COIN-OR::LEMON - Graph Library

Changes in / [646:e01957e96c67:645:cb8270a98660] in lemon-main


Ignore:
Files:
15 edited

Legend:

Unmodified
Added
Removed
  • CMakeLists.txt

    r631 r627  
    1818FIND_PACKAGE(COIN)
    1919
     20ADD_DEFINITIONS(-DHAVE_CONFIG_H)
     21
    2022IF(MSVC)
    2123  SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4250 /wd4355 /wd4800 /wd4996")
     
    2628# C4996: 'function': was declared deprecated
    2729ENDIF(MSVC)
     30
     31ADD_DEFINITIONS(-DHAVE_CONFIG_H)
    2832
    2933INCLUDE(CheckTypeSize)
  • Makefile.am

    r629 r567  
    1212        m4/lx_check_glpk.m4 \
    1313        m4/lx_check_soplex.m4 \
    14         m4/lx_check_coin.m4 \
     14        m4/lx_check_clp.m4 \
     15        m4/lx_check_cbc.m4 \
    1516        CMakeLists.txt \
    1617        cmake/FindGhostscript.cmake \
    17         cmake/FindCPLEX.cmake \
    1818        cmake/FindGLPK.cmake \
    19         cmake/FindCOIN.cmake \
    2019        cmake/version.cmake.in \
    2120        cmake/version.cmake \
  • cmake/FindCOIN.cmake

    r634 r627  
    22
    33FIND_PATH(COIN_INCLUDE_DIR coin/CoinUtilsConfig.h
    4   HINTS ${COIN_ROOT_DIR}/include
    5 )
    6 FIND_LIBRARY(COIN_CBC_LIBRARY
    7   NAMES Cbc libCbc
    8   HINTS ${COIN_ROOT_DIR}/lib
    9 )
    10 FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY
    11   NAMES CbcSolver libCbcSolver
    12   HINTS ${COIN_ROOT_DIR}/lib
    13 )
    14 FIND_LIBRARY(COIN_CGL_LIBRARY
    15   NAMES Cgl libCgl
    16   HINTS ${COIN_ROOT_DIR}/lib
    17 )
    18 FIND_LIBRARY(COIN_CLP_LIBRARY
    19   NAMES Clp libClp
    20   HINTS ${COIN_ROOT_DIR}/lib
    21 )
    22 FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY
    23   NAMES CoinUtils libCoinUtils
    24   HINTS ${COIN_ROOT_DIR}/lib
    25 )
    26 FIND_LIBRARY(COIN_OSI_LIBRARY
    27   NAMES Osi libOsi
    28   HINTS ${COIN_ROOT_DIR}/lib
    29 )
    30 FIND_LIBRARY(COIN_OSI_CBC_LIBRARY
    31   NAMES OsiCbc libOsiCbc
    32   HINTS ${COIN_ROOT_DIR}/lib
    33 )
    34 FIND_LIBRARY(COIN_OSI_CLP_LIBRARY
    35   NAMES OsiClp libOsiClp
    36   HINTS ${COIN_ROOT_DIR}/lib
    37 )
    38 FIND_LIBRARY(COIN_OSI_VOL_LIBRARY
    39   NAMES OsiVol libOsiVol
    40   HINTS ${COIN_ROOT_DIR}/lib
    41 )
    42 FIND_LIBRARY(COIN_VOL_LIBRARY
    43   NAMES Vol libVol
    44   HINTS ${COIN_ROOT_DIR}/lib
    45 )
     4  PATHS ${COIN_ROOT_DIR}/include)
     5
     6FIND_LIBRARY(COIN_CBC_LIBRARY libCbc
     7  PATHS ${COIN_ROOT_DIR}/lib)
     8FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY libCbcSolver
     9  PATHS ${COIN_ROOT_DIR}/lib)
     10FIND_LIBRARY(COIN_CGL_LIBRARY libCgl
     11  PATHS ${COIN_ROOT_DIR}/lib)
     12FIND_LIBRARY(COIN_CLP_LIBRARY libClp
     13  PATHS ${COIN_ROOT_DIR}/lib)
     14FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY libCoinUtils
     15  PATHS ${COIN_ROOT_DIR}/lib)
     16FIND_LIBRARY(COIN_OSI_LIBRARY libOsi
     17  PATHS ${COIN_ROOT_DIR}/lib)
     18FIND_LIBRARY(COIN_OSI_CBC_LIBRARY libOsiCbc
     19  PATHS ${COIN_ROOT_DIR}/lib)
     20FIND_LIBRARY(COIN_OSI_CLP_LIBRARY libOsiClp
     21  PATHS ${COIN_ROOT_DIR}/lib)
     22FIND_LIBRARY(COIN_OSI_VOL_LIBRARY libOsiVol
     23  PATHS ${COIN_ROOT_DIR}/lib)
     24FIND_LIBRARY(COIN_VOL_LIBRARY libVol
     25  PATHS ${COIN_ROOT_DIR}/lib)
    4626
    4727INCLUDE(FindPackageHandleStandardArgs)
  • cmake/FindCPLEX.cmake

    r636 r627  
    1 SET(CPLEX_ROOT_DIR "" CACHE PATH "CPLEX root directory")
    2 
    31FIND_PATH(CPLEX_INCLUDE_DIR
    42  ilcplex/cplex.h
    5   PATHS "C:/ILOG/CPLEX91/include"
    6   PATHS "/opt/ilog/cplex91/include"
    7   HINTS ${CPLEX_ROOT_DIR}/include
    8 )
     3  PATHS "C:/ILOG/CPLEX91/include")
     4
    95FIND_LIBRARY(CPLEX_LIBRARY
    10   cplex91
    11   PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda"
    12   PATHS "/opt/ilog/cplex91/bin"
    13   HINTS ${CPLEX_ROOT_DIR}/bin
    14 )
     6  NAMES cplex91
     7  PATHS "C:/ILOG/CPLEX91/lib/msvc7/stat_mda")
    158
    169INCLUDE(FindPackageHandleStandardArgs)
     
    1912FIND_PATH(CPLEX_BIN_DIR
    2013  cplex91.dll
    21   PATHS "C:/ILOG/CPLEX91/bin/x86_win32"
    22 )
     14  PATHS "C:/ILOG/CPLEX91/bin/x86_win32")
    2315
    2416IF(CPLEX_FOUND)
    2517  SET(CPLEX_INCLUDE_DIRS ${CPLEX_INCLUDE_DIR})
    2618  SET(CPLEX_LIBRARIES ${CPLEX_LIBRARY})
    27   IF(CMAKE_SYSTEM_NAME STREQUAL "Linux")
    28     SET(CPLEX_LIBRARIES "${CPLEX_LIBRARIES};m;pthread")
    29   ENDIF(CMAKE_SYSTEM_NAME STREQUAL "Linux")
    3019ENDIF(CPLEX_FOUND)
    3120
  • cmake/FindGLPK.cmake

    r638 r627  
    1 SET(GLPK_ROOT_DIR "" CACHE PATH "GLPK root directory")
    2 
    31SET(GLPK_REGKEY "[HKEY_LOCAL_MACHINE\\SOFTWARE\\GnuWin32\\Glpk;InstallPath]")
    42GET_FILENAME_COMPONENT(GLPK_ROOT_PATH ${GLPK_REGKEY} ABSOLUTE)
     
    64FIND_PATH(GLPK_INCLUDE_DIR
    75  glpk.h
    8   PATHS ${GLPK_REGKEY}/include
    9   HINTS ${GLPK_ROOT_DIR}/include
    10 )
     6  PATHS ${GLPK_REGKEY}/include)
     7
    118FIND_LIBRARY(GLPK_LIBRARY
    12   glpk
    13   PATHS ${GLPK_REGKEY}/lib
    14   HINTS ${GLPK_ROOT_DIR}/lib
    15 )
    16 
    17 IF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY)
    18   FILE(READ ${GLPK_INCLUDE_DIR}/glpk.h GLPK_GLPK_H)
    19 
    20   STRING(REGEX MATCH "define[ ]+GLP_MAJOR_VERSION[ ]+[0-9]+" GLPK_MAJOR_VERSION_LINE "${GLPK_GLPK_H}")
    21   STRING(REGEX REPLACE "define[ ]+GLP_MAJOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MAJOR "${GLPK_MAJOR_VERSION_LINE}")
    22 
    23   STRING(REGEX MATCH "define[ ]+GLP_MINOR_VERSION[ ]+[0-9]+" GLPK_MINOR_VERSION_LINE "${GLPK_GLPK_H}")
    24   STRING(REGEX REPLACE "define[ ]+GLP_MINOR_VERSION[ ]+([0-9]+)" "\\1" GLPK_VERSION_MINOR "${GLPK_MINOR_VERSION_LINE}")
    25 
    26   SET(GLPK_VERSION_STRING "${GLPK_VERSION_MAJOR}.${GLPK_VERSION_MINOR}")
    27 
    28   IF(GLPK_FIND_VERSION)
    29     IF(GLPK_FIND_VERSION_COUNT GREATER 2)
    30       MESSAGE(SEND_ERROR "unexpected version string")
    31     ENDIF(GLPK_FIND_VERSION_COUNT GREATER 2)
    32 
    33     MATH(EXPR GLPK_REQUESTED_VERSION "${GLPK_FIND_VERSION_MAJOR}*100 + ${GLPK_FIND_VERSION_MINOR}")
    34     MATH(EXPR GLPK_FOUND_VERSION "${GLPK_VERSION_MAJOR}*100 + ${GLPK_VERSION_MINOR}")
    35 
    36     IF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION)
    37       SET(GLPK_PROPER_VERSION_FOUND FALSE)
    38     ELSE(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION)
    39       SET(GLPK_PROPER_VERSION_FOUND TRUE)
    40     ENDIF(GLPK_FOUND_VERSION LESS GLPK_REQUESTED_VERSION)
    41   ELSE(GLPK_FIND_VERSION)
    42     SET(GLPK_PROPER_VERSION_FOUND TRUE)
    43   ENDIF(GLPK_FIND_VERSION)
    44 ENDIF(GLPK_INCLUDE_DIR AND GLPK_LIBRARY)
     9  NAMES glpk
     10  PATHS ${GLPK_REGKEY}/lib)
    4511
    4612INCLUDE(FindPackageHandleStandardArgs)
    47 FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR GLPK_PROPER_VERSION_FOUND)
     13FIND_PACKAGE_HANDLE_STANDARD_ARGS(GLPK DEFAULT_MSG GLPK_LIBRARY GLPK_INCLUDE_DIR)
    4814
    4915IF(GLPK_FOUND)
  • doc/groups.dox

    r640 r611  
    353353in a network with capacity constraints (lower and upper bounds)
    354354and arc costs.
    355 Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$,
    356 \f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and
     355Formally, let \f$G=(V,A)\f$ be a digraph,
     356\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
    357357upper bounds for the flow values on the arcs, for which
    358 \f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$,
    359 \f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow
    360 on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
     358\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$.
     359\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
     360on the arcs, and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the
    361361signed supply values of the nodes.
    362362If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
    363363supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
    364364\f$-sup(u)\f$ demand.
    365 A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution
     365A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}^+_0\f$ solution
    366366of the following optimization problem.
    367367
     
    405405The dual solution of the minimum cost flow problem is represented by node
    406406potentials \f$\pi: V\rightarrow\mathbf{Z}\f$.
    407 An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem
     407An \f$f: A\rightarrow\mathbf{Z}^+_0\f$ feasible solution of the problem
    408408is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$
    409409node potentials the following \e complementary \e slackness optimality
     
    414414   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
    415415   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
    416  - For all \f$u\in V\f$ nodes:
     416 - For all \f$u\in V\f$:
    417417   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
    418418     then \f$\pi(u)=0\f$.
    419419 
    420420Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
    421 \f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
     421\f$uv\in A\f$ with respect to the node potentials \f$\pi\f$, i.e.
    422422\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
    423423
    424 All algorithms provide dual solution (node potentials) as well,
     424All algorithms provide dual solution (node potentials) as well
    425425if an optimal flow is found.
    426426
  • lemon/Makefile.am

    r639 r627  
    1616        lemon/bits/windows.cc
    1717
    18 nodist_lemon_HEADERS = lemon/config.h   
    19        
     18
    2019lemon_libemon_la_CXXFLAGS = \
    2120        $(AM_CXXFLAGS) \
     
    5958        lemon/bfs.h \
    6059        lemon/bin_heap.h \
    61         lemon/cbc.h \
    6260        lemon/circulation.h \
    6361        lemon/clp.h \
    6462        lemon/color.h \
    6563        lemon/concept_check.h \
     64        lemon/config.h \
    6665        lemon/connectivity.h \
    6766        lemon/counter.h \
  • lemon/circulation.h

    r641 r622  
    6565    typedef SM SupplyMap;
    6666
    67     /// \brief The type of the flow and supply values.
    68     typedef typename SupplyMap::Value Value;
     67    /// \brief The type of the flow values.
     68    typedef typename SupplyMap::Value Flow;
    6969
    7070    /// \brief The type of the map that stores the flow values.
     
