Changes in / [829:7762cab7f372:831:cc9e0c15d747] in lemon-main
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
lemon/capacity_scaling.h
r825 r831 320 320 "The cost type of CapacityScaling must be signed"); 321 321 322 // Reset data structures 323 reset(); 324 } 325 326 /// \name Parameters 327 /// The parameters of the algorithm can be specified using these 328 /// functions. 329 330 /// @{ 331 332 /// \brief Set the lower bounds on the arcs. 333 /// 334 /// This function sets the lower bounds on the arcs. 335 /// If it is not used before calling \ref run(), the lower bounds 336 /// will be set to zero on all arcs. 337 /// 338 /// \param map An arc map storing the lower bounds. 339 /// Its \c Value type must be convertible to the \c Value type 340 /// of the algorithm. 341 /// 342 /// \return <tt>(*this)</tt> 343 template <typename LowerMap> 344 CapacityScaling& lowerMap(const LowerMap& map) { 345 _have_lower = true; 346 for (ArcIt a(_graph); a != INVALID; ++a) { 347 _lower[_arc_idf[a]] = map[a]; 348 _lower[_arc_idb[a]] = map[a]; 349 } 350 return *this; 351 } 352 353 /// \brief Set the upper bounds (capacities) on the arcs. 354 /// 355 /// This function sets the upper bounds (capacities) on the arcs. 356 /// If it is not used before calling \ref run(), the upper bounds 357 /// will be set to \ref INF on all arcs (i.e. the flow value will be 358 /// unbounded from above). 359 /// 360 /// \param map An arc map storing the upper bounds. 361 /// Its \c Value type must be convertible to the \c Value type 362 /// of the algorithm. 363 /// 364 /// \return <tt>(*this)</tt> 365 template<typename UpperMap> 366 CapacityScaling& upperMap(const UpperMap& map) { 367 for (ArcIt a(_graph); a != INVALID; ++a) { 368 _upper[_arc_idf[a]] = map[a]; 369 } 370 return *this; 371 } 372 373 /// \brief Set the costs of the arcs. 374 /// 375 /// This function sets the costs of the arcs. 376 /// If it is not used before calling \ref run(), the costs 377 /// will be set to \c 1 on all arcs. 378 /// 379 /// \param map An arc map storing the costs. 380 /// Its \c Value type must be convertible to the \c Cost type 381 /// of the algorithm. 382 /// 383 /// \return <tt>(*this)</tt> 384 template<typename CostMap> 385 CapacityScaling& costMap(const CostMap& map) { 386 for (ArcIt a(_graph); a != INVALID; ++a) { 387 _cost[_arc_idf[a]] = map[a]; 388 _cost[_arc_idb[a]] = -map[a]; 389 } 390 return *this; 391 } 392 393 /// \brief Set the supply values of the nodes. 394 /// 395 /// This function sets the supply values of the nodes. 396 /// If neither this function nor \ref stSupply() is used before 397 /// calling \ref run(), the supply of each node will be set to zero. 398 /// 399 /// \param map A node map storing the supply values. 400 /// Its \c Value type must be convertible to the \c Value type 401 /// of the algorithm. 402 /// 403 /// \return <tt>(*this)</tt> 404 template<typename SupplyMap> 405 CapacityScaling& supplyMap(const SupplyMap& map) { 406 for (NodeIt n(_graph); n != INVALID; ++n) { 407 _supply[_node_id[n]] = map[n]; 408 } 409 return *this; 410 } 411 412 /// \brief Set single source and target nodes and a supply value. 413 /// 414 /// This function sets a single source node and a single target node 415 /// and the required flow value. 416 /// If neither this function nor \ref supplyMap() is used before 417 /// calling \ref run(), the supply of each node will be set to zero. 418 /// 419 /// Using this function has the same effect as using \ref supplyMap() 420 /// with such a map in which \c k is assigned to \c s, \c -k is 421 /// assigned to \c t and all other nodes have zero supply value. 422 /// 423 /// \param s The source node. 424 /// \param t The target node. 425 /// \param k The required amount of flow from node \c s to node \c t 426 /// (i.e. the supply of \c s and the demand of \c t). 427 /// 428 /// \return <tt>(*this)</tt> 429 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { 430 for (int i = 0; i != _node_num; ++i) { 431 _supply[i] = 0; 432 } 433 _supply[_node_id[s]] = k; 434 _supply[_node_id[t]] = -k; 435 return *this; 436 } 437 438 /// @} 439 440 /// \name Execution control 441 /// The algorithm can be executed using \ref run(). 442 443 /// @{ 444 445 /// \brief Run the algorithm. 446 /// 447 /// This function runs the algorithm. 448 /// The paramters can be specified using functions \ref lowerMap(), 449 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 450 /// For example, 451 /// \code 452 /// CapacityScaling<ListDigraph> cs(graph); 453 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 454 /// .supplyMap(sup).run(); 455 /// \endcode 456 /// 457 /// This function can be called more than once. All the given parameters 458 /// are kept for the next call, unless \ref resetParams() or \ref reset() 459 /// is used, thus only the modified parameters have to be set again. 460 /// If the underlying digraph was also modified after the construction 461 /// of the class (or the last \ref reset() call), then the \ref reset() 462 /// function must be called. 463 /// 464 /// \param factor The capacity scaling factor. It must be larger than 465 /// one to use scaling. If it is less or equal to one, then scaling 466 /// will be disabled. 467 /// 468 /// \return \c INFEASIBLE if no feasible flow exists, 469 /// \n \c OPTIMAL if the problem has optimal solution 470 /// (i.e. it is feasible and bounded), and the algorithm has found 471 /// optimal flow and node potentials (primal and dual solutions), 472 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 473 /// and infinite upper bound. It means that the objective function 474 /// is unbounded on that arc, however, note that it could actually be 475 /// bounded over the feasible flows, but this algroithm cannot handle 476 /// these cases. 477 /// 478 /// \see ProblemType 479 /// \see resetParams(), reset() 480 ProblemType run(int factor = 4) { 481 _factor = factor; 482 ProblemType pt = init(); 483 if (pt != OPTIMAL) return pt; 484 return start(); 485 } 486 487 /// \brief Reset all the parameters that have been given before. 488 /// 489 /// This function resets all the paramaters that have been given 490 /// before using functions \ref lowerMap(), \ref upperMap(), 491 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 492 /// 493 /// It is useful for multiple \ref run() calls. Basically, all the given 494 /// parameters are kept for the next \ref run() call, unless 495 /// \ref resetParams() or \ref reset() is used. 496 /// If the underlying digraph was also modified after the construction 497 /// of the class or the last \ref reset() call, then the \ref reset() 498 /// function must be used, otherwise \ref resetParams() is sufficient. 