /// \e 1984 ValueIt& operator++() { ++it; return *this; } 1985 /// \e 1986 ValueIt operator++(int) { 1987 ValueIt tmp(*this); 1961 ValueIterator() {} 1962 1963 ValueIterator& operator++() { ++it; return *this; } 1964 ValueIterator operator++(int) { 1965 ValueIterator tmp(*this); 1988 1966 operator++(); 1989 1967 return tmp; 1990 1968 } 1991 1969 1992 /// \e1993 1970 const Value& operator*() const { return it->first; } 1994 /// \e1995 1971 const Value* operator->() const { return &(it->first); } 1996 1972 1997 /// \e 1998 bool operator==(ValueIt jt) const { return it == jt.it; } 1999 /// \e 2000 bool operator!=(ValueIt jt) const { return it != jt.it; } 1973 bool operator==(ValueIterator jt) const { return it == jt.it; } 1974 bool operator!=(ValueIterator jt) const { return it != jt.it; } 2001 1975 2002 1976 private: 2003 1977 typename Container::const_iterator it; 2004 1978 }; 2005 2006 /// Alias for \c ValueIt2007 typedef ValueIt ValueIterator;2008 1979 2009 1980 /// \brief Returns an iterator to the first value. 2010 1981 /// 2011 /// Returns an STLcompatible iterator to the1982 /// Returns an stl compatible iterator to the 2012 1983 /// first value of the map. The values of the 2013 1984 /// map can be accessed in the <tt>[beginValue, endValue)</tt> 2014 1985 /// range. 2015 ValueIt beginValue() const {2016 return ValueIt (_inv_map.begin());1986 ValueIterator beginValue() const { 1987 return ValueIterator(_inv_map.begin()); 2017 1988 } 2018 1989 2019 1990 /// \brief Returns an iterator after the last value. 2020 1991 /// 2021 /// Returns an STLcompatible iterator after the1992 /// Returns an stl compatible iterator after the 2022 1993 /// last value of the map. The values of the 2023 1994 /// map can be accessed in the <tt>[beginValue, endValue)</tt> 2024 1995 /// range. 2025 ValueIt endValue() const {2026 return ValueIt (_inv_map.end());1996 ValueIterator endValue() const { 1997 return ValueIterator(_inv_map.end()); 2027 1998 } 2028 1999 … … 2061 2032 typename Container::const_iterator it = _inv_map.find(val); 2062 2033 return it != _inv_map.end() ? it->second : INVALID; 2063 }2064 2065 /// \brief Returns the number of items with the given value.2066 ///2067 /// This function returns the number of items with the given value2068 /// associated with it.2069 int count(const Value &val) const {2070 return _inv_map.count(val);2071 2034 } 2072 2035 … … 2120 2083 public: 2121 2084 2122 /// \brief The inverse map type of CrossRefMap. 2123 /// 2124 /// The inverse map type of CrossRefMap. The subscript operator gives 2125 /// back an item by its value. 2126 /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. 2127 /// \see inverse() 2085 /// \brief The inverse map type. 2086 /// 2087 /// The inverse of this map. The subscript operator of the map 2088 /// gives back the item that was last assigned to the value. 2128 2089 class InverseMap { 2129 2090 public: … … 2152 2113 }; 2153 2114 2154 /// \brief Gives back the inverse of the map.2155 /// 2156 /// Gives back the inverse of the CrossRefMap.2115 /// \brief It gives back the read-only inverse map. 2116 /// 2117 /// It gives back the read-only inverse map. 2157 2118 InverseMap inverse() const { 2158 2119 return InverseMap(*this); … … 2161 2122 }; 2162 2123 2163 /// \brief Provides continuous and unique idfor the2124 /// \brief Provides continuous and unique ID for the 2164 2125 /// items of a graph. 2165 2126 /// 2166 2127 /// RangeIdMap provides a unique and continuous 2167 /// idfor each item of a given type (\c Node, \c Arc or2128 /// ID for each item of a given type (\c Node, \c Arc or 2168 2129 /// \c Edge) in a graph. This id is 2169 2130 /// - \b unique: different items get different ids, … … 2176 2137 /// the \c id() function of the graph or \ref IdMap. 2177 2138 /// This map can be inverted with its member class \c InverseMap, 2178 /// or with the \c operator() ()member.2139 /// or with the \c operator() member. 