    7373    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
    7474    /// concept.
    75     typedef typename Digraph::template ArcMap<Value> FlowMap;
     75    typedef typename Digraph::template ArcMap<Flow> FlowMap;
    7676
    7777    /// \brief Instantiates a FlowMap.
     
    105105    ///
    106106    /// The tolerance used by the algorithm to handle inexact computation.
    107     typedef lemon::Tolerance<Value> Tolerance;
     107    typedef lemon::Tolerance<Flow> Tolerance;
    108108
    109109  };
     
    188188    ///The type of the digraph the algorithm runs on.
    189189    typedef typename Traits::Digraph Digraph;
    190     ///The type of the flow and supply values.
    191     typedef typename Traits::Value Value;
     190    ///The type of the flow values.
     191    typedef typename Traits::Flow Flow;
    192192
    193193    ///The type of the lower bound map.
     
    222222    bool _local_level;
    223223
    224     typedef typename Digraph::template NodeMap<Value> ExcessMap;
     224    typedef typename Digraph::template NodeMap<Flow> ExcessMap;
    225225    ExcessMap* _excess;
    226226
     
    531531          (*_excess)[_g.source(e)] -= (*_lo)[e];
    532532        } else {
    533           Value fc = -(*_excess)[_g.target(e)];
     533          Flow fc = -(*_excess)[_g.target(e)];
    534534          _flow->set(e, fc);
    535535          (*_excess)[_g.target(e)] = 0;
     
    564564        int actlevel=(*_level)[act];
    565565        int mlevel=_node_num;
    566         Value exc=(*_excess)[act];
     566        Flow exc=(*_excess)[act];
    567567
    568568        for(OutArcIt e(_g,act);e!=INVALID; ++e) {
    569569          Node v = _g.target(e);
    570           Value fc=(*_up)[e]-(*_flow)[e];
     570          Flow fc=(*_up)[e]-(*_flow)[e];
    571571          if(!_tol.positive(fc)) continue;
    572572          if((*_level)[v]<actlevel) {
     
    592592        for(InArcIt e(_g,act);e!=INVALID; ++e) {
    593593          Node v = _g.source(e);
    594           Value fc=(*_flow)[e]-(*_lo)[e];
     594          Flow fc=(*_flow)[e]-(*_lo)[e];
    595595          if(!_tol.positive(fc)) continue;
    596596          if((*_level)[v]<actlevel) {
     
    662662    ///@{
    663663
    664     /// \brief Returns the flow value on the given arc.
    665     ///
    666     /// Returns the flow value on the given arc.
     664    /// \brief Returns the flow on the given arc.
     665    ///
     666    /// Returns the flow on the given arc.
    667667    ///
    668668    /// \pre Either \ref run() or \ref init() must be called before
    669669    /// using this function.
    670     Value flow(const Arc& arc) const {
     670    Flow flow(const Arc& arc) const {
    671671      return (*_flow)[arc];
    672672    }
     
    751751      for(NodeIt n(_g);n!=INVALID;++n)
    752752        {
    753           Value dif=-(*_supply)[n];
     753          Flow dif=-(*_supply)[n];
    754754          for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
    755755          for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
     
    766766    bool checkBarrier() const
    767767    {
    768       Value delta=0;
    769       Value inf_cap = std::numeric_limits<Value>::has_infinity ?
    770         std::numeric_limits<Value>::infinity() :
    771         std::numeric_limits<Value>::max();
     768      Flow delta=0;
     769      Flow inf_cap = std::numeric_limits<Flow>::has_infinity ?
     770        std::numeric_limits<Flow>::infinity() :
     771        std::numeric_limits<Flow>::max();
    772772      for(NodeIt n(_g);n!=INVALID;++n)
    773773        if(barrier(n))
  • lemon/core.h

    r639 r617  
    2323#include <algorithm>
    2424
    25 #include <lemon/config.h>
     25#include <lemon/core.h>
    2626#include <lemon/bits/enable_if.h>
    2727#include <lemon/bits/traits.h>
  • lemon/network_simplex.h

    r643 r618  
    3131#include <lemon/core.h>
    3232#include <lemon/math.h>
     33#include <lemon/maps.h>
     34#include <lemon/circulation.h>
     35#include <lemon/adaptors.h>
    3336
    3437namespace lemon {
     
    4851  /// In general this class is the fastest implementation available
    4952  /// in LEMON for the minimum cost flow problem.
    50   /// Moreover it supports both directions of the supply/demand inequality
    51   /// constraints. For more information see \ref SupplyType.
    52   ///
    53   /// Most of the parameters of the problem (except for the digraph)
    54   /// can be given using separate functions, and the algorithm can be
    55   /// executed using the \ref run() function. If some parameters are not
    56   /// specified, then default values will be used.
     53  /// Moreover it supports both direction of the supply/demand inequality
     54  /// constraints. For more information see \ref ProblemType.
    5755  ///
    5856  /// \tparam GR The digraph type the algorithm runs on.
    59   /// \tparam V The value type used for flow amounts, capacity bounds
     57  /// \tparam F The value type used for flow amounts, capacity bounds
    6058  /// and supply values in the algorithm. By default it is \c int.
    6159  /// \tparam C The value type used for costs and potentials in the
    62   /// algorithm. By default it is the same as \c V.
     60  /// algorithm. By default it is the same as \c F.
    6361  ///
    6462  /// \warning Both value types must be signed and all input data must
     
    6866  /// implementations, from which the most efficient one is used
    6967  /// by default. For more information see \ref PivotRule.
    70   template <typename GR, typename V = int, typename C = V>
     68  template <typename GR, typename F = int, typename C = F>
    7169  class NetworkSimplex
    7270  {
    7371  public:
    7472
    75     /// The type of the flow amounts, capacity bounds and supply values
    76     typedef V Value;
    77     /// The type of the arc costs
     73    /// The flow type of the algorithm
     74    typedef F Flow;
     75    /// The cost type of the algorithm
    7876    typedef C Cost;
     77#ifdef DOXYGEN
     78    /// The type of the flow map
     79    typedef GR::ArcMap<Flow> FlowMap;
     80    /// The type of the potential map
     81    typedef GR::NodeMap<Cost> PotentialMap;
     82#else
     83    /// The type of the flow map
     84    typedef typename GR::template ArcMap<Flow> FlowMap;
     85    /// The type of the potential map
     86    typedef typename GR::template NodeMap<Cost> PotentialMap;
     87#endif
    7988
    8089  public:
    8190
    82     /// \brief Problem type constants for the \c run() function.
    83     ///
    84     /// Enum type containing the problem type constants that can be
    85     /// returned by the \ref run() function of the algorithm.
    86     enum ProblemType {
    87       /// The problem has no feasible solution (flow).
    88       INFEASIBLE,
    89       /// The problem has optimal solution (i.e. it is feasible and
    90       /// bounded), and the algorithm has found optimal flow and node
    91       /// potentials (primal and dual solutions).
    92       OPTIMAL,
    93       /// The objective function of the problem is unbounded, i.e.
    94       /// there is a directed cycle having negative total cost and
    95       /// infinite upper bound.
    96       UNBOUNDED
     91    /// \brief Enum type for selecting the pivot rule.
     92    ///
     93    /// Enum type for selecting the pivot rule for the \ref run()
     94    /// function.
     95    ///
     96    /// \ref NetworkSimplex provides five different pivot rule
     97    /// implementations that significantly affect the running time
     98    /// of the algorithm.
     99    /// By default \ref BLOCK_SEARCH "Block Search" is used, which
     100    /// proved to be the most efficient and the most robust on various
     101    /// test inputs according to our benchmark tests.
     102    /// However another pivot rule can be selected using the \ref run()
     103    /// function with the proper parameter.
     104    enum PivotRule {
     105
     106      /// The First Eligible pivot rule.
     107      /// The next eligible arc is selected in a wraparound fashion
     108      /// in every iteration.
     109      FIRST_ELIGIBLE,
     110
     111      /// The Best Eligible pivot rule.
     112      /// The best eligible arc is selected in every iteration.
     113      BEST_ELIGIBLE,
     114
     115      /// The Block Search pivot rule.
     116      /// A specified number of arcs are examined in every iteration
     117      /// in a wraparound fashion and the best eligible arc is selected
     118      /// from this block.
     119      BLOCK_SEARCH,
     120
     121      /// The Candidate List pivot rule.
     122      /// In a major iteration a candidate list is built from eligible arcs
     123      /// in a wraparound fashion and in the following minor iterations
     124      /// the best eligible arc is selected from this list.
     125      CANDIDATE_LIST,
     126
     127      /// The Altering Candidate List pivot rule.
     128      /// It is a modified version of the Candidate List method.
     129      /// It keeps only the several best eligible arcs from the former
     130      /// candidate list and extends this list in every iteration.
     131      ALTERING_LIST
    97132    };
    98133   
    99     /// \brief Constants for selecting the type of the supply constraints.
    100     ///
    101     /// Enum type containing constants for selecting the supply type,
    102     /// i.e. the direction of the inequalities in the supply/demand
    103     /// constraints of the \ref min_cost_flow "minimum cost flow problem".
    104     ///
    105     /// The default supply type is \c GEQ, since this form is supported
     134    /// \brief Enum type for selecting the problem type.
     135    ///
     136    /// Enum type for selecting the problem type, i.e. the direction of
     137    /// the inequalities in the supply/demand constraints of the
     138    /// \ref min_cost_flow "minimum cost flow problem".
     139    ///
     140    /// The default problem type is \c GEQ, since this form is supported
    106141    /// by other minimum cost flow algorithms and the \ref Circulation
    107     /// algorithm, as well.
    108     /// The \c LEQ problem type can be selected using the \ref supplyType()
     142    /// algorithm as well.
     143    /// The \c LEQ problem type can be selected using the \ref problemType()
    109144    /// function.
    110145    ///
    111     /// Note that the equality form is a special case of both supply types.
    112     enum SupplyType {
    113 
    114       /// This option means that there are <em>"greater or equal"</em>
    115       /// supply/demand constraints in the definition, i.e. the exact
    116       /// formulation of the problem is the following.
     146    /// Note that the equality form is a special case of both problem type.
     147    enum ProblemType {
     148
     149      /// This option means that there are "<em>greater or equal</em>"
     150      /// constraints in the defintion, i.e. the exact formulation of the
     151      /// problem is the following.
    117152      /**
    118153          \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
     