499 /// 500 /// For example, 501 /// \code 502 /// CapacityScaling<ListDigraph> cs(graph); 503 /// 504 /// // First run 505 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 506 /// .supplyMap(sup).run(); 507 /// 508 /// // Run again with modified cost map (resetParams() is not called, 509 /// // so only the cost map have to be set again) 510 /// cost[e] += 100; 511 /// cs.costMap(cost).run(); 512 /// 513 /// // Run again from scratch using resetParams() 514 /// // (the lower bounds will be set to zero on all arcs) 515 /// cs.resetParams(); 516 /// cs.upperMap(capacity).costMap(cost) 517 /// .supplyMap(sup).run(); 518 /// \endcode 519 /// 520 /// \return <tt>(*this)</tt> 521 /// 522 /// \see reset(), run() 523 CapacityScaling& resetParams() { 524 for (int i = 0; i != _node_num; ++i) { 525 _supply[i] = 0; 526 } 527 for (int j = 0; j != _res_arc_num; ++j) { 528 _lower[j] = 0; 529 _upper[j] = INF; 530 _cost[j] = _forward[j] ? 1 : -1; 531 } 532 _have_lower = false; 533 return *this; 534 } 535 536 /// \brief Reset the internal data structures and all the parameters 537 /// that have been given before. 538 /// 539 /// This function resets the internal data structures and all the 540 /// paramaters that have been given before using functions \ref lowerMap(), 541 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 542 /// 543 /// It is useful for multiple \ref run() calls. Basically, all the given 544 /// parameters are kept for the next \ref run() call, unless 545 /// \ref resetParams() or \ref reset() is used. 546 /// If the underlying digraph was also modified after the construction 547 /// of the class or the last \ref reset() call, then the \ref reset() 548 /// function must be used, otherwise \ref resetParams() is sufficient. 549 /// 550 /// See \ref resetParams() for examples. 551 /// 552 /// \return <tt>(*this)</tt> 553 /// 554 /// \see resetParams(), run() 555 CapacityScaling& reset() { 322 556 // Resize vectors 323 557 _node_num = countNodes(_graph); … … 383 617 384 618 // Reset parameters 385 reset(); 386 } 387 388 /// \name Parameters 389 /// The parameters of the algorithm can be specified using these 390 /// functions. 391 392 /// @{ 393 394 /// \brief Set the lower bounds on the arcs. 395 /// 396 /// This function sets the lower bounds on the arcs. 397 /// If it is not used before calling \ref run(), the lower bounds 398 /// will be set to zero on all arcs. 399 /// 400 /// \param map An arc map storing the lower bounds. 401 /// Its \c Value type must be convertible to the \c Value type 402 /// of the algorithm. 403 /// 404 /// \return <tt>(*this)</tt> 405 template <typename LowerMap> 406 CapacityScaling& lowerMap(const LowerMap& map) { 407 _have_lower = true; 408 for (ArcIt a(_graph); a != INVALID; ++a) { 409 _lower[_arc_idf[a]] = map[a]; 410 _lower[_arc_idb[a]] = map[a]; 411 } 412 return *this; 413 } 414 415 /// \brief Set the upper bounds (capacities) on the arcs. 416 /// 417 /// This function sets the upper bounds (capacities) on the arcs. 418 /// If it is not used before calling \ref run(), the upper bounds 419 /// will be set to \ref INF on all arcs (i.e. the flow value will be 420 /// unbounded from above). 421 /// 422 /// \param map An arc map storing the upper bounds. 423 /// Its \c Value type must be convertible to the \c Value type 424 /// of the algorithm. 425 /// 426 /// \return <tt>(*this)</tt> 427 template<typename UpperMap> 428 CapacityScaling& upperMap(const UpperMap& map) { 429 for (ArcIt a(_graph); a != INVALID; ++a) { 430 _upper[_arc_idf[a]] = map[a]; 431 } 432 return *this; 433 } 434 435 /// \brief Set the costs of the arcs. 436 /// 437 /// This function sets the costs of the arcs. 438 /// If it is not used before calling \ref run(), the costs 439 /// will be set to \c 1 on all arcs. 440 /// 441 /// \param map An arc map storing the costs. 442 /// Its \c Value type must be convertible to the \c Cost type 443 /// of the algorithm. 444 /// 445 /// \return <tt>(*this)</tt> 446 template<typename CostMap> 447 CapacityScaling& costMap(const CostMap& map) { 448 for (ArcIt a(_graph); a != INVALID; ++a) { 449 _cost[_arc_idf[a]] = map[a]; 450 _cost[_arc_idb[a]] = -map[a]; 451 } 452 return *this; 453 } 454 455 /// \brief Set the supply values of the nodes. 456 /// 457 /// This function sets the supply values of the nodes. 458 /// If neither this function nor \ref stSupply() is used before 459 /// calling \ref run(), the supply of each node will be set to zero. 460 /// 461 /// \param map A node map storing the supply values. 462 /// Its \c Value type must be convertible to the \c Value type 463 /// of the algorithm. 464 /// 465 /// \return <tt>(*this)</tt> 466 template<typename SupplyMap> 467 CapacityScaling& supplyMap(const SupplyMap& map) { 468 for (NodeIt n(_graph); n != INVALID; ++n) { 469 _supply[_node_id[n]] = map[n]; 470 } 471 return *this; 472 } 473 474 /// \brief Set single source and target nodes and a supply value. 475 /// 476 /// This function sets a single source node and a single target node 477 /// and the required flow value. 478 /// If neither this function nor \ref supplyMap() is used before 479 /// calling \ref run(), the supply of each node will be set to zero. 480 /// 481 /// Using this function has the same effect as using \ref supplyMap() 482 /// with such a map in which \c k is assigned to \c s, \c -k is 483 /// assigned to \c t and all other nodes have zero supply value. 484 /// 485 /// \param s The source node. 486 /// \param t The target node. 487 /// \param k The required amount of flow from node \c s to node \c t 488 /// (i.e. the supply of \c s and the demand of \c t). 489 /// 490 /// \return <tt>(*this)</tt> 491 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { 492 for (int i = 0; i != _node_num; ++i) { 493 _supply[i] = 0; 494 } 495 _supply[_node_id[s]] = k; 496 _supply[_node_id[t]] = -k; 497 return *this; 498 } 499 500 /// @} 501 502 /// \name Execution control 503 /// The algorithm can be executed using \ref run(). 504 505 /// @{ 506 507 /// \brief Run the algorithm. 508 /// 509 /// This function runs the algorithm. 510 /// The paramters can be specified using functions \ref lowerMap(), 511 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 512 /// For example, 513 /// \code 514 /// CapacityScaling<ListDigraph> cs(graph); 515 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 516 /// .supplyMap(sup).run(); 517 /// \endcode 518 /// 519 /// This function can be called more than once. All the parameters 520 /// that have been given are kept for the next call, unless 521 /// \ref reset() is called, thus only the modified parameters 522 /// have to be set again. See \ref reset() for examples. 523 /// However, the underlying digraph must not be modified after this 524 /// class have been constructed, since it copies and extends the graph. 525 /// 526 /// \param factor The capacity scaling factor. It must be larger than 527 /// one to use scaling. If it is less or equal to one, then scaling 528 /// will be disabled. 529 /// 530 /// \return \c INFEASIBLE if no feasible flow exists, 531 /// \n \c OPTIMAL if the problem has optimal solution 532 /// (i.e. it is feasible and bounded), and the algorithm has found 533 /// optimal flow and node potentials (primal and dual solutions), 534 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 535 /// and infinite upper bound. It means that the objective function 536 /// is unbounded on that arc, however, note that it could actually be 537 /// bounded over the feasible flows, but this algroithm cannot handle 538 /// these cases. 