2179 2140 /// 2180 2141 /// \tparam GR The graph type. … … 2304 2265 } 2305 2266 2306 /// \brief Gives back the \e range \e id of the item2307 /// 2308 /// Gives back the \e range \e id of the item.2267 /// \brief Gives back the \e RangeId of the item 2268 /// 2269 /// Gives back the \e RangeId of the item. 2309 2270 int operator[](const Item& item) const { 2310 2271 return Map::operator[](item); 2311 2272 } 2312 2273 2313 /// \brief Gives back the item belonging to a \e range \e id2314 /// 2315 /// Gives back the item belonging to the given \e range \e id.2274 /// \brief Gives back the item belonging to a \e RangeId 2275 /// 2276 /// Gives back the item belonging to a \e RangeId. 2316 2277 Item operator()(int id) const { 2317 2278 return _inv_map[id]; … … 2327 2288 /// \brief The inverse map type of RangeIdMap. 2328 2289 /// 2329 /// The inverse map type of RangeIdMap. The subscript operator gives 2330 /// back an item by its \e range \e id. 2331 /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. 2290 /// The inverse map type of RangeIdMap. 2332 2291 class InverseMap { 2333 2292 public: … … 2347 2306 /// 2348 2307 /// Subscript operator. It gives back the item 2349 /// that the given \e range \e idcurrently belongs to.2308 /// that the descriptor currently belongs to. 2350 2309 Value operator[](const Key& key) const { 2351 2310 return _inverted(key); … … 2365 2324 /// \brief Gives back the inverse of the map. 2366 2325 /// 2367 /// Gives back the inverse of the RangeIdMap.2326 /// Gives back the inverse of the map. 2368 2327 const InverseMap inverse() const { 2369 2328 return InverseMap(*this); … … 2371 2330 }; 2372 2331 2373 /// \brief Returns a \c RangeIdMap class.2374 ///2375 /// This function just returns an \c RangeIdMap class.2376 /// \relates RangeIdMap2377 template <typename K, typename GR>2378 inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {2379 return RangeIdMap<GR, K>(graph);2380 }2381 2382 2332 /// \brief Dynamic iterable \c bool map. 2383 2333 /// … … 2385 2335 /// \c bool value for graph items (\c Node, \c Arc or \c Edge). 2386 2336 /// For both \c true and \c false values it is possible to iterate on 2387 /// the keys mapped to the value.2337 /// the keys. 2388 2338 /// 2389 2339 /// This type is a reference map, so it can be modified with the … … 2754 2704 /// mapped to the value. 2755 2705 /// 2756 /// This map is intended to be used with small integer values, for which2757 /// it is efficient, and supports iteration only for non-negative values.2758 /// If you need large values and/or iteration for negative integers,2759 /// consider to use \ref IterableValueMap instead.2760 ///2761 2706 /// This type is a reference map, so it can be modified with the 2762 2707 /// subscript operator. … … 3040 2985 /// \brief Dynamic iterable map for comparable values. 3041 2986 /// 3042 /// This class provides a special graph map type which can store a 2987 /// This class provides a special graph map type which can store an 3043 2988 /// comparable value for graph items (\c Node, \c Arc or \c Edge). 3044 2989 /// For each value it is possible to iterate on the keys mapped to 3045 /// the value (\c ItemIt), and the values of the map can be accessed 3046 /// with an STL compatible forward iterator (\c ValueIt). 3047 /// The map stores a linked list for each value, which contains 3048 /// the items mapped to the value, and the used values are stored 3049 /// in balanced binary tree (\c std::map). 3050 /// 3051 /// \ref IterableBoolMap and \ref IterableIntMap are similar classes 3052 /// specialized for \c bool and \c int values, respectively. 2990 /// the value. 2991 /// 2992 /// The map stores for each value a linked list with 2993 /// the items which mapped to the value, and the values are stored 2994 /// in balanced binary tree. The values of the map can be accessed 2995 /// with stl compatible forward iterator. 3053 2996 /// 3054 2997 /// This type is not reference map, so it cannot be modified with … … 3129 3072 /// \brief Forward iterator for values. 