    130165      CARRY_SUPPLIES = GEQ,
    131166
    132       /// This option means that there are <em>"less or equal"</em>
    133       /// supply/demand constraints in the definition, i.e. the exact
    134       /// formulation of the problem is the following.
     167      /// This option means that there are "<em>less or equal</em>"
     168      /// constraints in the defintion, i.e. the exact formulation of the
     169      /// problem is the following.
    135170      /**
    136171          \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
     
    148183      SATISFY_DEMANDS = LEQ
    149184    };
    150    
    151     /// \brief Constants for selecting the pivot rule.
    152     ///
    153     /// Enum type containing constants for selecting the pivot rule for
    154     /// the \ref run() function.
    155     ///
    156     /// \ref NetworkSimplex provides five different pivot rule
    157     /// implementations that significantly affect the running time
    158     /// of the algorithm.
    159     /// By default \ref BLOCK_SEARCH "Block Search" is used, which
    160     /// proved to be the most efficient and the most robust on various
    161     /// test inputs according to our benchmark tests.
    162     /// However another pivot rule can be selected using the \ref run()
    163     /// function with the proper parameter.
    164     enum PivotRule {
    165 
    166       /// The First Eligible pivot rule.
    167       /// The next eligible arc is selected in a wraparound fashion
    168       /// in every iteration.
    169       FIRST_ELIGIBLE,
    170 
    171       /// The Best Eligible pivot rule.
    172       /// The best eligible arc is selected in every iteration.
    173       BEST_ELIGIBLE,
    174 
    175       /// The Block Search pivot rule.
    176       /// A specified number of arcs are examined in every iteration
    177       /// in a wraparound fashion and the best eligible arc is selected
    178       /// from this block.
    179       BLOCK_SEARCH,
    180 
    181       /// The Candidate List pivot rule.
    182       /// In a major iteration a candidate list is built from eligible arcs
    183       /// in a wraparound fashion and in the following minor iterations
    184       /// the best eligible arc is selected from this list.
    185       CANDIDATE_LIST,
    186 
    187       /// The Altering Candidate List pivot rule.
    188       /// It is a modified version of the Candidate List method.
    189       /// It keeps only the several best eligible arcs from the former
    190       /// candidate list and extends this list in every iteration.
    191       ALTERING_LIST
    192     };
    193    
     185
    194186  private:
    195187
    196188    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
     189
     190    typedef typename GR::template ArcMap<Flow> FlowArcMap;
     191    typedef typename GR::template ArcMap<Cost> CostArcMap;
     192    typedef typename GR::template NodeMap<Flow> FlowNodeMap;
    197193
    198194    typedef std::vector<Arc> ArcVector;
     
    200196    typedef std::vector<int> IntVector;
    201197    typedef std::vector<bool> BoolVector;
    202     typedef std::vector<Value> ValueVector;
     198    typedef std::vector<Flow> FlowVector;
    203199    typedef std::vector<Cost> CostVector;
    204200
     
    218214
    219215    // Parameters of the problem
    220     bool _have_lower;
    221     SupplyType _stype;
    222     Value _sum_supply;
     216    FlowArcMap *_plower;
     217    FlowArcMap *_pupper;
     218    CostArcMap *_pcost;
     219    FlowNodeMap *_psupply;
     220    bool _pstsup;
     221    Node _psource, _ptarget;
     222    Flow _pstflow;
     223    ProblemType _ptype;
     224
     225    // Result maps
     226    FlowMap *_flow_map;
     227    PotentialMap *_potential_map;
     228    bool _local_flow;
     229    bool _local_potential;
    223230
    224231    // Data structures for storing the digraph
    225232    IntNodeMap _node_id;
    226     IntArcMap _arc_id;
     233    ArcVector _arc_ref;
    227234    IntVector _source;
    228235    IntVector _target;
    229236
    230237    // Node and arc data
    231     ValueVector _lower;
    232     ValueVector _upper;
    233     ValueVector _cap;
     238    FlowVector _cap;
    234239    CostVector _cost;
    235     ValueVector _supply;
    236     ValueVector _flow;
     240    FlowVector _supply;
     241    FlowVector _flow;
    237242    CostVector _pi;
    238243
     
    253258    int first, second, right, last;
    254259    int stem, par_stem, new_stem;
    255     Value delta;
    256 
    257   public:
    258  
    259     /// \brief Constant for infinite upper bounds (capacities).
    260     ///
    261     /// Constant for infinite upper bounds (capacities).
    262     /// It is \c std::numeric_limits<Value>::infinity() if available,
    263     /// \c std::numeric_limits<Value>::max() otherwise.
    264     const Value INF;
     260    Flow delta;
    265261
    266262  private:
     