539 /// 540 /// \see ProblemType 541 ProblemType run(int factor = 4) { 542 _factor = factor; 543 ProblemType pt = init(); 544 if (pt != OPTIMAL) return pt; 545 return start(); 546 } 547 548 /// \brief Reset all the parameters that have been given before. 549 /// 550 /// This function resets all the paramaters that have been given 551 /// before using functions \ref lowerMap(), \ref upperMap(), 552 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 553 /// 554 /// It is useful for multiple run() calls. If this function is not 555 /// used, all the parameters given before are kept for the next 556 /// \ref run() call. 557 /// However, the underlying digraph must not be modified after this 558 /// class have been constructed, since it copies and extends the graph. 559 /// 560 /// For example, 561 /// \code 562 /// CapacityScaling<ListDigraph> cs(graph); 563 /// 564 /// // First run 565 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 566 /// .supplyMap(sup).run(); 567 /// 568 /// // Run again with modified cost map (reset() is not called, 569 /// // so only the cost map have to be set again) 570 /// cost[e] += 100; 571 /// cs.costMap(cost).run(); 572 /// 573 /// // Run again from scratch using reset() 574 /// // (the lower bounds will be set to zero on all arcs) 575 /// cs.reset(); 576 /// cs.upperMap(capacity).costMap(cost) 577 /// .supplyMap(sup).run(); 578 /// \endcode 579 /// 580 /// \return <tt>(*this)</tt> 581 CapacityScaling& reset() { 582 for (int i = 0; i != _node_num; ++i) { 583 _supply[i] = 0; 584 } 585 for (int j = 0; j != _res_arc_num; ++j) { 586 _lower[j] = 0; 587 _upper[j] = INF; 588 _cost[j] = _forward[j] ? 1 : -1; 589 } 590 _have_lower = false; 619 resetParams(); 591 620 return *this; 592 621 } -
lemon/cost_scaling.h
r825 r831 337 337 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, 338 338 "The cost type of CostScaling must be signed"); 339 339 340 // Reset data structures 341 reset(); 342 } 343 344 /// \name Parameters 345 /// The parameters of the algorithm can be specified using these 346 /// functions. 347 348 /// @{ 349 350 /// \brief Set the lower bounds on the arcs. 351 /// 352 /// This function sets the lower bounds on the arcs. 353 /// If it is not used before calling \ref run(), the lower bounds 354 /// will be set to zero on all arcs. 355 /// 356 /// \param map An arc map storing the lower bounds. 357 /// Its \c Value type must be convertible to the \c Value type 358 /// of the algorithm. 359 /// 360 /// \return <tt>(*this)</tt> 361 template <typename LowerMap> 362 CostScaling& lowerMap(const LowerMap& map) { 363 _have_lower = true; 364 for (ArcIt a(_graph); a != INVALID; ++a) { 365 _lower[_arc_idf[a]] = map[a]; 366 _lower[_arc_idb[a]] = map[a]; 367 } 368 return *this; 369 } 370 371 /// \brief Set the upper bounds (capacities) on the arcs. 372 /// 373 /// This function sets the upper bounds (capacities) on the arcs. 374 /// If it is not used before calling \ref run(), the upper bounds 375 /// will be set to \ref INF on all arcs (i.e. the flow value will be 376 /// unbounded from above). 377 /// 378 /// \param map An arc map storing the upper bounds. 379 /// Its \c Value type must be convertible to the \c Value type 380 /// of the algorithm. 381 /// 382 /// \return <tt>(*this)</tt> 383 template<typename UpperMap> 384 CostScaling& upperMap(const UpperMap& map) { 385 for (ArcIt a(_graph); a != INVALID; ++a) { 386 _upper[_arc_idf[a]] = map[a]; 387 } 388 return *this; 389 } 390 391 /// \brief Set the costs of the arcs. 392 /// 393 /// This function sets the costs of the arcs. 394 /// If it is not used before calling \ref run(), the costs 395 /// will be set to \c 1 on all arcs. 396 /// 397 /// \param map An arc map storing the costs. 398 /// Its \c Value type must be convertible to the \c Cost type 399 /// of the algorithm. 400 /// 401 /// \return <tt>(*this)</tt> 402 template<typename CostMap> 403 CostScaling& costMap(const CostMap& map) { 404 for (ArcIt a(_graph); a != INVALID; ++a) { 405 _scost[_arc_idf[a]] = map[a]; 406 _scost[_arc_idb[a]] = -map[a]; 407 } 408 return *this; 409 } 410 411 /// \brief Set the supply values of the nodes. 412 /// 413 /// This function sets the supply values of the nodes. 414 /// If neither this function nor \ref stSupply() is used before 415 /// calling \ref run(), the supply of each node will be set to zero. 416 /// 417 /// \param map A node map storing the supply values. 418 /// Its \c Value type must be convertible to the \c Value type 419 /// of the algorithm. 420 /// 421 /// \return <tt>(*this)</tt> 422 template<typename SupplyMap> 423 CostScaling& supplyMap(const SupplyMap& map) { 424 for (NodeIt n(_graph); n != INVALID; ++n) { 425 _supply[_node_id[n]] = map[n]; 426 } 427 return *this; 428 } 429 430 /// \brief Set single source and target nodes and a supply value. 431 /// 432 /// This function sets a single source node and a single target node 433 /// and the required flow value. 434 /// If neither this function nor \ref supplyMap() is used before 435 /// calling \ref run(), the supply of each node will be set to zero. 436 /// 437 /// Using this function has the same effect as using \ref supplyMap() 438 /// with such a map in which \c k is assigned to \c s, \c -k is 439 /// assigned to \c t and all other nodes have zero supply value. 440 /// 441 /// \param s The source node. 442 /// \param t The target node. 443 /// \param k The required amount of flow from node \c s to node \c t 444 /// (i.e. the supply of \c s and the demand of \c t). 445 /// 446 /// \return <tt>(*this)</tt> 447 CostScaling& stSupply(const Node& s, const Node& t, Value k) { 448 for (int i = 0; i != _res_node_num; ++i) { 449 _supply[i] = 0; 450 } 451 _supply[_node_id[s]] = k; 452 _supply[_node_id[t]] = -k; 453 return *this; 454 } 455 456 /// @} 457 458 /// \name Execution control 459 /// The algorithm can be executed using \ref run(). 460 461 /// @{ 462 463 /// \brief Run the algorithm. 464 /// 465 /// This function runs the algorithm. 466 /// The paramters can be specified using functions \ref lowerMap(), 467 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 468 /// For example, 469 /// \code 470 /// CostScaling<ListDigraph> cs(graph); 471 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 472 /// .supplyMap(sup).run(); 473 /// \endcode 474 /// 475 /// This function can be called more than once. All the given parameters 476 /// are kept for the next call, unless \ref resetParams() or \ref reset() 477 /// is used, thus only the modified parameters have to be set again. 478 /// If the underlying digraph was also modified after the construction 479 /// of the class (or the last \ref reset() call), then the \ref reset() 480 /// function must be called. 481 /// 482 /// \param method The internal method that will be used in the 483 /// algorithm. For more information, see \ref Method. 