3130 3073 /// 3131 /// This iterator is an STLcompatible forward3074 /// This iterator is an stl compatible forward 3132 3075 /// iterator on the values of the map. The values can 3133 3076 /// be accessed in the <tt>[beginValue, endValue)</tt> range. 3134 class ValueIt 3077 class ValueIterator 3135 3078 : public std::iterator<std::forward_iterator_tag, Value> { 3136 3079 friend class IterableValueMap; 3137 3080 private: 3138 ValueIt (typename std::map<Value, Key>::const_iterator _it)3081 ValueIterator(typename std::map<Value, Key>::const_iterator _it) 3139 3082 : it(_it) {} 3140 3083 public: 3141 3084 3142 /// Constructor 3143 ValueIt() {} 3144 3145 /// \e 3146 ValueIt& operator++() { ++it; return *this; } 3147 /// \e 3148 ValueIt operator++(int) { 3149 ValueIt tmp(*this); 3085 ValueIterator() {} 3086 3087 ValueIterator& operator++() { ++it; return *this; } 3088 ValueIterator operator++(int) { 3089 ValueIterator tmp(*this); 3150 3090 operator++(); 3151 3091 return tmp; 3152 3092 } 3153 3093 3154 /// \e3155 3094 const Value& operator*() const { return it->first; } 3156 /// \e3157 3095 const Value* operator->() const { return &(it->first); } 3158 3096 3159 /// \e 3160 bool operator==(ValueIt jt) const { return it == jt.it; } 3161 /// \e 3162 bool operator!=(ValueIt jt) const { return it != jt.it; } 3097 bool operator==(ValueIterator jt) const { return it == jt.it; } 3098 bool operator!=(ValueIterator jt) const { return it != jt.it; } 3163 3099 3164 3100 private: … … 3168 3104 /// \brief Returns an iterator to the first value. 3169 3105 /// 3170 /// Returns an STLcompatible iterator to the3106 /// Returns an stl compatible iterator to the 3171 3107 /// first value of the map. The values of the 3172 3108 /// map can be accessed in the <tt>[beginValue, endValue)</tt> 3173 3109 /// range. 3174 ValueIt beginValue() const {3175 return ValueIt (_first.begin());3110 ValueIterator beginValue() const { 3111 return ValueIterator(_first.begin()); 3176 3112 } 3177 3113 3178 3114 /// \brief Returns an iterator after the last value. 3179 3115 /// 3180 /// Returns an STLcompatible iterator after the3116 /// Returns an stl compatible iterator after the 3181 3117 /// last value of the map. The values of the 3182 3118 /// map can be accessed in the <tt>[beginValue, endValue)</tt> 3183 3119 /// range. 3184 ValueIt endValue() const {3185 return ValueIt (_first.end());3120 ValueIterator endValue() const { 3121 return ValueIterator(_first.end()); 3186 3122 } 3187 3123 … … 3301 3237 public: 3302 3238 3303 /// The key type (the \c Arc type of the digraph).3239 ///\e 3304 3240 typedef typename GR::Arc Key; 3305 /// The value type (the \c Node type of the digraph).3241 ///\e 3306 3242 typedef typename GR::Node Value; 3307 3243 … … 3342 3278 public: 3343 3279 3344 /// The key type (the \c Arc type of the digraph).3280 ///\e 3345 3281 typedef typename GR::Arc Key; 3346 /// The value type (the \c Node type of the digraph).3282 ///\e 3347 3283 typedef typename GR::Node Value; 3348 3284 … … 3384 3320 public: 3385 3321 3386 /// The key type (the \c Edge type of the digraph).3322 typedef typename GR::Arc Value; 3387 3323 typedef typename GR::Edge Key; 3388 /// The value type (the \c Arc type of the digraph).3389 typedef typename GR::Arc Value;3390 3324 3391 3325 /// \brief Constructor … … 3426 3360 public: 3427 3361 3428 /// The key type (the \c Edge type of the digraph).3362 typedef typename GR::Arc Value; 3429 3363 typedef typename GR::Edge Key; 3430 /// The value type (the \c Arc type of the digraph).3431 typedef typename GR::Arc Value;3432 3364 3433 3365 /// \brief Constructor -
test/maps_test.cc