    664660    /// \param graph The digraph the algorithm runs on.
    665661    NetworkSimplex(const GR& graph) :
    666       _graph(graph), _node_id(graph), _arc_id(graph),
    667       INF(std::numeric_limits<Value>::has_infinity ?
    668           std::numeric_limits<Value>::infinity() :
    669           std::numeric_limits<Value>::max())
     662      _graph(graph),
     663      _plower(NULL), _pupper(NULL), _pcost(NULL),
     664      _psupply(NULL), _pstsup(false), _ptype(GEQ),
     665      _flow_map(NULL), _potential_map(NULL),
     666      _local_flow(false), _local_potential(false),
     667      _node_id(graph)
    670668    {
    671       // Check the value types
    672       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
    673         "The flow type of NetworkSimplex must be signed");
    674       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
    675         "The cost type of NetworkSimplex must be signed");
    676        
    677       // Resize vectors
     669      LEMON_ASSERT(std::numeric_limits<Flow>::is_integer &&
     670                   std::numeric_limits<Flow>::is_signed,
     671        "The flow type of NetworkSimplex must be signed integer");
     672      LEMON_ASSERT(std::numeric_limits<Cost>::is_integer &&
     673                   std::numeric_limits<Cost>::is_signed,
     674        "The cost type of NetworkSimplex must be signed integer");
     675    }
     676
     677    /// Destructor.
     678    ~NetworkSimplex() {
     679      if (_local_flow) delete _flow_map;
     680      if (_local_potential) delete _potential_map;
     681    }
     682
     683    /// \name Parameters
     684    /// The parameters of the algorithm can be specified using these
     685    /// functions.
     686
     687    /// @{
     688
     689    /// \brief Set the lower bounds on the arcs.
     690    ///
     691    /// This function sets the lower bounds on the arcs.
     692    /// If neither this function nor \ref boundMaps() is used before
     693    /// calling \ref run(), the lower bounds will be set to zero
     694    /// on all arcs.
     695    ///
     696    /// \param map An arc map storing the lower bounds.
     697    /// Its \c Value type must be convertible to the \c Flow type
     698    /// of the algorithm.
     699    ///
     700    /// \return <tt>(*this)</tt>
     701    template <typename LOWER>
     702    NetworkSimplex& lowerMap(const LOWER& map) {
     703      delete _plower;
     704      _plower = new FlowArcMap(_graph);
     705      for (ArcIt a(_graph); a != INVALID; ++a) {
     706        (*_plower)[a] = map[a];
     707      }
     708      return *this;
     709    }
     710
     711    /// \brief Set the upper bounds (capacities) on the arcs.
     712    ///
     713    /// This function sets the upper bounds (capacities) on the arcs.
     714    /// If none of the functions \ref upperMap(), \ref capacityMap()
     715    /// and \ref boundMaps() is used before calling \ref run(),
     716    /// the upper bounds (capacities) will be set to
     717    /// \c std::numeric_limits<Flow>::max() on all arcs.
     718    ///
     719    /// \param map An arc map storing the upper bounds.
     720    /// Its \c Value type must be convertible to the \c Flow type
     721    /// of the algorithm.
     722    ///
     723    /// \return <tt>(*this)</tt>
     724    template<typename UPPER>
     725    NetworkSimplex& upperMap(const UPPER& map) {
     726      delete _pupper;
     727      _pupper = new FlowArcMap(_graph);
     728      for (ArcIt a(_graph); a != INVALID; ++a) {
     729        (*_pupper)[a] = map[a];
     730      }
     731      return *this;
     732    }
     733
     734    /// \brief Set the upper bounds (capacities) on the arcs.
     735    ///
     736    /// This function sets the upper bounds (capacities) on the arcs.
     737    /// It is just an alias for \ref upperMap().
     738    ///
     739    /// \return <tt>(*this)</tt>
     740    template<typename CAP>
     741    NetworkSimplex& capacityMap(const CAP& map) {
     742      return upperMap(map);
     743    }
     744
     745    /// \brief Set the lower and upper bounds on the arcs.
     746    ///
     747    /// This function sets the lower and upper bounds on the arcs.
     748    /// If neither this function nor \ref lowerMap() is used before
     749    /// calling \ref run(), the lower bounds will be set to zero
     750    /// on all arcs.
     751    /// If none of the functions \ref upperMap(), \ref capacityMap()
     752    /// and \ref boundMaps() is used before calling \ref run(),
     753    /// the upper bounds (capacities) will be set to
     754    /// \c std::numeric_limits<Flow>::max() on all arcs.
     755    ///
     756    /// \param lower An arc map storing the lower bounds.
     757    /// \param upper An arc map storing the upper bounds.
     758    ///
     759    /// The \c Value type of the maps must be convertible to the
     760    /// \c Flow type of the algorithm.
     761    ///
     762    /// \note This function is just a shortcut of calling \ref lowerMap()
     763    /// and \ref upperMap() separately.
     764    ///
     765    /// \return <tt>(*this)</tt>
     766    template <typename LOWER, typename UPPER>
     767    NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
     768      return lowerMap(lower).upperMap(upper);
     769    }
     770
     771    /// \brief Set the costs of the arcs.
     772    ///
     773    /// This function sets the costs of the arcs.
     774    /// If it is not used before calling \ref run(), the costs
     775    /// will be set to \c 1 on all arcs.
     776    ///
     777    /// \param map An arc map storing the costs.
     778    /// Its \c Value type must be convertible to the \c Cost type
     779    /// of the algorithm.
     780    ///
     781    /// \return <tt>(*this)</tt>
     782    template<typename COST>
     783    NetworkSimplex& costMap(const COST& map) {
     784      delete _pcost;
     785      _pcost = new CostArcMap(_graph);
     786      for (ArcIt a(_graph); a != INVALID; ++a) {
     787        (*_pcost)[a] = map[a];
     788      }
     789      return *this;
     790    }
     791
     792    /// \brief Set the supply values of the nodes.
     793    ///
     794    /// This function sets the supply values of the nodes.
     795    /// If neither this function nor \ref stSupply() is used before
     796    /// calling \ref run(), the supply of each node will be set to zero.
     797    /// (It makes sense only if non-zero lower bounds are given.)
     798    ///
     799    /// \param map A node map storing the supply values.
     800    /// Its \c Value type must be convertible to the \c Flow type
     801    /// of the algorithm.
     802    ///
     803    /// \return <tt>(*this)</tt>
     804    template<typename SUP>
     805    NetworkSimplex& supplyMap(const SUP& map) {
     806      delete _psupply;
     807      _pstsup = false;
     808      _psupply = new FlowNodeMap(_graph);
     809      for (NodeIt n(_graph); n != INVALID; ++n) {
     810        (*_psupply)[n] = map[n];
     811      }
     812      return *this;
     813    }
     814
     815    /// \brief Set single source and target nodes and a supply value.
     816    ///
     817    /// This function sets a single source node and a single target node
     818    /// and the required flow value.
     819    /// If neither this function nor \ref supplyMap() is used before
     820    /// calling \ref run(), the supply of each node will be set to zero.
     821    /// (It makes sense only if non-zero lower bounds are given.)
     822    ///
     823    /// \param s The source node.
     824    /// \param t The target node.
     825    /// \param k The required amount of flow from node \c s to node \c t
     826    /// (i.e. the supply of \c s and the demand of \c t).
     827    ///
     828    /// \return <tt>(*this)</tt>
     829    NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
     830      delete _psupply;
     831      _psupply = NULL;
     832      _pstsup = true;
     833      _psource = s;
     834      _ptarget = t;
     835      _pstflow = k;
     836      return *this;
     837    }
     838   
     839    /// \brief Set the problem type.
     840    ///
     841    /// This function sets the problem type for the algorithm.
     842    /// If it is not used before calling \ref run(), the \ref GEQ problem
     843    /// type will be used.
     844    ///
     845    /// For more information see \ref ProblemType.
     846    ///
     847    /// \return <tt>(*this)</tt>
     848    NetworkSimplex& problemType(ProblemType problem_type) {
     849      _ptype = problem_type;
     850      return *this;
     851    }
     852
     853    /// \brief Set the flow map.
     854    ///
     855    /// This function sets the flow map.
     856    /// If it is not used before calling \ref run(), an instance will
     857    /// be allocated automatically. The destructor deallocates this
     858    /// automatically allocated map, of course.
     859    ///
     860    /// \return <tt>(*this)</tt>
     861    NetworkSimplex& flowMap(FlowMap& map) {
     862      if (_local_flow) {
     863        delete _flow_map;
     864        _local_flow = false;
     865      }
     866      _flow_map = &map;
     867      return *this;
     868    }
     869
     870    /// \brief Set the potential map.
     871    ///
     872    /// This function sets the potential map, which is used for storing
     873    /// the dual solution.
     874    /// If it is not used before calling \ref run(), an instance will
     875    /// be allocated automatically. The destructor deallocates this
     876    /// automatically allocated map, of course.
     877    ///
     878    /// \return <tt>(*this)</tt>
     879    NetworkSimplex& potentialMap(PotentialMap& map) {
     880      if (_local_potential) {
     881        delete _potential_map;
     882        _local_potential = false;
     883      }
     884      _potential_map = &map;
     885      return *this;
     886    }
     887   
     888    /// @}
     889
     890    /// \name Execution Control
     891    /// The algorithm can be executed using \ref run().
     892
     893    /// @{
     894
     895    /// \brief Run the algorithm.
     896    ///
     897    /// This function runs the algorithm.
     898    /// The paramters can be specified using functions \ref lowerMap(),
     899    /// \ref upperMap(), \ref capacityMap(), \ref boundMaps(),
     900    /// \ref costMap(), \ref supplyMap(), \ref stSupply(),
     901    /// \ref problemType(), \ref flowMap() and \ref potentialMap().
     902    /// For example,
     903    /// \code
     904    ///   NetworkSimplex<ListDigraph> ns(graph);
     905    ///   ns.boundMaps(lower, upper).costMap(cost)
     906    ///     .supplyMap(sup).run();
     907    /// \endcode
     908    ///
     909    /// This function can be called more than once. All the parameters
     910    /// that have been given are kept for the next call, unless
     911    /// \ref reset() is called, thus only the modified parameters
     912    /// have to be set again. See \ref reset() for examples.
     913    ///
     914    /// \param pivot_rule The pivot rule that will be used during the
     915    /// algorithm. For more information see \ref PivotRule.
     916    ///
     917    /// \return \c true if a feasible flow can be found.
     918    bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
     919      return init() && start(pivot_rule);
     920    }
     921
     922    /// \brief Reset all the parameters that have been given before.
     923    ///
     924    /// This function resets all the paramaters that have been given
     925    /// before using functions \ref lowerMap(), \ref upperMap(),
     926    /// \ref capacityMap(), \ref boundMaps(), \ref costMap(),
     927    /// \ref supplyMap(), \ref stSupply(), \ref problemType(),
     928    /// \ref flowMap() and \ref potentialMap().
     929    ///
     930    /// It is useful for multiple run() calls. If this function is not
     931    /// used, all the parameters given before are kept for the next
     932    /// \ref run() call.
     933    ///
     934    /// For example,
     935    /// \code
     936    ///   NetworkSimplex<ListDigraph> ns(graph);
     937    ///
     938    ///   // First run
     939    ///   ns.lowerMap(lower).capacityMap(cap).costMap(cost)
     940    ///     .supplyMap(sup).run();
     941    ///
     942    ///   // Run again with modified cost map (reset() is not called,
     943    ///   // so only the cost map have to be set again)
     944    ///   cost[e] += 100;
     945    ///   ns.costMap(cost).run();
     946    ///
     947    ///   // Run again from scratch using reset()
     948    ///   // (the lower bounds will be set to zero on all arcs)
     949    ///   ns.reset();
     950    ///   ns.capacityMap(cap).costMap(cost)
     951    ///     .supplyMap(sup).run();
     952    /// \endcode
     953    ///
     954    /// \return <tt>(*this)</tt>
     955    NetworkSimplex& reset() {
     956      delete _plower;
     957      delete _pupper;
     958      delete _pcost;
     959      delete _psupply;
     960      _plower = NULL;
     961      _pupper = NULL;
     962      _pcost = NULL;
     963      _psupply = NULL;
     964      _pstsup = false;
     965      _ptype = GEQ;
     966      if (_local_flow) delete _flow_map;
     967      if (_local_potential) delete _potential_map;
     968      _flow_map = NULL;
     969      _potential_map = NULL;
     970      _local_flow = false;
     971      _local_potential = false;
     972
     973      return *this;
     974    }
     975
     976    /// @}
     977
     978    /// \name Query Functions
     979    /// The results of the algorithm can be obtained using these
     980    /// functions.\n
     981    /// The \ref run() function must be called before using them.
     982
     983    /// @{
     984
     985    /// \brief Return the total cost of the found flow.
     986    ///
     987    /// This function returns the total cost of the found flow.
     988    /// The complexity of the function is O(e).
     989    ///
     990    /// \note The return type of the function can be specified as a
     991    /// template parameter. For example,
     992    /// \code
     993    ///   ns.totalCost<double>();
     994    /// \endcode
     995    /// It is useful if the total cost cannot be stored in the \c Cost
     996    /// type of the algorithm, which is the default return type of the
     997    /// function.
     998    ///
     999    /// \pre \ref run() must be called before using this function.
     1000    template <typename Num>
     1001    Num totalCost() const {
     1002      Num c = 0;
     1003      if (_pcost) {
     1004        for (ArcIt e(_graph); e != INVALID; ++e)
     1005          c += (*_flow_map)[e] * (*_pcost)[e];
     1006      } else {
     1007        for (ArcIt e(_graph); e != INVALID; ++e)
     1008          c += (*_flow_map)[e];
     1009      }
     1010      return c;
     1011    }
     1012
     1013#ifndef DOXYGEN
     1014    Cost totalCost() const {
     1015      return totalCost<Cost>();
     1016    }
     1017#endif
     1018
     1019    /// \brief Return the flow on the given arc.
     1020    ///
     1021    /// This function returns the flow on the given arc.
     1022    ///
     1023    /// \pre \ref run() must be called before using this function.
     1024    Flow flow(const Arc& a) const {
     1025      return (*_flow_map)[a];
     1026    }
     1027
     1028    /// \brief Return a const reference to the flow map.
     1029    ///
     1030    /// This function returns a const reference to an arc map storing
     1031    /// the found flow.
     1032    ///
     1033    /// \pre \ref run() must be called before using this function.
     1034    const FlowMap& flowMap() const {
     1035      return *_flow_map;
     1036    }
     1037
     1038    /// \brief Return the potential (dual value) of the given node.
     1039    ///
     1040    /// This function returns the potential (dual value) of the
     1041    /// given node.
     1042    ///
     1043    /// \pre \ref run() must be called before using this function.
     1044    Cost potential(const Node& n) const {
     1045      return (*_potential_map)[n];
     1046    }
     1047
     1048    /// \brief Return a const reference to the potential map
     1049    /// (the dual solution).
     1050    ///
     1051    /// This function returns a const reference to a node map storing
     1052    /// the found potentials, which form the dual solution of the
     1053    /// \ref min_cost_flow "minimum cost flow" problem.
     1054    ///
     1055    /// \pre \ref run() must be called before using this function.
     1056    const PotentialMap& potentialMap() const {
     1057      return *_potential_map;
     1058    }
     1059
     1060    /// @}
     1061
     1062  private:
     1063
     1064    // Initialize internal data structures
     1065    bool init() {
     1066      // Initialize result maps
     1067      if (!_flow_map) {
     1068        _flow_map = new FlowMap(_graph);
     1069        _local_flow = true;
     1070      }
     1071      if (!_potential_map) {
     1072        _potential_map = new PotentialMap(_graph);
     1073        _local_potential = true;
     1074      }
     1075
     1076      // Initialize vectors
    6781077      _node_num = countNodes(_graph);
    6791078      _arc_num = countArcs(_graph);
    6801079      int all_node_num = _node_num + 1;
    6811080      int all_arc_num = _arc_num + _node_num;
    682 
     1081      if (_node_num == 0) return false;
     1082
     1083      _arc_ref.resize(_arc_num);
    6831084      _source.resize(all_arc_num);
    6841085      _target.resize(all_arc_num);
    6851086
    686       _lower.resize(all_arc_num);
    687       _upper.resize(all_arc_num);
    6881087      _cap.resize(all_arc_num);
    6891088      _cost.resize(all_arc_num);
     