484 /// \param factor The cost scaling factor. It must be larger than one. 485 /// 486 /// \return \c INFEASIBLE if no feasible flow exists, 487 /// \n \c OPTIMAL if the problem has optimal solution 488 /// (i.e. it is feasible and bounded), and the algorithm has found 489 /// optimal flow and node potentials (primal and dual solutions), 490 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 491 /// and infinite upper bound. It means that the objective function 492 /// is unbounded on that arc, however, note that it could actually be 493 /// bounded over the feasible flows, but this algroithm cannot handle 494 /// these cases. 495 /// 496 /// \see ProblemType, Method 497 /// \see resetParams(), reset() 498 ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { 499 _alpha = factor; 500 ProblemType pt = init(); 501 if (pt != OPTIMAL) return pt; 502 start(method); 503 return OPTIMAL; 504 } 505 506 /// \brief Reset all the parameters that have been given before. 507 /// 508 /// This function resets all the paramaters that have been given 509 /// before using functions \ref lowerMap(), \ref upperMap(), 510 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 511 /// 512 /// It is useful for multiple \ref run() calls. Basically, all the given 513 /// parameters are kept for the next \ref run() call, unless 514 /// \ref resetParams() or \ref reset() is used. 515 /// If the underlying digraph was also modified after the construction 516 /// of the class or the last \ref reset() call, then the \ref reset() 517 /// function must be used, otherwise \ref resetParams() is sufficient. 518 /// 519 /// For example, 520 /// \code 521 /// CostScaling<ListDigraph> cs(graph); 522 /// 523 /// // First run 524 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 525 /// .supplyMap(sup).run(); 526 /// 527 /// // Run again with modified cost map (resetParams() is not called, 528 /// // so only the cost map have to be set again) 529 /// cost[e] += 100; 530 /// cs.costMap(cost).run(); 531 /// 532 /// // Run again from scratch using resetParams() 533 /// // (the lower bounds will be set to zero on all arcs) 534 /// cs.resetParams(); 535 /// cs.upperMap(capacity).costMap(cost) 536 /// .supplyMap(sup).run(); 537 /// \endcode 538 /// 539 /// \return <tt>(*this)</tt> 540 /// 541 /// \see reset(), run() 542 CostScaling& resetParams() { 543 for (int i = 0; i != _res_node_num; ++i) { 544 _supply[i] = 0; 545 } 546 int limit = _first_out[_root]; 547 for (int j = 0; j != limit; ++j) { 548 _lower[j] = 0; 549 _upper[j] = INF; 550 _scost[j] = _forward[j] ? 1 : -1; 551 } 552 for (int j = limit; j != _res_arc_num; ++j) { 553 _lower[j] = 0; 554 _upper[j] = INF; 555 _scost[j] = 0; 556 _scost[_reverse[j]] = 0; 557 } 558 _have_lower = false; 559 return *this; 560 } 561 562 /// \brief Reset all the parameters that have been given before. 563 /// 564 /// This function resets all the paramaters that have been given 565 /// before using functions \ref lowerMap(), \ref upperMap(), 566 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 567 /// 568 /// It is useful for multiple run() calls. If this function is not 569 /// used, all the parameters given before are kept for the next 570 /// \ref run() call. 571 /// However, the underlying digraph must not be modified after this 572 /// class have been constructed, since it copies and extends the graph. 573 /// \return <tt>(*this)</tt> 574 CostScaling& reset() { 340 575 // Resize vectors 341 576 _node_num = countNodes(_graph); … … 405 640 406 641 // Reset parameters 407 reset(); 408 } 409 410 /// \name Parameters 411 /// The parameters of the algorithm can be specified using these 412 /// functions. 413 414 /// @{ 415 416 /// \brief Set the lower bounds on the arcs. 417 /// 418 /// This function sets the lower bounds on the arcs. 419 /// If it is not used before calling \ref run(), the lower bounds 420 /// will be set to zero on all arcs. 421 /// 422 /// \param map An arc map storing the lower bounds. 423 /// Its \c Value type must be convertible to the \c Value type 424 /// of the algorithm. 425 /// 426 /// \return <tt>(*this)</tt> 427 template <typename LowerMap> 428 CostScaling& lowerMap(const LowerMap& map) { 429 _have_lower = true; 430 for (ArcIt a(_graph); a != INVALID; ++a) { 431 _lower[_arc_idf[a]] = map[a]; 432 _lower[_arc_idb[a]] = map[a]; 433 } 434 return *this; 435 } 436 437 /// \brief Set the upper bounds (capacities) on the arcs. 438 /// 439 /// This function sets the upper bounds (capacities) on the arcs. 440 /// If it is not used before calling \ref run(), the upper bounds 441 /// will be set to \ref INF on all arcs (i.e. the flow value will be 442 /// unbounded from above). 443 /// 444 /// \param map An arc map storing the upper bounds. 445 /// Its \c Value type must be convertible to the \c Value type 446 /// of the algorithm. 447 /// 448 /// \return <tt>(*this)</tt> 449 template<typename UpperMap> 450 CostScaling& upperMap(const UpperMap& map) { 451 for (ArcIt a(_graph); a != INVALID; ++a) { 452 _upper[_arc_idf[a]] = map[a]; 453 } 454 return *this; 455 } 456 457 /// \brief Set the costs of the arcs. 458 /// 459 /// This function sets the costs of the arcs. 460 /// If it is not used before calling \ref run(), the costs 461 /// will be set to \c 1 on all arcs. 462 /// 463 /// \param map An arc map storing the costs. 464 /// Its \c Value type must be convertible to the \c Cost type 465 /// of the algorithm. 466 /// 467 /// \return <tt>(*this)</tt> 468 template<typename CostMap> 469 CostScaling& costMap(const CostMap& map) { 470 for (ArcIt a(_graph); a != INVALID; ++a) { 471 _scost[_arc_idf[a]] = map[a]; 472 _scost[_arc_idb[a]] = -map[a]; 473 } 474 return *this; 475 } 476 477 /// \brief Set the supply values of the nodes. 478 /// 479 /// This function sets the supply values of the nodes. 480 /// If neither this function nor \ref stSupply() is used before 481 /// calling \ref run(), the supply of each node will be set to zero. 482 /// 483 /// \param map A node map storing the supply values. 484 /// Its \c Value type must be convertible to the \c Value type 485 /// of the algorithm. 486 /// 487 /// \return <tt>(*this)</tt> 488 template<typename SupplyMap> 489 CostScaling& supplyMap(const SupplyMap& map) { 490 for (NodeIt n(_graph); n != INVALID; ++n) { 491 _supply[_node_id[n]] = map[n]; 492 } 493 return *this; 494 } 495 496 /// \brief Set single source and target nodes and a supply value. 497 /// 498 /// This function sets a single source node and a single target node 499 /// and the required flow value. 500 /// If neither this function nor \ref supplyMap() is used before 501 /// calling \ref run(), the supply of each node will be set to zero. 502 /// 503 /// Using this function has the same effect as using \ref supplyMap() 504 /// with such a map in which \c k is assigned to \c s, \c -k is 505 /// assigned to \c t and all other nodes have zero supply value. 506 /// 507 /// \param s The source node. 508 /// \param t The target node. 509 /// \param k The required amount of flow from node \c s to node \c t 510 /// (i.e. the supply of \c s and the demand of \c t). 511 /// 512 /// \return <tt>(*this)</tt> 513 CostScaling& stSupply(const Node& s, const Node& t, Value k) { 514 for (int i = 0; i != _res_node_num; ++i) { 515 _supply[i] = 0; 516 } 517 _supply[_node_id[s]] = k; 518 _supply[_node_id[t]] = -k; 519 return *this; 520 } 521 522 /// @} 523 524 /// \name Execution control 525 /// The algorithm can be executed using \ref run(). 