r726 r695 23 23 #include <lemon/concepts/maps.h> 24 24 #include <lemon/maps.h> 25 #include <lemon/list_graph.h>26 25 #include <lemon/smart_graph.h> 27 #include <lemon/adaptors.h>28 #include <lemon/dfs.h>29 26 30 27 #include "test_tools.h" … … 64 61 typedef ReadWriteMap<A, bool> BoolWriteMap; 65 62 typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; 66 67 template<typename Map1, typename Map2, typename ItemIt>68 void compareMap(const Map1& map1, const Map2& map2, ItemIt it) {69 for (; it != INVALID; ++it)70 check(map1[it] == map2[it], "The maps are not equal");71 }72 63 73 64 int main() … … 339 330 { 340 331 typedef std::vector<int> vec; 341 checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >();342 checkConcept<WriteMap<int, bool>,343 LoggerBoolMap<std::back_insert_iterator<vec> > >();344 345 332 vec v1; 346 333 vec v2(10); … … 362 349 it != map2.end(); ++it ) 363 350 check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); 364 365 typedef ListDigraph Graph;366 DIGRAPH_TYPEDEFS(Graph);367 Graph gr;368 369 Node n0 = gr.addNode();370 Node n1 = gr.addNode();371 Node n2 = gr.addNode();372 Node n3 = gr.addNode();373 374 gr.addArc(n3, n0);375 gr.addArc(n3, n2);376 gr.addArc(n0, n2);377 gr.addArc(n2, n1);378 gr.addArc(n0, n1);379 380 {381 std::vector<Node> v;382 dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run();383 384 check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3,385 "Something is wrong with LoggerBoolMap");386 }387 {388 std::vector<Node> v(countNodes(gr));389 dfs(gr).processedMap(loggerBoolMap(v.begin())).run();390 391 check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3,392 "Something is wrong with LoggerBoolMap");393 }394 }395 396 // IdMap, RangeIdMap397 {398 typedef ListDigraph Graph;399 DIGRAPH_TYPEDEFS(Graph);400 401 checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >();402 checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >();403 checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >();404 checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >();405 406 Graph gr;407 IdMap<Graph, Node> nmap(gr);408 IdMap<Graph, Arc> amap(gr);409 RangeIdMap<Graph, Node> nrmap(gr);410 RangeIdMap<Graph, Arc> armap(gr);411 412 Node n0 = gr.addNode();413 Node n1 = gr.addNode();414 Node n2 = gr.addNode();415 416 Arc a0 = gr.addArc(n0, n1);417 Arc a1 = gr.addArc(n0, n2);418 Arc a2 = gr.addArc(n2, n1);419 Arc a3 = gr.addArc(n2, n0);420 421 check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap");422 check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap");423 check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap");424 425 check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap");426 check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap");427 check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap");428 check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap");429 430 check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap");431 check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap");432 433 check(nrmap.size() == 3 && armap.size() == 4,434 "Wrong RangeIdMap::size()");435 436 check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap");437 check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap");438 check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap");439 440 check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap");441 check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap");442 check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap");443 check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap");444 445 check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap");446 check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap");447 448 gr.erase(n1);449 450 if (nrmap[n0] == 1) nrmap.swap(n0, n2);451 nrmap.swap(n2, n0);452 if (armap[a1] == 1) armap.swap(a1, a3);453 armap.swap(a3, a1);454 455 check(nrmap.size() == 2 && armap.size() == 2,456 "Wrong RangeIdMap::size()");457 458 check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap");459 check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap");460 461 check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap");462 check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap");463 464 check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap");465 check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap");466 }467 468 // SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap469 {470 typedef ListGraph Graph;471 GRAPH_TYPEDEFS(Graph);472 473 checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >();474 checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >();475 checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >();476 checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >();477 checkConcept<ReadMap<Node, int>, InDegMap<Graph> >();478 checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >();479 480 Graph gr;481 Node n0 = gr.addNode();482 Node n1 = gr.addNode();483 Node n2 = gr.addNode();484 485 gr.addEdge(n0,n1);486 gr.addEdge(n1,n2);487 gr.addEdge(n0,n2);488 gr.addEdge(n2,n1);489 gr.addEdge(n1,n2);490 gr.addEdge(n0,n1);491 492 for (EdgeIt e(gr); e != INVALID; ++e) {493 check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap");494 check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap");495 }496 497 compareMap(sourceMap(orienter(gr, constMap<Edge, bool>(true))),498 targetMap(orienter(gr, constMap<Edge, bool>(false))),499 EdgeIt(gr));500 501 typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph;502 Digraph dgr(gr, constMap<Edge, bool>(true));503 OutDegMap<Digraph> odm(dgr);504 InDegMap<Digraph> idm(dgr);505 506 check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap");507 check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap");508 509 gr.addEdge(n2, n0);510 511 check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap");512 check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap");513 }514 515 // CrossRefMap516 {517 typedef ListDigraph Graph;518 DIGRAPH_TYPEDEFS(Graph);519 520 checkConcept<ReadWriteMap<Node, int>,521 CrossRefMap<Graph, Node, int> >();522 checkConcept<ReadWriteMap<Node, bool>,523 CrossRefMap<Graph, Node, bool> >();524 checkConcept<ReadWriteMap<Node, double>,525 CrossRefMap<Graph, Node, double> >();526 527 Graph gr;528 typedef CrossRefMap<Graph, Node, char> CRMap;529 CRMap map(gr);530 531 Node n0 = gr.addNode();532 Node n1 = gr.addNode();533 Node n2 = gr.addNode();534 535 map.set(n0, 'A');536 map.set(n1, 'B');537 map.set(n2, 'C');538 539 check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0,540 "Wrong CrossRefMap");541 check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1,542 "Wrong CrossRefMap");543 check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2,544 "Wrong CrossRefMap");545 check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,546 "Wrong CrossRefMap::count()");547 548 CRMap::ValueIt it = map.beginValue();549 check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&550 it == map.endValue(), "Wrong value iterator");551 552 map.set(n2, 'A');553 554 check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A',555 "Wrong CrossRefMap");556 check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap");557 check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");558 check(map('C') == INVALID && map.inverse()['C'] == INVALID,559 "Wrong CrossRefMap");560 check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0,561 "Wrong CrossRefMap::count()");562 563 it = map.beginValue();564 check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' &&565 it == map.endValue(), "Wrong value iterator");566 567 map.set(n0, 'C');568 569 check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A',570 "Wrong CrossRefMap");571 check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");572 check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");573 check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");574 check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,575 "Wrong CrossRefMap::count()");576 577 it = map.beginValue();578 check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&579 it == map.endValue(), "Wrong value iterator");580 351 } 581 352 … … 776 547 } 777 548 778 for (Ivm::ValueIt vit = map1.beginValue();549 for (Ivm::ValueIterator vit = map1.beginValue(); 779 550 vit != map1.endValue(); ++vit) { 780 551 check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, 781 "Wrong ValueIt ");552 "Wrong ValueIterator"); 782 553 } 783 554
Note: See TracChangeset
for help on using the changeset viewer.