    7011100      _state.resize(all_arc_num);
    7021101
    703       // Copy the graph (store the arcs in a mixed order)
    704       int i = 0;
    705       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
    706         _node_id[n] = i;
    707       }
    708       int k = std::max(int(std::sqrt(double(_arc_num))), 10);
    709       i = 0;
    710       for (ArcIt a(_graph); a != INVALID; ++a) {
    711         _arc_id[a] = i;
    712         _source[i] = _node_id[_graph.source(a)];
    713         _target[i] = _node_id[_graph.target(a)];
    714         if ((i += k) >= _arc_num) i = (i % k) + 1;
    715       }
    716      
    717       // Initialize maps
    718       for (int i = 0; i != _node_num; ++i) {
    719         _supply[i] = 0;
    720       }
    721       for (int i = 0; i != _arc_num; ++i) {
    722         _lower[i] = 0;
    723         _upper[i] = INF;
    724         _cost[i] = 1;
    725       }
    726       _have_lower = false;
    727       _stype = GEQ;
    728     }
    729 
    730     /// \name Parameters
    731     /// The parameters of the algorithm can be specified using these
    732     /// functions.
    733 
    734     /// @{
    735 
    736     /// \brief Set the lower bounds on the arcs.
    737     ///
    738     /// This function sets the lower bounds on the arcs.
    739     /// If it is not used before calling \ref run(), the lower bounds
    740     /// will be set to zero on all arcs.
    741     ///
    742     /// \param map An arc map storing the lower bounds.
    743     /// Its \c Value type must be convertible to the \c Value type
    744     /// of the algorithm.
    745     ///
    746     /// \return <tt>(*this)</tt>
    747     template <typename LowerMap>
    748     NetworkSimplex& lowerMap(const LowerMap& map) {
    749       _have_lower = true;
    750       for (ArcIt a(_graph); a != INVALID; ++a) {
    751         _lower[_arc_id[a]] = map[a];
    752       }
    753       return *this;
    754     }
    755 
    756     /// \brief Set the upper bounds (capacities) on the arcs.
    757     ///
    758     /// This function sets the upper bounds (capacities) on the arcs.
    759     /// If it is not used before calling \ref run(), the upper bounds
    760     /// will be set to \ref INF on all arcs (i.e. the flow value will be
    761     /// unbounded from above on each arc).
    762     ///
    763     /// \param map An arc map storing the upper bounds.
    764     /// Its \c Value type must be convertible to the \c Value type
    765     /// of the algorithm.
    766     ///
    767     /// \return <tt>(*this)</tt>
    768     template<typename UpperMap>
    769     NetworkSimplex& upperMap(const UpperMap& map) {
    770       for (ArcIt a(_graph); a != INVALID; ++a) {
    771         _upper[_arc_id[a]] = map[a];
    772       }
    773       return *this;
    774     }
    775 
    776     /// \brief Set the costs of the arcs.
    777     ///
    778     /// This function sets the costs of the arcs.
    779     /// If it is not used before calling \ref run(), the costs
    780     /// will be set to \c 1 on all arcs.
    781     ///
    782     /// \param map An arc map storing the costs.
    783     /// Its \c Value type must be convertible to the \c Cost type
    784     /// of the algorithm.
    785     ///
    786     /// \return <tt>(*this)</tt>
    787     template<typename CostMap>
    788     NetworkSimplex& costMap(const CostMap& map) {
    789       for (ArcIt a(_graph); a != INVALID; ++a) {
    790         _cost[_arc_id[a]] = map[a];
    791       }
    792       return *this;
    793     }
    794 
    795     /// \brief Set the supply values of the nodes.
    796     ///
    797     /// This function sets the supply values of the nodes.
    798     /// If neither this function nor \ref stSupply() is used before
    799     /// calling \ref run(), the supply of each node will be set to zero.
    800     /// (It makes sense only if non-zero lower bounds are given.)
    801     ///
    802     /// \param map A node map storing the supply values.
    803     /// Its \c Value type must be convertible to the \c Value type
    804     /// of the algorithm.
    805     ///
    806     /// \return <tt>(*this)</tt>
    807     template<typename SupplyMap>
    808     NetworkSimplex& supplyMap(const SupplyMap& map) {
    809       for (NodeIt n(_graph); n != INVALID; ++n) {
    810         _supply[_node_id[n]] = map[n];
    811       }
    812       return *this;
    813     }
    814 
    815     /// \brief Set single source and target nodes and a supply value.
    816     ///
    817     /// This function sets a single source node and a single target node
    818     /// and the required flow value.
    819     /// If neither this function nor \ref supplyMap() is used before
    820     /// calling \ref run(), the supply of each node will be set to zero.
    821     /// (It makes sense only if non-zero lower bounds are given.)
    822     ///
    823     /// Using this function has the same effect as using \ref supplyMap()
    824     /// with such a map in which \c k is assigned to \c s, \c -k is
    825     /// assigned to \c t and all other nodes have zero supply value.
    826     ///
    827     /// \param s The source node.
    828     /// \param t The target node.
    829     /// \param k The required amount of flow from node \c s to node \c t
    830     /// (i.e. the supply of \c s and the demand of \c t).
    831     ///
    832     /// \return <tt>(*this)</tt>
    833     NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
    834       for (int i = 0; i != _node_num; ++i) {
    835         _supply[i] = 0;
    836       }
    837       _supply[_node_id[s]] =  k;
    838       _supply[_node_id[t]] = -k;
    839       return *this;
    840     }
    841    
    842     /// \brief Set the type of the supply constraints.
    843     ///
    844     /// This function sets the type of the supply/demand constraints.
    845     /// If it is not used before calling \ref run(), the \ref GEQ supply
    846     /// type will be used.
    847     ///
    848     /// For more information see \ref SupplyType.
    849     ///
    850     /// \return <tt>(*this)</tt>
    851     NetworkSimplex& supplyType(SupplyType supply_type) {
    852       _stype = supply_type;
    853       return *this;
    854     }
    855 
    856     /// @}
    857 
    858     /// \name Execution Control
    859     /// The algorithm can be executed using \ref run().
    860 
    861     /// @{
    862 
    863     /// \brief Run the algorithm.
    864     ///
    865     /// This function runs the algorithm.
    866     /// The paramters can be specified using functions \ref lowerMap(),
    867     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
    868     /// \ref supplyType().
    869     /// For example,
    870     /// \code
    871     ///   NetworkSimplex<ListDigraph> ns(graph);
    872     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
    873     ///     .supplyMap(sup).run();
    874     /// \endcode
    875     ///
    876     /// This function can be called more than once. All the parameters
    877     /// that have been given are kept for the next call, unless
    878     /// \ref reset() is called, thus only the modified parameters
    879     /// have to be set again. See \ref reset() for examples.
    880     /// However the underlying digraph must not be modified after this
    881     /// class have been constructed, since it copies and extends the graph.
    882     ///
    883     /// \param pivot_rule The pivot rule that will be used during the
    884     /// algorithm. For more information see \ref PivotRule.
    885     ///
    886     /// \return \c INFEASIBLE if no feasible flow exists,
    887     /// \n \c OPTIMAL if the problem has optimal solution
    888     /// (i.e. it is feasible and bounded), and the algorithm has found
    889     /// optimal flow and node potentials (primal and dual solutions),
    890     /// \n \c UNBOUNDED if the objective function of the problem is
    891     /// unbounded, i.e. there is a directed cycle having negative total
    892     /// cost and infinite upper bound.
    893     ///
    894     /// \see ProblemType, PivotRule
    895     ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
    896       if (!init()) return INFEASIBLE;
    897       return start(pivot_rule);
    898     }
    899 
    900     /// \brief Reset all the parameters that have been given before.
    901     ///
    902     /// This function resets all the paramaters that have been given
    903     /// before using functions \ref lowerMap(), \ref upperMap(),
    904     /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
    905     ///
    906     /// It is useful for multiple run() calls. If this function is not
    907     /// used, all the parameters given before are kept for the next
    908     /// \ref run() call.
    909     /// However the underlying digraph must not be modified after this
    910     /// class have been constructed, since it copies and extends the graph.
    911     ///
    912     /// For example,
    913     /// \code
    914     ///   NetworkSimplex<ListDigraph> ns(graph);
    915     ///
    916     ///   // First run
    917     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
    918     ///     .supplyMap(sup).run();
    919     ///
    920     ///   // Run again with modified cost map (reset() is not called,
    921     ///   // so only the cost map have to be set again)
    922     ///   cost[e] += 100;
    923     ///   ns.costMap(cost).run();
    924     ///
    925     ///   // Run again from scratch using reset()
    926     ///   // (the lower bounds will be set to zero on all arcs)
    927     ///   ns.reset();
    928     ///   ns.upperMap(capacity).costMap(cost)
    929     ///     .supplyMap(sup).run();
    930     /// \endcode
    931     ///
    932     /// \return <tt>(*this)</tt>
    933     NetworkSimplex& reset() {
    934       for (int i = 0; i != _node_num; ++i) {
    935         _supply[i] = 0;
    936       }
    937       for (int i = 0; i != _arc_num; ++i) {
    938         _lower[i] = 0;
    939         _upper[i] = INF;
    940         _cost[i] = 1;
    941       }
    942       _have_lower = false;
    943       _stype = GEQ;
    944       return *this;
    945     }
    946 
    947     /// @}
    948 
    949     /// \name Query Functions
    950     /// The results of the algorithm can be obtained using these
    951     /// functions.\n
    952     /// The \ref run() function must be called before using them.
    953 
    954     /// @{
    955 
    956     /// \brief Return the total cost of the found flow.
    957     ///
    958     /// This function returns the total cost of the found flow.
    959     /// Its complexity is O(e).
    960     ///
    961     /// \note The return type of the function can be specified as a
    962     /// template parameter. For example,
    963     /// \code
    964     ///   ns.totalCost<double>();
    965     /// \endcode
    966     /// It is useful if the total cost cannot be stored in the \c Cost
    967     /// type of the algorithm, which is the default return type of the
    968     /// function.
    969     ///
    970     /// \pre \ref run() must be called before using this function.
    971     template <typename Number>
    972     Number totalCost() const {
    973       Number c = 0;
    974       for (ArcIt a(_graph); a != INVALID; ++a) {
    975         int i = _arc_id[a];
    976         c += Number(_flow[i]) * Number(_cost[i]);
    977       }
    978       return c;
    979     }
    980 
    981 #ifndef DOXYGEN
    982     Cost totalCost() const {
    983       return totalCost<Cost>();
    984     }
    985 #endif
    986 
    987     /// \brief Return the flow on the given arc.
    988     ///
    989     /// This function returns the flow on the given arc.
    990     ///
    991     /// \pre \ref run() must be called before using this function.
    992     Value flow(const Arc& a) const {
    993       return _flow[_arc_id[a]];
    994     }
    995 
    996     /// \brief Return the flow map (the primal solution).
    997     ///
    998     /// This function copies the flow value on each arc into the given
    999     /// map. The \c Value type of the algorithm must be convertible to
    1000     /// the \c Value type of the map.
    1001     ///
    1002     /// \pre \ref run() must be called before using this function.
    1003     template <typename FlowMap>
    1004     void flowMap(FlowMap &map) const {
    1005       for (ArcIt a(_graph); a != INVALID; ++a) {
    1006         map.set(a, _flow[_arc_id[a]]);
    1007       }
    1008     }
    1009 
    1010     /// \brief Return the potential (dual value) of the given node.
    1011     ///
    1012     /// This function returns the potential (dual value) of the
    1013     /// given node.
    1014     ///
    1015     /// \pre \ref run() must be called before using this function.
    1016     Cost potential(const Node& n) const {
    1017       return _pi[_node_id[n]];
    1018     }
    1019 
    1020     /// \brief Return the potential map (the dual solution).
    1021     ///
    1022     /// This function copies the potential (dual value) of each node
    1023     /// into the given map.
    1024     /// The \c Cost type of the algorithm must be convertible to the
    1025     /// \c Value type of the map.
    1026     ///
    1027     /// \pre \ref run() must be called before using this function.
    1028     template <typename PotentialMap>
    1029     void potentialMap(PotentialMap &map) const {
    1030       for (NodeIt n(_graph); n != INVALID; ++n) {
    1031         map.set(n, _pi[_node_id[n]]);
    1032       }
    1033     }
    1034 
    1035     /// @}
    1036 
    1037   private:
    1038 
    1039     // Initialize internal data structures
    1040     bool init() {
    1041       if (_node_num == 0) return false;
    1042 
    1043       // Check the sum of supply values
    1044       _sum_supply = 0;
    1045       for (int i = 0; i != _node_num; ++i) {
    1046         _sum_supply += _supply[i];
    1047       }
    1048       if ( !((_stype == GEQ && _sum_supply <= 0) ||
    1049              (_stype == LEQ && _sum_supply >= 0)) ) return false;
    1050 
    1051       // Remove non-zero lower bounds
    1052       if (_have_lower) {
     1102      // Initialize node related data
     1103      bool valid_supply = true;
     1104      Flow sum_supply = 0;
     1105      if (!_pstsup && !_psupply) {
     1106        _pstsup = true;
     1107        _psource = _ptarget = NodeIt(_graph);
     1108        _pstflow = 0;
     1109      }
     1110      if (_psupply) {
     1111        int i = 0;
     1112        for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
     1113          _node_id[n] = i;
     1114          _supply[i] = (*_psupply)[n];
     1115          sum_supply += _supply[i];
     1116        }
     1117        valid_supply = (_ptype == GEQ && sum_supply <= 0) ||
     1118                       (_ptype == LEQ && sum_supply >= 0);
     1119      } else {
     1120        int i = 0;
     1121        for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
     1122          _node_id[n] = i;
     1123          _supply[i] = 0;
     1124        }
     1125        _supply[_node_id[_psource]] =  _pstflow;
     1126        _supply[_node_id[_ptarget]] = -_pstflow;
     1127      }
     1128      if (!valid_supply) return false;
     1129
     1130      // Infinite capacity value
     1131      Flow inf_cap =
     1132        std::numeric_limits<Flow>::has_infinity ?
     1133        std::numeric_limits<Flow>::infinity() :
     1134        std::numeric_limits<Flow>::max();
     1135
     1136      // Initialize artifical cost
     1137      Cost art_cost;
     1138      if (std::numeric_limits<Cost>::is_exact) {
     1139        art_cost = std::numeric_limits<Cost>::max() / 4 + 1;
     1140      } else {
     1141        art_cost = std::numeric_limits<Cost>::min();
    10531142        for (int i = 0; i != _arc_num; ++i) {
    1054           Value c = _lower[i];
    1055           if (c >= 0) {
    1056             _cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
     1143          if (_cost[i] > art_cost) art_cost = _cost[i];
     1144        }
     1145        art_cost = (art_cost + 1) * _node_num;
     1146      }
     1147
     1148      // Run Circulation to check if a feasible solution exists
     1149      typedef ConstMap<Arc, Flow> ConstArcMap;
     1150      ConstArcMap zero_arc_map(0), inf_arc_map(inf_cap);
     1151      FlowNodeMap *csup = NULL;
     1152      bool local_csup = false;
     1153      if (_psupply) {
     1154        csup = _psupply;
     1155      } else {
     1156        csup = new FlowNodeMap(_graph, 0);
     1157        (*csup)[_psource] =  _pstflow;
     1158        (*csup)[_ptarget] = -_pstflow;
     1159        local_csup = true;
     1160      }
     1161      bool circ_result = false;
     1162      if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) {
     1163        // GEQ problem type
     1164        if (_plower) {
     1165          if (_pupper) {
     1166            Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap>
     1167              circ(_graph, *_plower, *_pupper, *csup);
     1168            circ_result = circ.run();
    10571169          } else {
    1058             _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
    1059           }
    1060           _supply[_source[i]] -= c;
    1061           _supply[_target[i]] += c;
     1170            Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap>
     1171              circ(_graph, *_plower, inf_arc_map, *csup);
     1172            circ_result = circ.run();
     1173          }
     1174        } else {
     1175          if (_pupper) {
     1176            Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap>
     1177              circ(_graph, zero_arc_map, *_pupper, *csup);
     1178            circ_result = circ.run();
     1179          } else {
     1180            Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap>
     1181              circ(_graph, zero_arc_map, inf_arc_map, *csup);
     1182            circ_result = circ.run();
     1183          }
    10621184        }
    10631185      } else {
    1064         for (int i = 0; i != _arc_num; ++i) {
    1065           _cap[i] = _upper[i];
    1066         }
    1067       }
    1068 
    1069       // Initialize artifical cost
    1070       Cost ART_COST;
    1071       if (std::numeric_limits<Cost>::is_exact) {
    1072         ART_COST = std::numeric_limits<Cost>::max() / 4 + 1;
    1073       } else {
    1074         ART_COST = std::numeric_limits<Cost>::min();
    1075         for (int i = 0; i != _arc_num; ++i) {
    1076           if (_cost[i] > ART_COST) ART_COST = _cost[i];
    1077         }
    1078         ART_COST = (ART_COST + 1) * _node_num;
    1079       }
    1080 
    1081       // Initialize arc maps
    1082       for (int i = 0; i != _arc_num; ++i) {
    1083         _flow[i] = 0;
    1084         _state[i] = STATE_LOWER;
    1085       }
    1086      
     1186        // LEQ problem type
     1187        typedef ReverseDigraph<const GR> RevGraph;
     1188        typedef NegMap<FlowNodeMap> NegNodeMap;
     1189        RevGraph rgraph(_graph);
     1190        NegNodeMap neg_csup(*csup);
     1191        if (_plower) {
     1192          if (_pupper) {
     1193            Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap>
     1194              circ(rgraph, *_plower, *_pupper, neg_csup);
     1195            circ_result = circ.run();
     1196          } else {
     1197            Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap>
     1198              circ(rgraph, *_plower, inf_arc_map, neg_csup);
     1199            circ_result = circ.run();
     1200          }
     1201        } else {
     1202          if (_pupper) {
     1203            Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap>
     1204              circ(rgraph, zero_arc_map, *_pupper, neg_csup);
     1205            circ_result = circ.run();
     1206          } else {
     1207            Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap>
     1208              circ(rgraph, zero_arc_map, inf_arc_map, neg_csup);
     1209            circ_result = circ.run();
     1210          }
     1211        }
     1212      }
     1213      if (local_csup) delete csup;
     1214      if (!circ_result) return false;
     1215
    10871216      // Set data for the artificial root node
    10881217      _root = _node_num;
     