526 527 /// @{ 528 529 /// \brief Run the algorithm. 530 /// 531 /// This function runs the algorithm. 532 /// The paramters can be specified using functions \ref lowerMap(), 533 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 534 /// For example, 535 /// \code 536 /// CostScaling<ListDigraph> cs(graph); 537 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 538 /// .supplyMap(sup).run(); 539 /// \endcode 540 /// 541 /// This function can be called more than once. All the parameters 542 /// that have been given are kept for the next call, unless 543 /// \ref reset() is called, thus only the modified parameters 544 /// have to be set again. See \ref reset() for examples. 545 /// However, the underlying digraph must not be modified after this 546 /// class have been constructed, since it copies and extends the graph. 547 /// 548 /// \param method The internal method that will be used in the 549 /// algorithm. For more information, see \ref Method. 550 /// \param factor The cost scaling factor. It must be larger than one. 551 /// 552 /// \return \c INFEASIBLE if no feasible flow exists, 553 /// \n \c OPTIMAL if the problem has optimal solution 554 /// (i.e. it is feasible and bounded), and the algorithm has found 555 /// optimal flow and node potentials (primal and dual solutions), 556 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 557 /// and infinite upper bound. It means that the objective function 558 /// is unbounded on that arc, however, note that it could actually be 559 /// bounded over the feasible flows, but this algroithm cannot handle 560 /// these cases. 561 /// 562 /// \see ProblemType, Method 563 ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { 564 _alpha = factor; 565 ProblemType pt = init(); 566 if (pt != OPTIMAL) return pt; 567 start(method); 568 return OPTIMAL; 569 } 570 571 /// \brief Reset all the parameters that have been given before. 572 /// 573 /// This function resets all the paramaters that have been given 574 /// before using functions \ref lowerMap(), \ref upperMap(), 575 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 576 /// 577 /// It is useful for multiple run() calls. If this function is not 578 /// used, all the parameters given before are kept for the next 579 /// \ref run() call. 580 /// However, the underlying digraph must not be modified after this 581 /// class have been constructed, since it copies and extends the graph. 582 /// 583 /// For example, 584 /// \code 585 /// CostScaling<ListDigraph> cs(graph); 586 /// 587 /// // First run 588 /// cs.lowerMap(lower).upperMap(upper).costMap(cost) 589 /// .supplyMap(sup).run(); 590 /// 591 /// // Run again with modified cost map (reset() is not called, 592 /// // so only the cost map have to be set again) 593 /// cost[e] += 100; 594 /// cs.costMap(cost).run(); 595 /// 596 /// // Run again from scratch using reset() 597 /// // (the lower bounds will be set to zero on all arcs) 598 /// cs.reset(); 599 /// cs.upperMap(capacity).costMap(cost) 600 /// .supplyMap(sup).run(); 601 /// \endcode 602 /// 603 /// \return <tt>(*this)</tt> 604 CostScaling& reset() { 605 for (int i = 0; i != _res_node_num; ++i) { 606 _supply[i] = 0; 607 } 608 int limit = _first_out[_root]; 609 for (int j = 0; j != limit; ++j) { 610 _lower[j] = 0; 611 _upper[j] = INF; 612 _scost[j] = _forward[j] ? 1 : -1; 613 } 614 for (int j = limit; j != _res_arc_num; ++j) { 615 _lower[j] = 0; 616 _upper[j] = INF; 617 _scost[j] = 0; 618 _scost[_reverse[j]] = 0; 619 } 620 _have_lower = false; 642 resetParams(); 621 643 return *this; 622 644 } -
lemon/cycle_canceling.h
r820 r830 251 251 "The cost type of CycleCanceling must be signed"); 252 252 253 // Reset data structures 254 reset(); 255 } 256 257 /// \name Parameters 258 /// The parameters of the algorithm can be specified using these 259 /// functions. 260 261 /// @{ 262 263 /// \brief Set the lower bounds on the arcs. 264 /// 265 /// This function sets the lower bounds on the arcs. 266 /// If it is not used before calling \ref run(), the lower bounds 267 /// will be set to zero on all arcs. 268 /// 269 /// \param map An arc map storing the lower bounds. 270 /// Its \c Value type must be convertible to the \c Value type 271 /// of the algorithm. 272 /// 273 /// \return <tt>(*this)</tt> 274 template <typename LowerMap> 275 CycleCanceling& lowerMap(const LowerMap& map) { 276 _have_lower = true; 277 for (ArcIt a(_graph); a != INVALID; ++a) { 278 _lower[_arc_idf[a]] = map[a]; 279 _lower[_arc_idb[a]] = map[a]; 280 } 281 return *this; 282 } 283 284 /// \brief Set the upper bounds (capacities) on the arcs. 285 /// 286 /// This function sets the upper bounds (capacities) on the arcs. 287 /// If it is not used before calling \ref run(), the upper bounds 288 /// will be set to \ref INF on all arcs (i.e. the flow value will be 289 /// unbounded from above). 290 /// 291 /// \param map An arc map storing the upper bounds. 292 /// Its \c Value type must be convertible to the \c Value type 293 /// of the algorithm. 294 /// 295 /// \return <tt>(*this)</tt> 296 template<typename UpperMap> 297 CycleCanceling& upperMap(const UpperMap& map) { 298 for (ArcIt a(_graph); a != INVALID; ++a) { 299 _upper[_arc_idf[a]] = map[a]; 300 } 301 return *this; 302 } 303 304 /// \brief Set the costs of the arcs. 305 /// 306 /// This function sets the costs of the arcs. 307 /// If it is not used before calling \ref run(), the costs 308 /// will be set to \c 1 on all arcs. 309 /// 310 /// \param map An arc map storing the costs. 311 /// Its \c Value type must be convertible to the \c Cost type 312 /// of the algorithm. 313 /// 314 /// \return <tt>(*this)</tt> 315 template<typename CostMap> 316 CycleCanceling& costMap(const CostMap& map) { 317 for (ArcIt a(_graph); a != INVALID; ++a) { 318 _cost[_arc_idf[a]] = map[a]; 319 _cost[_arc_idb[a]] = -map[a]; 320 } 321 return *this; 322 } 323 324 /// \brief Set the supply values of the nodes. 325 /// 326 /// This function sets the supply values of the nodes. 327 /// If neither this function nor \ref stSupply() is used before 328 /// calling \ref run(), the supply of each node will be set to zero. 329 /// 330 /// \param map A node map storing the supply values. 331 /// Its \c Value type must be convertible to the \c Value type 332 /// of the algorithm. 333 /// 334 /// \return <tt>(*this)</tt> 335 template<typename SupplyMap> 336 CycleCanceling& supplyMap(const SupplyMap& map) { 337 for (NodeIt n(_graph); n != INVALID; ++n) { 338 _supply[_node_id[n]] = map[n]; 339 } 340 return *this; 341 } 342 343 /// \brief Set single source and target nodes and a supply value. 344 /// 345 /// This function sets a single source node and a single target node 346 /// and the required flow value. 347 /// If neither this function nor \ref supplyMap() is used before 348 /// calling \ref run(), the supply of each node will be set to zero. 349 /// 350 /// Using this function has the same effect as using \ref supplyMap() 351 /// with such a map in which \c k is assigned to \c s, \c -k is 352 /// assigned to \c t and all other nodes have zero supply value. 