Changeset 1584:cf4bc8d477f4 in lemon-0.x
- Timestamp:
- 07/22/05 18:57:07 (18 years ago)
- Branch:
- default
- Phase:
- public
- Convert:
- svn:c9d7d8f5-90d6-0310-b91f-818b3a526b0e/lemon/trunk@2087
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
demo/kruskal_demo.cc
r1583 r1584 61 61 Edge e10 = g.addEdge(v4, t); 62 62 63 //Make the input and outputfor the kruskal.63 //Make the input for the kruskal. 64 64 typedef ListGraph::EdgeMap<int> ECostMap; 65 ECostMap edge_cost_map(g); 66 67 // Fill the edge_cost_map. 68 edge_cost_map.set(e1, -10); 69 edge_cost_map.set(e2, -9); 70 edge_cost_map.set(e3, -8); 71 edge_cost_map.set(e4, -7); 72 edge_cost_map.set(e5, -6); 73 edge_cost_map.set(e6, -5); 74 edge_cost_map.set(e7, -4); 75 edge_cost_map.set(e8, -3); 76 edge_cost_map.set(e9, -2); 77 edge_cost_map.set(e10, -1); 78 79 // Make the map or the vector, which will contain the edges of the minimum 80 // spanning tree. 81 65 82 typedef ListGraph::EdgeMap<bool> EBoolMap; 66 67 ECostMap edge_cost_map(g, 2);68 83 EBoolMap tree_map(g); 69 70 // Kruskal.71 std::cout << "The weight of the minimum spanning tree by using Kruskal algorithm is "72 << kruskal(g, ConstMap<ListGraph::Edge,int>(2), tree_map)<<std::endl;73 74 //Make another input (non-uniform costs) for the kruskal.75 ECostMap edge_cost_map_2(g);76 edge_cost_map_2.set(e1, -10);77 edge_cost_map_2.set(e2, -9);78 edge_cost_map_2.set(e3, -8);79 edge_cost_map_2.set(e4, -7);80 edge_cost_map_2.set(e5, -6);81 edge_cost_map_2.set(e6, -5);82 edge_cost_map_2.set(e7, -4);83 edge_cost_map_2.set(e8, -3);84 edge_cost_map_2.set(e9, -2);85 edge_cost_map_2.set(e10, -1);86 84 87 85 vector<Edge> tree_edge_vec; 88 86 89 //Test with non uniform costs and inserter.90 std::cout << "The weight of the minimum spanning tree with non-uniform costs is " <<91 kruskal(g, edge_cost_map_2, std::back_inserter(tree_edge_vec)) <<std::endl;92 87 93 //The vector for the edges of the output tree. 94 tree_edge_vec.clear(); 88 //Kruskal Algorithm. 95 89 96 //Test with makeKruskalMapInput and makeKruskalSequenceOutput. 90 //Input: a graph (g); a costmap of the graph (edge_cost_map); a 91 //boolmap (tree_map) or a vector (tree_edge_vec) to store the edges 92 //of the output tree; 97 93 98 std::cout << "The weight of the minimum spanning tree again is " << 99 kruskal(g,makeKruskalMapInput(g,edge_cost_map_2),makeKruskalSequenceOutput(std::back_inserter(tree_edge_vec)))<< std::endl; 94 //Output: it gives back the value of the minimum spanning tree, and 95 //set true for the edges of the tree in the edgemap tree_map or 96 //store the edges of the tree in the vector tree_edge_vec; 100 97 101 98 99 // Kruskal with boolmap; 100 std::cout << "The weight of the minimum spanning tree is " << 101 kruskal(g, edge_cost_map, tree_map)<<std::endl; 102 103 int k=0; 104 std::cout << "The edges of the tree:" ; 105 for(EdgeIt i(g); i!=INVALID; ++i){ 106 107 if (tree_map[i]) { 108 std::cout << g.id(i) <<";"; 109 ++k; 110 } 111 } 112 std::cout << std::endl; 113 std::cout << "The size of the tree is: "<< k << std::endl; 114 115 116 // Kruskal with vector; 117 std::cout << "The weight of the minimum spanning tree again is " << 118 kruskal(g, edge_cost_map, std::back_inserter(tree_edge_vec)) <<std::endl; 119 120 121 122 std::cout << "The edges of the tree again: " ; 123 for(int i=tree_edge_vec.size()-1; i>=0; i--) 124 std::cout << g.id(tree_edge_vec[i]) << ";" ; 125 std::cout << std::endl; 126 std::cout << "The size of the tree again is: "<< tree_edge_vec.size()<< std::endl; 127 128 102 129 return 0; 103 130 } -
doc/quicktour.dox
r1580 r1584 144 144 length of wires then you might be looking for a <b>minimum spanning 145 145 tree</b> in an undirected graph. This can be found using the Kruskal 146 algorithm: the function \ref lemon::kruskal "LEMON Kruskal " does 147 this job for you. After we had a graph \c g and a cost map \c 148 edge_cost_map , the following code fragment shows an example how to get weight of the minmum spanning tree (in this first example the costs are uniform; this is of course not the case in real life applications): 146 algorithm: the function \ref lemon::kruskal "LEMON Kruskal " does this 147 job for you. 148 149 First make a graph \c g and a cost map \c 150 edge_cost_map, then make a bool edgemap \c tree_map or a vector \c 151 tree_edge_vec for the algorithm output. After calling the function it 152 gives back the weight of the minimum spanning tree and the \c tree_map or 153 the \c tree_edge_vec contains the edges of the tree. 154 155 If you want to store the edges in a bool edgemap, then use the 156 function as follows: 149 157 150 158 \dontinclude kruskal_demo.cc 151 \skip std::cout 152 \until kruskal 153 154 In the variable \c tree_map the function gives back an edge bool map, which contains the edges of the found tree. 155 156 If the costs are non-uniform, for example the cost is given by \c 157 edge_cost_map_2 , or the edges of the tree have to be given in a 158 vector, then we can give to the kruskal a vector \c tree_edge_vec , instead of 159 an edge bool map: 160 161 \skip edge_cost_map_2 162 \until edge_cost_map_2, std::back_inserter 163 164 And finally the next fragment shows how to use the functions \c makeKruskalMapInput and \c makeKruskalSequenceOutPut: 165 166 \skip makeKruskalSequenceOutput 167 \until tree_edge_vec 159 \skip Kruskal with boolmap; 160 \until std::endl 161 162 And if you rather use a vector instead of a bool map: 163 164 \skip Kruskal with vector; 165 \until std::endl 168 166 169 167 See the whole program in \ref kruskal_demo.cc.
Note: See TracChangeset
for help on using the changeset viewer.