    10911220      _thread[_root] = 0;
    10921221      _rev_thread[0] = _root;
    1093       _succ_num[_root] = _node_num + 1;
     1222      _succ_num[_root] = all_node_num;
    10941223      _last_succ[_root] = _root - 1;
    1095       _supply[_root] = -_sum_supply;
    1096       _pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST;
     1224      _supply[_root] = -sum_supply;
     1225      if (sum_supply < 0) {
     1226        _pi[_root] = -art_cost;
     1227      } else {
     1228        _pi[_root] = art_cost;
     1229      }
     1230
     1231      // Store the arcs in a mixed order
     1232      int k = std::max(int(std::sqrt(double(_arc_num))), 10);
     1233      int i = 0;
     1234      for (ArcIt e(_graph); e != INVALID; ++e) {
     1235        _arc_ref[i] = e;
     1236        if ((i += k) >= _arc_num) i = (i % k) + 1;
     1237      }
     1238
     1239      // Initialize arc maps
     1240      if (_pupper && _pcost) {
     1241        for (int i = 0; i != _arc_num; ++i) {
     1242          Arc e = _arc_ref[i];
     1243          _source[i] = _node_id[_graph.source(e)];
     1244          _target[i] = _node_id[_graph.target(e)];
     1245          _cap[i] = (*_pupper)[e];
     1246          _cost[i] = (*_pcost)[e];
     1247          _flow[i] = 0;
     1248          _state[i] = STATE_LOWER;
     1249        }
     1250      } else {
     1251        for (int i = 0; i != _arc_num; ++i) {
     1252          Arc e = _arc_ref[i];
     1253          _source[i] = _node_id[_graph.source(e)];
     1254          _target[i] = _node_id[_graph.target(e)];
     1255          _flow[i] = 0;
     1256          _state[i] = STATE_LOWER;
     1257        }
     1258        if (_pupper) {
     1259          for (int i = 0; i != _arc_num; ++i)
     1260            _cap[i] = (*_pupper)[_arc_ref[i]];
     1261        } else {
     1262          for (int i = 0; i != _arc_num; ++i)
     1263            _cap[i] = inf_cap;
     1264        }
     1265        if (_pcost) {
     1266          for (int i = 0; i != _arc_num; ++i)
     1267            _cost[i] = (*_pcost)[_arc_ref[i]];
     1268        } else {
     1269          for (int i = 0; i != _arc_num; ++i)
     1270            _cost[i] = 1;
     1271        }
     1272      }
     1273     
     1274      // Remove non-zero lower bounds
     1275      if (_plower) {
     1276        for (int i = 0; i != _arc_num; ++i) {
     1277          Flow c = (*_plower)[_arc_ref[i]];
     1278          if (c != 0) {
     1279            _cap[i] -= c;
     1280            _supply[_source[i]] -= c;
     1281            _supply[_target[i]] += c;
     1282          }
     1283        }
     1284      }
    10971285
    10981286      // Add artificial arcs and initialize the spanning tree data structure
    10991287      for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
    1100         _parent[u] = _root;
    1101         _pred[u] = e;
    11021288        _thread[u] = u + 1;
    11031289        _rev_thread[u + 1] = u;
    11041290        _succ_num[u] = 1;
    11051291        _last_succ[u] = u;
    1106         _cost[e] = ART_COST;
    1107         _cap[e] = INF;
     1292        _parent[u] = _root;
     1293        _pred[u] = e;
     1294        _cost[e] = art_cost;
     1295        _cap[e] = inf_cap;
    11081296        _state[e] = STATE_TREE;
    1109         if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
     1297        if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) {
    11101298          _flow[e] = _supply[u];
    11111299          _forward[u] = true;
    1112           _pi[u] = -ART_COST + _pi[_root];
     1300          _pi[u] = -art_cost + _pi[_root];
    11131301        } else {
    11141302          _flow[e] = -_supply[u];
    11151303          _forward[u] = false;
    1116           _pi[u] = ART_COST + _pi[_root];
     1304          _pi[u] = art_cost + _pi[_root];
    11171305        }
    11181306      }
     
    11491337      delta = _cap[in_arc];
    11501338      int result = 0;
    1151       Value d;
     1339      Flow d;
    11521340      int e;
    11531341
     
    11551343      for (int u = first; u != join; u = _parent[u]) {
    11561344        e = _pred[u];
    1157         d = _forward[u] ?
    1158           _flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]);
     1345        d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
    11591346        if (d < delta) {
    11601347          delta = d;
     
    11661353      for (int u = second; u != join; u = _parent[u]) {
    11671354        e = _pred[u];
    1168         d = _forward[u] ?
    1169           (_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e];
     1355        d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
    11701356        if (d <= delta) {
    11711357          delta = d;
     
    11891375      // Augment along the cycle
    11901376      if (delta > 0) {
    1191         Value val = _state[in_arc] * delta;
     1377        Flow val = _state[in_arc] * delta;
    11921378        _flow[in_arc] += val;
    11931379        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
     
    13411527
    13421528    // Execute the algorithm
    1343     ProblemType start(PivotRule pivot_rule) {
     1529    bool start(PivotRule pivot_rule) {
    13441530      // Select the pivot rule implementation
    13451531      switch (pivot_rule) {
     
    13551541          return start<AlteringListPivotRule>();
    13561542      }
    1357       return INFEASIBLE; // avoid warning
     1543      return false;
    13581544    }
    13591545
    13601546    template <typename PivotRuleImpl>
    1361     ProblemType start() {
     1547    bool start() {
    13621548      PivotRuleImpl pivot(*this);
    13631549
     
    13661552        findJoinNode();
    13671553        bool change = findLeavingArc();
    1368         if (delta >= INF) return UNBOUNDED;
    13691554        changeFlow(change);
    13701555        if (change) {
     
    13731558        }
    13741559      }
    1375      
    1376       // Check feasibility
    1377       if (_sum_supply < 0) {
    1378         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
    1379           if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE;
    1380         }
    1381       }
    1382       else if (_sum_supply > 0) {
    1383         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
    1384           if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE;
    1385         }
    1386       }
    1387       else {
    1388         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
    1389           if (_flow[e] != 0) return INFEASIBLE;
    1390         }
    1391       }
    1392 
    1393       // Transform the solution and the supply map to the original form
    1394       if (_have_lower) {
     1560
     1561      // Copy flow values to _flow_map
     1562      if (_plower) {
    13951563        for (int i = 0; i != _arc_num; ++i) {
    1396           Value c = _lower[i];
    1397           if (c != 0) {
    1398             _flow[i] += c;
    1399             _supply[_source[i]] += c;
    1400             _supply[_target[i]] -= c;
    1401           }
    1402         }
    1403       }
    1404 
    1405       return OPTIMAL;
     1564          Arc e = _arc_ref[i];
     1565          _flow_map->set(e, (*_plower)[e] + _flow[i]);
     1566        }
     1567      } else {
     1568        for (int i = 0; i != _arc_num; ++i) {
     1569          _flow_map->set(_arc_ref[i], _flow[i]);
     1570        }
     1571      }
     1572      // Copy potential values to _potential_map
     1573      for (NodeIt n(_graph); n != INVALID; ++n) {
     1574        _potential_map->set(n, _pi[_node_id[n]]);
     1575      }
     1576
     1577      return true;
    14061578    }
    14071579
  • lemon/preflow.h

    r641 r611  
    4747
    4848    /// \brief The type of the flow values.
    49     typedef typename CapacityMap::Value Value;
     49    typedef typename CapacityMap::Value Flow;
    5050
    5151    /// \brief The type of the map that stores the flow values.
     