353 /// 354 /// \param s The source node. 355 /// \param t The target node. 356 /// \param k The required amount of flow from node \c s to node \c t 357 /// (i.e. the supply of \c s and the demand of \c t). 358 /// 359 /// \return <tt>(*this)</tt> 360 CycleCanceling& stSupply(const Node& s, const Node& t, Value k) { 361 for (int i = 0; i != _res_node_num; ++i) { 362 _supply[i] = 0; 363 } 364 _supply[_node_id[s]] = k; 365 _supply[_node_id[t]] = -k; 366 return *this; 367 } 368 369 /// @} 370 371 /// \name Execution control 372 /// The algorithm can be executed using \ref run(). 373 374 /// @{ 375 376 /// \brief Run the algorithm. 377 /// 378 /// This function runs the algorithm. 379 /// The paramters can be specified using functions \ref lowerMap(), 380 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 381 /// For example, 382 /// \code 383 /// CycleCanceling<ListDigraph> cc(graph); 384 /// cc.lowerMap(lower).upperMap(upper).costMap(cost) 385 /// .supplyMap(sup).run(); 386 /// \endcode 387 /// 388 /// This function can be called more than once. All the given parameters 389 /// are kept for the next call, unless \ref resetParams() or \ref reset() 390 /// is used, thus only the modified parameters have to be set again. 391 /// If the underlying digraph was also modified after the construction 392 /// of the class (or the last \ref reset() call), then the \ref reset() 393 /// function must be called. 394 /// 395 /// \param method The cycle-canceling method that will be used. 396 /// For more information, see \ref Method. 397 /// 398 /// \return \c INFEASIBLE if no feasible flow exists, 399 /// \n \c OPTIMAL if the problem has optimal solution 400 /// (i.e. it is feasible and bounded), and the algorithm has found 401 /// optimal flow and node potentials (primal and dual solutions), 402 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 403 /// and infinite upper bound. It means that the objective function 404 /// is unbounded on that arc, however, note that it could actually be 405 /// bounded over the feasible flows, but this algroithm cannot handle 406 /// these cases. 407 /// 408 /// \see ProblemType, Method 409 /// \see resetParams(), reset() 410 ProblemType run(Method method = CANCEL_AND_TIGHTEN) { 411 ProblemType pt = init(); 412 if (pt != OPTIMAL) return pt; 413 start(method); 414 return OPTIMAL; 415 } 416 417 /// \brief Reset all the parameters that have been given before. 418 /// 419 /// This function resets all the paramaters that have been given 420 /// before using functions \ref lowerMap(), \ref upperMap(), 421 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 422 /// 423 /// It is useful for multiple \ref run() calls. Basically, all the given 424 /// parameters are kept for the next \ref run() call, unless 425 /// \ref resetParams() or \ref reset() is used. 426 /// If the underlying digraph was also modified after the construction 427 /// of the class or the last \ref reset() call, then the \ref reset() 428 /// function must be used, otherwise \ref resetParams() is sufficient. 429 /// 430 /// For example, 431 /// \code 432 /// CycleCanceling<ListDigraph> cs(graph); 433 /// 434 /// // First run 435 /// cc.lowerMap(lower).upperMap(upper).costMap(cost) 436 /// .supplyMap(sup).run(); 437 /// 438 /// // Run again with modified cost map (resetParams() is not called, 439 /// // so only the cost map have to be set again) 440 /// cost[e] += 100; 441 /// cc.costMap(cost).run(); 442 /// 443 /// // Run again from scratch using resetParams() 444 /// // (the lower bounds will be set to zero on all arcs) 445 /// cc.resetParams(); 446 /// cc.upperMap(capacity).costMap(cost) 447 /// .supplyMap(sup).run(); 448 /// \endcode 449 /// 450 /// \return <tt>(*this)</tt> 451 /// 452 /// \see reset(), run() 453 CycleCanceling& resetParams() { 454 for (int i = 0; i != _res_node_num; ++i) { 455 _supply[i] = 0; 456 } 457 int limit = _first_out[_root]; 458 for (int j = 0; j != limit; ++j) { 459 _lower[j] = 0; 460 _upper[j] = INF; 461 _cost[j] = _forward[j] ? 1 : -1; 462 } 463 for (int j = limit; j != _res_arc_num; ++j) { 464 _lower[j] = 0; 465 _upper[j] = INF; 466 _cost[j] = 0; 467 _cost[_reverse[j]] = 0; 468 } 469 _have_lower = false; 470 return *this; 471 } 472 473 /// \brief Reset the internal data structures and all the parameters 474 /// that have been given before. 475 /// 476 /// This function resets the internal data structures and all the 477 /// paramaters that have been given before using functions \ref lowerMap(), 478 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 479 /// 480 /// It is useful for multiple \ref run() calls. Basically, all the given 481 /// parameters are kept for the next \ref run() call, unless 482 /// \ref resetParams() or \ref reset() is used. 483 /// If the underlying digraph was also modified after the construction 484 /// of the class or the last \ref reset() call, then the \ref reset() 485 /// function must be used, otherwise \ref resetParams() is sufficient. 486 /// 487 /// See \ref resetParams() for examples. 488 /// 489 /// \return <tt>(*this)</tt> 490 /// 491 /// \see resetParams(), run() 492 CycleCanceling& reset() { 253 493 // Resize vectors 254 494 _node_num = countNodes(_graph); … … 316 556 317 557 // Reset parameters 318 reset(); 319 } 320 321 /// \name Parameters 322 /// The parameters of the algorithm can be specified using these 323 /// functions. 324 325 /// @{ 326 327 /// \brief Set the lower bounds on the arcs. 328 /// 329 /// This function sets the lower bounds on the arcs. 330 /// If it is not used before calling \ref run(), the lower bounds 331 /// will be set to zero on all arcs. 332 /// 333 /// \param map An arc map storing the lower bounds. 334 /// Its \c Value type must be convertible to the \c Value type 335 /// of the algorithm. 336 /// 337 /// \return <tt>(*this)</tt> 338 template <typename LowerMap> 339 CycleCanceling& lowerMap(const LowerMap& map) { 340 _have_lower = true; 341 for (ArcIt a(_graph); a != INVALID; ++a) { 342 _lower[_arc_idf[a]] = map[a]; 343 _lower[_arc_idb[a]] = map[a]; 344 } 345 return *this; 346 } 347 348 /// \brief Set the upper bounds (capacities) on the arcs. 349 /// 350 /// This function sets the upper bounds (capacities) on the arcs. 351 /// If it is not used before calling \ref run(), the upper bounds 352 /// will be set to \ref INF on all arcs (i.e. the flow value will be 353 /// unbounded from above). 354 /// 355 /// \param map An arc map storing the upper bounds. 356 /// Its \c Value type must be convertible to the \c Value type 357 /// of the algorithm. 358 /// 359 /// \return <tt>(*this)</tt> 360 template<typename UpperMap> 361 CycleCanceling& upperMap(const UpperMap& map) { 362 for (ArcIt a(_graph); a != INVALID; ++a) { 363 _upper[_arc_idf[a]] = map[a]; 364 } 365 return *this; 366 } 367 368 /// \brief Set the costs of the arcs. 369 /// 370 /// This function sets the costs of the arcs. 371 /// If it is not used before calling \ref run(), the costs 372 /// will be set to \c 1 on all arcs. 373 /// 374 /// \param map An arc map storing the costs. 375 /// Its \c Value type must be convertible to the \c Cost type 376 /// of the algorithm. 377 /// 378 /// \return <tt>(*this)</tt> 379 template<typename CostMap> 380 CycleCanceling& costMap(const CostMap& map) { 381 for (ArcIt a(_graph); a != INVALID; ++a) { 382 _cost[_arc_idf[a]] = map[a]; 383 _cost[_arc_idb[a]] = -map[a]; 384 } 385 return *this; 386 } 387 388 /// \brief Set the supply values of the nodes. 389 /// 390 /// This function sets the supply values of the nodes. 391 /// If neither this function nor \ref stSupply() is used before 392 /// calling \ref run(), the supply of each node will be set to zero. 393 /// 394 /// \param map A node map storing the supply values. 395 /// Its \c Value type must be convertible to the \c Value type 396 /// of the algorithm. 397 /// 398 /// \return <tt>(*this)</tt> 399 template<typename SupplyMap> 400 CycleCanceling& supplyMap(const SupplyMap& map) { 401 for (NodeIt n(_graph); n != INVALID; ++n) { 402 _supply[_node_id[n]] = map[n]; 403 } 404 return *this; 405 } 406 407 /// \brief Set single source and target nodes and a supply value. 408 /// 409 /// This function sets a single source node and a single target node 410 /// and the required flow value. 411 /// If neither this function nor \ref supplyMap() is used before 412 /// calling \ref run(), the supply of each node will be set to zero. 413 /// 414 /// Using this function has the same effect as using \ref supplyMap() 415 /// with such a map in which \c k is assigned to \c s, \c -k is 416 /// assigned to \c t and all other nodes have zero supply value. 417 /// 418 /// \param s The source node. 419 /// \param t The target node. 420 /// \param k The required amount of flow from node \c s to node \c t 421 /// (i.e. the supply of \c s and the demand of \c t). 422 /// 423 /// \return <tt>(*this)</tt> 424 CycleCanceling& stSupply(const Node& s, const Node& t, Value k) { 425 for (int i = 0; i != _res_node_num; ++i) { 426 _supply[i] = 0; 427 } 428 _supply[_node_id[s]] = k; 429 _supply[_node_id[t]] = -k; 430 return *this; 431 } 432 433 /// @} 434 435 /// \name Execution control 436 /// The algorithm can be executed using \ref run(). 437 438 /// @{ 439 440 /// \brief Run the algorithm. 441 /// 442 /// This function runs the algorithm. 443 /// The paramters can be specified using functions \ref lowerMap(), 444 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). 445 /// For example, 446 /// \code 447 /// CycleCanceling<ListDigraph> cc(graph); 448 /// cc.lowerMap(lower).upperMap(upper).costMap(cost) 449 /// .supplyMap(sup).run(); 450 /// \endcode 451 /// 452 /// This function can be called more than once. All the parameters 453 /// that have been given are kept for the next call, unless 454 /// \ref reset() is called, thus only the modified parameters 455 /// have to be set again. See \ref reset() for examples. 456 /// However, the underlying digraph must not be modified after this 457 /// class have been constructed, since it copies and extends the graph. 458 /// 459 /// \param method The cycle-canceling method that will be used. 460 /// For more information, see \ref Method. 461 /// 462 /// \return \c INFEASIBLE if no feasible flow exists, 463 /// \n \c OPTIMAL if the problem has optimal solution 464 /// (i.e. it is feasible and bounded), and the algorithm has found 465 /// optimal flow and node potentials (primal and dual solutions), 466 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost 467 /// and infinite upper bound. It means that the objective function 468 /// is unbounded on that arc, however, note that it could actually be 469 /// bounded over the feasible flows, but this algroithm cannot handle 470 /// these cases. 471 /// 472 /// \see ProblemType, Method 473 ProblemType run(Method method = CANCEL_AND_TIGHTEN) { 474 ProblemType pt = init(); 475 if (pt != OPTIMAL) return pt; 476 start(method); 477 return OPTIMAL; 478 } 479 480 /// \brief Reset all the parameters that have been given before. 481 /// 482 /// This function resets all the paramaters that have been given 483 /// before using functions \ref lowerMap(), \ref upperMap(), 484 /// \ref costMap(), \ref supplyMap(), \ref stSupply(). 485 /// 486 /// It is useful for multiple run() calls. If this function is not 487 /// used, all the parameters given before are kept for the next 488 /// \ref run() call. 489 /// However, the underlying digraph must not be modified after this 490 /// class have been constructed, since it copies and extends the graph. 491 /// 492 /// For example, 493 /// \code 494 /// CycleCanceling<ListDigraph> cs(graph); 495 /// 496 /// // First run 497 /// cc.lowerMap(lower).upperMap(upper).costMap(cost) 498 /// .supplyMap(sup).run(); 499 /// 500 /// // Run again with modified cost map (reset() is not called, 501 /// // so only the cost map have to be set again) 502 /// cost[e] += 100; 503 /// cc.costMap(cost).run(); 504 /// 505 /// // Run again from scratch using reset() 506 /// // (the lower bounds will be set to zero on all arcs) 507 /// cc.reset(); 508 /// cc.upperMap(capacity).costMap(cost) 509 /// .supplyMap(sup).run(); 510 /// \endcode 511 /// 512 /// \return <tt>(*this)</tt> 513 CycleCanceling& reset() { 514 for (int i = 0; i != _res_node_num; ++i) { 515 _supply[i] = 0; 516 } 517 int limit = _first_out[_root]; 518 for (int j = 0; j != limit; ++j) { 519 _lower[j] = 0; 520 _upper[j] = INF; 521 _cost[j] = _forward[j] ? 1 : -1; 522 } 523 for (int j = limit; j != _res_arc_num; ++j) { 524 _lower[j] = 0; 525 _upper[j] = INF; 526 _cost[j] = 0; 527 _cost[_reverse[j]] = 0; 528 } 529 _have_lower = false; 558 resetParams(); 530 559 return *this; 531 560 } -
lemon/network_simplex.h
r812 r830 195 195 IntVector _source; 196 196 IntVector _target; 197 bool _arc_mixing; 197 198 198 199 // Node and arc data … … 634 635 NetworkSimplex(const GR& graph, bool arc_mixing = false) : 635 636 _graph(graph), _node_id(graph), _arc_id(graph), 637 _arc_mixing(arc_mixing), 636 638 MAX(std::numeric_limits<Value>::max()), 637 639 INF(std::numeric_limits<Value>::has_infinity ? … … 644 646 "The cost type of NetworkSimplex must be signed"); 645 647 646 // Resize vectors 647 _node_num = countNodes(_graph); 648 _arc_num = countArcs(_graph); 649 int all_node_num = _node_num + 1; 650 int max_arc_num = _arc_num + 2 * _node_num; 651 652 _source.resize(max_arc_num); 653 _target.resize(max_arc_num); 654 655 _lower.resize(_arc_num); 656 _upper.resize(_arc_num); 657 _cap.resize(max_arc_num); 658 _cost.resize(max_arc_num); 659 _supply.resize(all_node_num); 660 _flow.resize(max_arc_num); 661 _pi.resize(all_node_num); 662 663 _parent.resize(all_node_num); 664 _pred.resize(all_node_num); 665 _forward.resize(all_node_num); 666 _thread.resize(all_node_num); 667 _rev_thread.resize(all_node_num); 668 _succ_num.resize(all_node_num); 669 _last_succ.resize(all_node_num); 670 _state.resize(max_arc_num); 671 672 // Copy the graph 673 int i = 0; 674 for (NodeIt n(_graph); n != INVALID; ++n, ++i) { 675 _node_id[n] = i; 676 } 677 if (arc_mixing) { 678 // Store the arcs in a mixed order 679 int k = std::max(int(std::sqrt(double(_arc_num))), 10); 680 int i = 0, j = 0; 681 for (ArcIt a(_graph); a != INVALID; ++a) { 682 _arc_id[a] = i; 