    5353    /// The type of the map that stores the flow values.
    5454    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    55     typedef typename Digraph::template ArcMap<Value> FlowMap;
     55    typedef typename Digraph::template ArcMap<Flow> FlowMap;
    5656
    5757    /// \brief Instantiates a FlowMap.
     
    8585    ///
    8686    /// The tolerance used by the algorithm to handle inexact computation.
    87     typedef lemon::Tolerance<Value> Tolerance;
     87    typedef lemon::Tolerance<Flow> Tolerance;
    8888
    8989  };
     
    126126    typedef typename Traits::CapacityMap CapacityMap;
    127127    ///The type of the flow values.
    128     typedef typename Traits::Value Value;
     128    typedef typename Traits::Flow Flow;
    129129
    130130    ///The type of the flow map.
     
    152152    bool _local_level;
    153153
    154     typedef typename Digraph::template NodeMap<Value> ExcessMap;
     154    typedef typename Digraph::template NodeMap<Flow> ExcessMap;
    155155    ExcessMap* _excess;
    156156
     
    471471
    472472      for (NodeIt n(_graph); n != INVALID; ++n) {
    473         Value excess = 0;
     473        Flow excess = 0;
    474474        for (InArcIt e(_graph, n); e != INVALID; ++e) {
    475475          excess += (*_flow)[e];
     
    520520
    521521      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
    522         Value rem = (*_capacity)[e] - (*_flow)[e];
     522        Flow rem = (*_capacity)[e] - (*_flow)[e];
    523523        if (_tolerance.positive(rem)) {
    524524          Node u = _graph.target(e);
     
    532532      }
    533533      for (InArcIt e(_graph, _source); e != INVALID; ++e) {
    534         Value rem = (*_flow)[e];
     534        Flow rem = (*_flow)[e];
    535535        if (_tolerance.positive(rem)) {
    536536          Node v = _graph.source(e);
     
    565565
    566566        while (num > 0 && n != INVALID) {
    567           Value excess = (*_excess)[n];
     567          Flow excess = (*_excess)[n];
    568568          int new_level = _level->maxLevel();
    569569
    570570          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
    571             Value rem = (*_capacity)[e] - (*_flow)[e];
     571            Flow rem = (*_capacity)[e] - (*_flow)[e];
    572572            if (!_tolerance.positive(rem)) continue;
    573573            Node v = _graph.target(e);
     
    592592
    593593          for (InArcIt e(_graph, n); e != INVALID; ++e) {
    594             Value rem = (*_flow)[e];
     594            Flow rem = (*_flow)[e];
    595595            if (!_tolerance.positive(rem)) continue;
    596596            Node v = _graph.source(e);
     
    638638        num = _node_num * 20;
    639639        while (num > 0 && n != INVALID) {
    640           Value excess = (*_excess)[n];
     640          Flow excess = (*_excess)[n];
    641641          int new_level = _level->maxLevel();
    642642
    643643          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
    644             Value rem = (*_capacity)[e] - (*_flow)[e];
     644            Flow rem = (*_capacity)[e] - (*_flow)[e];
    645645            if (!_tolerance.positive(rem)) continue;
    646646            Node v = _graph.target(e);
     
    665665
    666666          for (InArcIt e(_graph, n); e != INVALID; ++e) {
    667             Value rem = (*_flow)[e];
     667            Flow rem = (*_flow)[e];
    668668            if (!_tolerance.positive(rem)) continue;
    669669            Node v = _graph.source(e);
     
    779779      Node n;
    780780      while ((n = _level->highestActive()) != INVALID) {
    781         Value excess = (*_excess)[n];
     781        Flow excess = (*_excess)[n];
    782782        int level = _level->highestActiveLevel();
    783783        int new_level = _level->maxLevel();
    784784
    785785        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
    786           Value rem = (*_capacity)[e] - (*_flow)[e];
     786          Flow rem = (*_capacity)[e] - (*_flow)[e];
    787787          if (!_tolerance.positive(rem)) continue;
    788788          Node v = _graph.target(e);
     
    807807
    808808        for (InArcIt e(_graph, n); e != INVALID; ++e) {
    809           Value rem = (*_flow)[e];
     809          Flow rem = (*_flow)[e];
    810810          if (!_tolerance.positive(rem)) continue;
    811811          Node v = _graph.source(e);
     
    898898    /// \pre Either \ref run() or \ref init() must be called before
    899899    /// using this function.
    900     Value flowValue() const {
     900    Flow flowValue() const {
    901901      return (*_excess)[_target];
    902902    }
    903903
    904     /// \brief Returns the flow value on the given arc.
    905     ///
    906     /// Returns the flow value on the given arc. This method can
     904    /// \brief Returns the flow on the given arc.
     905    ///
     906    /// Returns the flow on the given arc. This method can
    907907    /// be called after the second phase of the algorithm.
    908908    ///
    909909    /// \pre Either \ref run() or \ref init() must be called before
    910910    /// using this function.
    911     Value flow(const Arc& arc) const {
     911    Flow flow(const Arc& arc) const {
    912912      return (*_flow)[arc];
    913913    }
  • test/lp_test.cc

    r631 r627  
    2222#include <lemon/tolerance.h>
    2323
     24#ifdef HAVE_CONFIG_H
    2425#include <lemon/config.h>
     26#endif
    2527
    2628#ifdef LEMON_HAVE_GLPK
  • test/min_cost_flow_test.cc

    r642 r615  
    1919#include <iostream>
    2020#include <fstream>
    21 #include <limits>
    2221
    2322#include <lemon/list_graph.h>
     
    3534char test_lgf[] =
    3635  "@nodes\n"
    37   "label  sup1 sup2 sup3 sup4 sup5 sup6\n"
    38   "    1    20   27    0   30   20   30\n"
    39   "    2    -4    0    0    0   -8   -3\n"
    40   "    3     0    0    0    0    0    0\n"
    41   "    4     0    0    0    0    0    0\n"
    42   "    5     9    0    0    0    6   11\n"
    43   "    6    -6    0    0    0   -5   -6\n"
    44   "    7     0    0    0    0    0    0\n"
    45   "    8     0    0    0    0    0    3\n"
    46   "    9     3    0    0    0    0    0\n"
    47   "   10    -2    0    0    0   -7   -2\n"
    48   "   11     0    0    0    0  -10    0\n"
    49   "   12   -20  -27    0  -30  -30  -20\n"
    50   "\n"               
     36  "label  sup1 sup2 sup3 sup4 sup5\n"
     37  "    1    20   27    0   20   30\n"
     38  "    2    -4    0    0   -8   -3\n"
     39  "    3     0    0    0    0    0\n"
     40  "    4     0    0    0    0    0\n"
     41  "    5     9    0    0    6   11\n"
     42  "    6    -6    0    0   -5   -6\n"
     43  "    7     0    0    0    0    0\n"
     44  "    8     0    0    0    0    3\n"
     45  "    9     3    0    0    0    0\n"
     46  "   10    -2    0    0   -7   -2\n"
     47  "   11     0    0    0  -10    0\n"
     48  "   12   -20  -27    0  -30  -20\n"
     49  "\n"
    5150  "@arcs\n"
    52   "       cost  cap low1 low2 low3\n"
    53   " 1  2    70   11    0    8    8\n"
    54   " 1  3   150    3    0    1    0\n"
    55   " 1  4    80   15    0    2    2\n"
    56   " 2  8    80   12    0    0    0\n"
    57   " 3  5   140    5    0    3    1\n"
    58   " 4  6    60   10    0    1    0\n"
    59   " 4  7    80    2    0    0    0\n"
    60   " 4  8   110    3    0    0    0\n"
    61   " 5  7    60   14    0    0    0\n"
    62   " 5 11   120   12    0    0    0\n"
    63   " 6  3     0    3    0    0    0\n"
    64   " 6  9   140    4    0    0    0\n"
    65   " 6 10    90    8    0    0    0\n"
    66   " 7  1    30    5    0    0   -5\n"
    67   " 8 12    60   16    0    4    3\n"
    68   " 9 12    50    6    0    0    0\n"
    69   "10 12    70   13    0    5    2\n"
    70   "10  2   100    7    0    0    0\n"
    71   "10  7    60   10    0    0   -3\n"
    72   "11 10    20   14    0    6  -20\n"
    73   "12 11    30   10    0    0  -10\n"
     51  "       cost  cap low1 low2\n"
     52  " 1  2    70   11    0    8\n"
     53  " 1  3   150    3    0    1\n"
     54  " 1  4    80   15    0    2\n"
     55  " 2  8    80   12    0    0\n"
     56  " 3  5   140    5    0    3\n"
     57  " 4  6    60   10    0    1\n"
     58  " 4  7    80    2    0    0\n"
     59  " 4  8   110    3    0    0\n"
     60  " 5  7    60   14    0    0\n"
     61  " 5 11   120   12    0    0\n"
     62  " 6  3     0    3    0    0\n"
     63  " 6  9   140    4    0    0\n"
     64  " 6 10    90    8    0    0\n"
     65  " 7  1    30    5    0    0\n"
     66  " 8 12    60   16    0    4\n"
     67  " 9 12    50    6    0    0\n"
     68  "10 12    70   13    0    5\n"
     69  "10  2   100    7    0    0\n"
     70  "10  7    60   10    0    0\n"
     71  "11 10    20   14    0    6\n"
     72  "12 11    30   10    0    0\n"
    7473  "\n"
    7574  "@attributes\n"
     
    7877
    7978
    80 enum SupplyType {
     79enum ProblemType {
    8180  EQ,
    8281  GEQ,
     
    8584
    8685// Check the interface of an MCF algorithm
    87 template <typename GR, typename Value, typename Cost>
     86template <typename GR, typename Flow, typename Cost>
    8887class McfClassConcept
    8988{
     
    9695
    9796      MCF mcf(g);
    98       const MCF& const_mcf = mcf;
    9997
    10098      b = mcf.reset()
    10199             .lowerMap(lower)
    102100             .upperMap(upper)
     101             .capacityMap(upper)
     102             .boundMaps(lower, upper)
    103103             .costMap(cost)
    104104             .supplyMap(sup)
    105105             .stSupply(n, n, k)
     106             .flowMap(flow)
     107             .potentialMap(pot)
    106108             .run();
    107 
    108       c = const_mcf.totalCost();
    109       x = const_mcf.template totalCost<double>();
     109     
     110      const MCF& const_mcf = mcf;
     111
     112      const typename MCF::FlowMap &fm = const_mcf.flowMap();
     113      const typename MCF::PotentialMap &pm = const_mcf.potentialMap();
     114
     115      v = const_mcf.totalCost();
     116      double x = const_mcf.template totalCost<double>();
    110117      v = const_mcf.flow(a);
    111       c = const_mcf.potential(n);
    112       const_mcf.flowMap(fm);
    113       const_mcf.potentialMap(pm);
     118      v = const_mcf.potential(n);
     119
     120      ignore_unused_variable_warning(fm);
     121      ignore_unused_variable_warning(pm);
     122      ignore_unused_variable_warning(x);
    114123    }
    115124
    116125    typedef typename GR::Node Node;
    117126    typedef typename GR::Arc Arc;
    118     typedef concepts::ReadMap<Node, Value> NM;
    119     typedef concepts::ReadMap<Arc, Value> VAM;
     127    typedef concepts::ReadMap<Node, Flow> NM;
     128    typedef concepts::ReadMap<Arc, Flow> FAM;
    120129    typedef concepts::ReadMap<Arc, Cost> CAM;
    121     typedef concepts::WriteMap<Arc, Value> FlowMap;
    122     typedef concepts::WriteMap<Node, Cost> PotMap;
    123130
    124131    const GR &g;
    125     const VAM &lower;
    126     const VAM &upper;
     132    const FAM &lower;
     133    const FAM &upper;
    127134    const CAM &cost;
    128135    const NM &sup;
    129136    const Node &n;
    130137    const Arc &a;
    131     const Value &k;
    132     FlowMap fm;
    133     PotMap pm;
     138    const Flow &k;
     139    Flow v;
    134140    bool b;
    135     double x;
    136     typename MCF::Value v;
    137     typename MCF::Cost c;
     141
     142    typename MCF::FlowMap &flow;
     143    typename MCF::PotentialMap &pot;
    138144  };
    139145
     