683 _source[i] = _node_id[_graph.source(a)]; 684 _target[i] = _node_id[_graph.target(a)]; 685 if ((i += k) >= _arc_num) i = ++j; 686 } 687 } else { 688 // Store the arcs in the original order 689 int i = 0; 690 for (ArcIt a(_graph); a != INVALID; ++a, ++i) { 691 _arc_id[a] = i; 692 _source[i] = _node_id[_graph.source(a)]; 693 _target[i] = _node_id[_graph.target(a)]; 694 } 695 } 696 697 // Reset parameters 648 // Reset data structures 698 649 reset(); 699 650 } … … 843 794 /// \endcode 844 795 /// 845 /// This function can be called more than once. All the parameters846 /// that have been given are kept for the next call, unless847 /// \ref reset() is called, thus only the modified parameters848 /// have to be set again. See \ref reset() for examples.849 /// However, the underlying digraph must not be modified after this850 /// class have been constructed, since it copies and extends the graph.796 /// This function can be called more than once. All the given parameters 797 /// are kept for the next call, unless \ref resetParams() or \ref reset() 798 /// is used, thus only the modified parameters have to be set again. 799 /// If the underlying digraph was also modified after the construction 800 /// of the class (or the last \ref reset() call), then the \ref reset() 801 /// function must be called. 851 802 /// 852 803 /// \param pivot_rule The pivot rule that will be used during the … … 862 813 /// 863 814 /// \see ProblemType, PivotRule 815 /// \see resetParams(), reset() 864 816 ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { 865 817 if (!init()) return INFEASIBLE; … … 873 825 /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). 874 826 /// 875 /// It is useful for multiple run() calls. If this function is not 876 /// used, all the parameters given before are kept for the next 877 /// \ref run() call. 878 /// However, the underlying digraph must not be modified after this 879 /// class have been constructed, since it copies and extends the graph. 827 /// It is useful for multiple \ref run() calls. Basically, all the given 828 /// parameters are kept for the next \ref run() call, unless 829 /// \ref resetParams() or \ref reset() is used. 830 /// If the underlying digraph was also modified after the construction 831 /// of the class or the last \ref reset() call, then the \ref reset() 832 /// function must be used, otherwise \ref resetParams() is sufficient. 880 833 /// 881 834 /// For example, … … 887 840 /// .supplyMap(sup).run(); 888 841 /// 889 /// // Run again with modified cost map (reset () is not called,842 /// // Run again with modified cost map (resetParams() is not called, 890 843 /// // so only the cost map have to be set again) 891 844 /// cost[e] += 100; 892 845 /// ns.costMap(cost).run(); 893 846 /// 894 /// // Run again from scratch using reset ()847 /// // Run again from scratch using resetParams() 895 848 /// // (the lower bounds will be set to zero on all arcs) 896 /// ns.reset ();849 /// ns.resetParams(); 897 850 /// ns.upperMap(capacity).costMap(cost) 898 851 /// .supplyMap(sup).run(); … … 900 853 /// 901 854 /// \return <tt>(*this)</tt> 902 NetworkSimplex& reset() { 855 /// 856 /// \see reset(), run() 857 NetworkSimplex& resetParams() { 903 858 for (int i = 0; i != _node_num; ++i) { 904 859 _supply[i] = 0; … … 914 869 } 915 870 871 /// \brief Reset the internal data structures and all the parameters 872 /// that have been given before. 873 /// 874 /// This function resets the internal data structures and all the 875 /// paramaters that have been given before using functions \ref lowerMap(), 876 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 877 /// \ref supplyType(). 878 /// 879 /// It is useful for multiple \ref run() calls. Basically, all the given 880 /// parameters are kept for the next \ref run() call, unless 881 /// \ref resetParams() or \ref reset() is used. 882 /// If the underlying digraph was also modified after the construction 883 /// of the class or the last \ref reset() call, then the \ref reset() 884 /// function must be used, otherwise \ref resetParams() is sufficient. 885 /// 886 /// See \ref resetParams() for examples. 887 /// 888 /// \return <tt>(*this)</tt> 889 /// 890 /// \see resetParams(), run() 891 NetworkSimplex& reset() { 892 // Resize vectors 893 _node_num = countNodes(_graph); 894 _arc_num = countArcs(_graph); 895 int all_node_num = _node_num + 1; 896 int max_arc_num = _arc_num + 2 * _node_num; 897 898 _source.resize(max_arc_num); 899 _target.resize(max_arc_num); 900 901 _lower.resize(_arc_num); 902 _upper.resize(_arc_num); 903 _cap.resize(max_arc_num); 904 _cost.resize(max_arc_num); 905 _supply.resize(all_node_num); 906 _flow.resize(max_arc_num); 907 _pi.resize(all_node_num); 908 909 _parent.resize(all_node_num); 910 _pred.resize(all_node_num); 911 _forward.resize(all_node_num); 912 _thread.resize(all_node_num); 913 _rev_thread.resize(all_node_num); 914 _succ_num.resize(all_node_num); 915 _last_succ.resize(all_node_num); 916 _state.resize(max_arc_num); 917 918 // Copy the graph 919 int i = 0; 920 for (NodeIt n(_graph); n != INVALID; ++n, ++i) { 921 _node_id[n] = i; 922 } 923 if (_arc_mixing) { 924 // Store the arcs in a mixed order 925 int k = std::max(int(std::sqrt(double(_arc_num))), 10); 926 int i = 0, j = 0; 927 for (ArcIt a(_graph); a != INVALID; ++a) { 928 _arc_id[a] = i; 929 _source[i] = _node_id[_graph.source(a)]; 930 _target[i] = _node_id[_graph.target(a)]; 931 if ((i += k) >= _arc_num) i = ++j; 932 } 933 } else { 934 // Store the arcs in the original order 935 int i = 0; 936 for (ArcIt a(_graph); a != INVALID; ++a, ++i) { 937 _arc_id[a] = i; 938 _source[i] = _node_id[_graph.source(a)]; 939 _target[i] = _node_id[_graph.target(a)]; 940 } 941 } 942 943 // Reset parameters 944 resetParams(); 945 return *this; 946 } 947 916 948 /// @} 917 949 -
test/min_cost_flow_test.cc
r819 r830 158 158 const MCF& const_mcf = mcf; 159 159 160 b = mcf.reset() 160 b = mcf.reset().resetParams() 161 161 .lowerMap(me.lower) 162 162 .upperMap(me.upper) … … 347 347 checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s2, 348 348 mcf1.OPTIMAL, true, 8010, test_str + "-4"); 349 mcf1.reset ().supplyMap(s1);349 mcf1.resetParams().supplyMap(s1); 350 350 checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s1, 351 351 mcf1.OPTIMAL, true, 74, test_str + "-5"); … … 364 364 365 365 // Tests for the GEQ form 366 mcf1.reset ().upperMap(u).costMap(c).supplyMap(s5);366 mcf1.resetParams().upperMap(u).costMap(c).supplyMap(s5); 367 367 checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s5, 368 368 mcf1.OPTIMAL, true, 3530, test_str + "-10", GEQ); … … 381 381 checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u2, neg1_c, neg1_s, 382 382 mcf2.OPTIMAL, true, -40000, test_str + "-14"); 383 mcf2.reset ().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s);383 mcf2.resetParams().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s); 384 384 checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l2, neg1_u1, neg1_c, neg1_s, 385 385 mcf2.UNBOUNDED, false, 0, test_str + "-15");
Note: See TracChangeset
for help on using the changeset viewer.