    146152bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
    147153                const SM& supply, const FM& flow,
    148                 SupplyType type = EQ )
     154                ProblemType type = EQ )
    149155{
    150156  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
     
    203209template < typename MCF, typename GR,
    204210           typename LM, typename UM,
    205            typename CM, typename SM,
    206            typename PT >
    207 void checkMcf( const MCF& mcf, PT mcf_result,
     211           typename CM, typename SM >
     212void checkMcf( const MCF& mcf, bool mcf_result,
    208213               const GR& gr, const LM& lower, const UM& upper,
    209214               const CM& cost, const SM& supply,
    210                PT result, bool optimal, typename CM::Value total,
     215               bool result, typename CM::Value total,
    211216               const std::string &test_id = "",
    212                SupplyType type = EQ )
     217               ProblemType type = EQ )
    213218{
    214219  check(mcf_result == result, "Wrong result " + test_id);
    215   if (optimal) {
    216     typename GR::template ArcMap<typename SM::Value> flow(gr);
    217     typename GR::template NodeMap<typename CM::Value> pi(gr);
    218     mcf.flowMap(flow);
    219     mcf.potentialMap(pi);
    220     check(checkFlow(gr, lower, upper, supply, flow, type),
     220  if (result) {
     221    check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type),
    221222          "The flow is not feasible " + test_id);
    222223    check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
    223     check(checkPotential(gr, lower, upper, cost, supply, flow, pi),
     224    check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(),
     225                         mcf.potentialMap()),
    224226          "Wrong potentials " + test_id);
    225227  }
     
    230232  // Check the interfaces
    231233  {
     234    typedef int Flow;
     235    typedef int Cost;
    232236    typedef concepts::Digraph GR;
    233     checkConcept< McfClassConcept<GR, int, int>,
    234                   NetworkSimplex<GR> >();
    235     checkConcept< McfClassConcept<GR, double, double>,
    236                   NetworkSimplex<GR, double> >();
    237     checkConcept< McfClassConcept<GR, int, double>,
    238                   NetworkSimplex<GR, int, double> >();
     237    checkConcept< McfClassConcept<GR, Flow, Cost>,
     238                  NetworkSimplex<GR, Flow, Cost> >();
    239239  }
    240240
     
    245245  // Read the test digraph
    246246  Digraph gr;
    247   Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
    248   Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
     247  Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr);
     248  Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr);
    249249  ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
    250250  Node v, w;
     
    256256    .arcMap("low1", l1)
    257257    .arcMap("low2", l2)
    258     .arcMap("low3", l3)
    259258    .nodeMap("sup1", s1)
    260259    .nodeMap("sup2", s2)
     
    262261    .nodeMap("sup4", s4)
    263262    .nodeMap("sup5", s5)
    264     .nodeMap("sup6", s6)
    265263    .node("source", v)
    266264    .node("target", w)
    267265    .run();
    268  
    269   // Build a test digraph for testing negative costs
    270   Digraph ngr;
    271   Node n1 = ngr.addNode();
    272   Node n2 = ngr.addNode();
    273   Node n3 = ngr.addNode();
    274   Node n4 = ngr.addNode();
    275   Node n5 = ngr.addNode();
    276   Node n6 = ngr.addNode();
    277   Node n7 = ngr.addNode();
    278  
    279   Arc a1 = ngr.addArc(n1, n2);
    280   Arc a2 = ngr.addArc(n1, n3);
    281   Arc a3 = ngr.addArc(n2, n4);
    282   Arc a4 = ngr.addArc(n3, n4);
    283   Arc a5 = ngr.addArc(n3, n2);
    284   Arc a6 = ngr.addArc(n5, n3);
    285   Arc a7 = ngr.addArc(n5, n6);
    286   Arc a8 = ngr.addArc(n6, n7);
    287   Arc a9 = ngr.addArc(n7, n5);
    288  
    289   Digraph::ArcMap<int> nc(ngr), nl1(ngr, 0), nl2(ngr, 0);
    290   ConstMap<Arc, int> nu1(std::numeric_limits<int>::max()), nu2(5000);
    291   Digraph::NodeMap<int> ns(ngr, 0);
    292  
    293   nl2[a7] =  1000;
    294   nl2[a8] = -1000;
    295  
    296   ns[n1] =  100;
    297   ns[n4] = -100;
    298  
    299   nc[a1] =  100;
    300   nc[a2] =   30;
    301   nc[a3] =   20;
    302   nc[a4] =   80;
    303   nc[a5] =   50;
    304   nc[a6] =   10;
    305   nc[a7] =   80;
    306   nc[a8] =   30;
    307   nc[a9] = -120;
    308266
    309267  // A. Test NetworkSimplex with the default pivot rule
     
    314272    mcf.upperMap(u).costMap(c);
    315273    checkMcf(mcf, mcf.supplyMap(s1).run(),
    316              gr, l1, u, c, s1, mcf.OPTIMAL, true,   5240, "#A1");
     274             gr, l1, u, c, s1, true,  5240, "#A1");
    317275    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
    318              gr, l1, u, c, s2, mcf.OPTIMAL, true,   7620, "#A2");
     276             gr, l1, u, c, s2, true,  7620, "#A2");
    319277    mcf.lowerMap(l2);
    320278    checkMcf(mcf, mcf.supplyMap(s1).run(),
    321              gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#A3");
     279             gr, l2, u, c, s1, true,  5970, "#A3");
    322280    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
    323              gr, l2, u, c, s2, mcf.OPTIMAL, true,   8010, "#A4");
     281             gr, l2, u, c, s2, true,  8010, "#A4");
    324282    mcf.reset();
    325283    checkMcf(mcf, mcf.supplyMap(s1).run(),
    326              gr, l1, cu, cc, s1, mcf.OPTIMAL, true,   74, "#A5");
     284             gr, l1, cu, cc, s1, true,  74, "#A5");
    327285    checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
    328              gr, l2, cu, cc, s2, mcf.OPTIMAL, true,   94, "#A6");
     286             gr, l2, cu, cc, s2, true,  94, "#A6");
    329287    mcf.reset();
    330288    checkMcf(mcf, mcf.run(),
    331              gr, l1, cu, cc, s3, mcf.OPTIMAL, true,    0, "#A7");
    332     checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(),
    333              gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8");
    334     mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
    335     checkMcf(mcf, mcf.run(),
    336              gr, l3, u, c, s4, mcf.OPTIMAL, true,   6360, "#A9");
     289             gr, l1, cu, cc, s3, true,   0, "#A7");
     290    checkMcf(mcf, mcf.boundMaps(l2, u).run(),
     291             gr, l2, u, cc, s3, false,   0, "#A8");
    337292
    338293    // Check the GEQ form
    339     mcf.reset().upperMap(u).costMap(c).supplyMap(s5);
    340     checkMcf(mcf, mcf.run(),
    341              gr, l1, u, c, s5, mcf.OPTIMAL, true,   3530, "#A10", GEQ);
    342     mcf.supplyType(mcf.GEQ);
     294    mcf.reset().upperMap(u).costMap(c).supplyMap(s4);
     295    checkMcf(mcf, mcf.run(),
     296             gr, l1, u, c, s4, true,  3530, "#A9", GEQ);
     297    mcf.problemType(mcf.GEQ);
    343298    checkMcf(mcf, mcf.lowerMap(l2).run(),
    344              gr, l2, u, c, s5, mcf.OPTIMAL, true,   4540, "#A11", GEQ);
    345     mcf.supplyType(mcf.CARRY_SUPPLIES).supplyMap(s6);
    346     checkMcf(mcf, mcf.run(),
    347              gr, l2, u, c, s6, mcf.INFEASIBLE, false,  0, "#A12", GEQ);
     299             gr, l2, u, c, s4, true,  4540, "#A10", GEQ);
     300    mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5);
     301    checkMcf(mcf, mcf.run(),
     302             gr, l2, u, c, s5, false,    0, "#A11", GEQ);
    348303
    349304    // Check the LEQ form
    350     mcf.reset().supplyType(mcf.LEQ);
    351     mcf.upperMap(u).costMap(c).supplyMap(s6);
    352     checkMcf(mcf, mcf.run(),
    353              gr, l1, u, c, s6, mcf.OPTIMAL, true,   5080, "#A13", LEQ);
     305    mcf.reset().problemType(mcf.LEQ);
     306    mcf.upperMap(u).costMap(c).supplyMap(s5);
     307    checkMcf(mcf, mcf.run(),
     308             gr, l1, u, c, s5, true,  5080, "#A12", LEQ);
    354309    checkMcf(mcf, mcf.lowerMap(l2).run(),
    355              gr, l2, u, c, s6, mcf.OPTIMAL, true,   5930, "#A14", LEQ);
    356     mcf.supplyType(mcf.SATISFY_DEMANDS).supplyMap(s5);
    357     checkMcf(mcf, mcf.run(),
    358              gr, l2, u, c, s5, mcf.INFEASIBLE, false,  0, "#A15", LEQ);
    359 
    360     // Check negative costs
    361     NetworkSimplex<Digraph> nmcf(ngr);
    362     nmcf.lowerMap(nl1).costMap(nc).supplyMap(ns);
    363     checkMcf(nmcf, nmcf.run(),
    364       ngr, nl1, nu1, nc, ns, nmcf.UNBOUNDED, false,    0, "#A16");
    365     checkMcf(nmcf, nmcf.upperMap(nu2).run(),
    366       ngr, nl1, nu2, nc, ns, nmcf.OPTIMAL, true,  -40000, "#A17");
    367     nmcf.reset().lowerMap(nl2).costMap(nc).supplyMap(ns);
    368     checkMcf(nmcf, nmcf.run(),
    369       ngr, nl2, nu1, nc, ns, nmcf.UNBOUNDED, false,    0, "#A18");
     310             gr, l2, u, c, s5, true,  5930, "#A13", LEQ);
     311    mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4);
     312    checkMcf(mcf, mcf.run(),
     313             gr, l2, u, c, s4, false,    0, "#A14", LEQ);
    370314  }
    371315
     
    373317  {
    374318    NetworkSimplex<Digraph> mcf(gr);
    375     mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2);
     319    mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2);
    376320
    377321    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
    378              gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B1");
     322             gr, l2, u, c, s1, true,  5970, "#B1");
    379323    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
    380              gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B2");
     324             gr, l2, u, c, s1, true,  5970, "#B2");
    381325    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
    382              gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B3");
     326             gr, l2, u, c, s1, true,  5970, "#B3");
    383327    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
    384              gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B4");
     328             gr, l2, u, c, s1, true,  5970, "#B4");
    385329    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
    386              gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B5");
     330             gr, l2, u, c, s1, true,  5970, "#B5");
    387331  }
    388332
  • test/mip_test.cc

    r631 r627  
    1919#include "test_tools.h"
    2020
     21#ifdef HAVE_CONFIG_H
    2122#include <lemon/config.h>
     23#endif
    2224
    2325#ifdef LEMON_HAVE_CPLEX
  • tools/dimacs-solver.cc

    r644 r627  
    120120  ti.restart();
    121121  NetworkSimplex<Digraph, Value> ns(g);
    122   ns.lowerMap(lower).upperMap(cap).costMap(cost).supplyMap(sup);
    123   if (sum_sup > 0) ns.supplyType(ns.LEQ);
     122  ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup);
     123  if (sum_sup > 0) ns.problemType(ns.LEQ);
    124124  if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n';
    125125  ti.restart();
Note: See TracChangeset for help on using the changeset viewer.