Changes in / [318:1e2d6ca80793:330:d3a7603026a2] in lemon
- Files:
-
- 4 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/groups.dox
r318 r330 41 41 some graph features like arc/edge or node deletion. 42 42 43 Alteration of standard containers need a very limited number of44 operations, these together satisfy the everyday requirements.45 In the case of graph structures, different operations are needed which do46 not alter the physical graph, but gives another view. If some nodes or47 arcs have to be hidden or the reverse oriented graph have to be used, then48 this is the case. It also may happen that in a flow implementation49 the residual graph can be accessed by another algorithm, or a node-set50 is to be shrunk for another algorithm.51 LEMON also provides a variety of graphs for these requirements called52 \ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only53 in conjunction with other graph representations.54 55 43 You are free to use the graph structure that fit your requirements 56 44 the best, most graph algorithms and auxiliary data structures can be used … … 58 46 59 47 <b>See also:</b> \ref graph_concepts "Graph Structure Concepts". 60 */61 62 /**63 @defgroup semi_adaptors Semi-Adaptor Classes for Graphs64 @ingroup graphs65 \brief Graph types between real graphs and graph adaptors.66 67 This group describes some graph types between real graphs and graph adaptors.68 These classes wrap graphs to give new functionality as the adaptors do it.69 On the other hand they are not light-weight structures as the adaptors.70 48 */ 71 49 … … 156 134 157 135 /** 158 @defgroup matrices Matrices159 @ingroup datas160 \brief Two dimensional data storages implemented in LEMON.161 162 This group describes two dimensional data storages implemented in LEMON.163 */164 165 /**166 136 @defgroup paths Path Structures 167 137 @ingroup datas … … 215 185 216 186 /** 217 @defgroup max_flow Maximum Flow Algorithms218 @ingroup algs219 \brief Algorithms for finding maximum flows.220 221 This group describes the algorithms for finding maximum flows and222 feasible circulations.223 224 The maximum flow problem is to find a flow between a single source and225 a single target that is maximum. Formally, there is a \f$G=(V,A)\f$226 directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity227 function and given \f$s, t \in V\f$ source and target node. The228 maximum flow is the \f$f_a\f$ solution of the next optimization problem:229 230 \f[ 0 \le f_a \le c_a \f]231 \f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv}232 \qquad \forall u \in V \setminus \{s,t\}\f]233 \f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f]234 235 LEMON contains several algorithms for solving maximum flow problems:236 - \ref lemon::EdmondsKarp "Edmonds-Karp"237 - \ref lemon::Preflow "Goldberg's Preflow algorithm"238 - \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees"239 - \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees"240 241 In most cases the \ref lemon::Preflow "Preflow" algorithm provides the242 fastest method to compute the maximum flow. All impelementations243 provides functions to query the minimum cut, which is the dual linear244 programming problem of the maximum flow.245 */246 247 /**248 @defgroup min_cost_flow Minimum Cost Flow Algorithms249 @ingroup algs250 251 \brief Algorithms for finding minimum cost flows and circulations.252 253 This group describes the algorithms for finding minimum cost flows and254 circulations.255 */256 257 /**258 @defgroup min_cut Minimum Cut Algorithms259 @ingroup algs260 261 \brief Algorithms for finding minimum cut in graphs.262 263 This group describes the algorithms for finding minimum cut in graphs.264 265 The minimum cut problem is to find a non-empty and non-complete266 \f$X\f$ subset of the vertices with minimum overall capacity on267 outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an268 \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum269 cut is the \f$X\f$ solution of the next optimization problem:270 271 \f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}272 \sum_{uv\in A, u\in X, v\not\in X}c_{uv}\f]273 274 LEMON contains several algorithms related to minimum cut problems:275 276 - \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut277 in directed graphs278 - \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to279 calculate minimum cut in undirected graphs280 - \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all281 pairs minimum cut in undirected graphs282 283 If you want to find minimum cut just between two distinict nodes,284 please see the \ref max_flow "Maximum Flow page".285 */286 287 /**288 @defgroup graph_prop Connectivity and Other Graph Properties289 @ingroup algs290 \brief Algorithms for discovering the graph properties291 292 This group describes the algorithms for discovering the graph properties293 like connectivity, bipartiteness, euler property, simplicity etc.294 295 \image html edge_biconnected_components.png296 \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth297 */298 299 /**300 @defgroup planar Planarity Embedding and Drawing301 @ingroup algs302 \brief Algorithms for planarity checking, embedding and drawing303 304 This group describes the algorithms for planarity checking,305 embedding and drawing.306 307 \image html planar.png308 \image latex planar.eps "Plane graph" width=\textwidth309 */310 311 /**312 @defgroup matching Matching Algorithms313 @ingroup algs314 \brief Algorithms for finding matchings in graphs and bipartite graphs.315 316 This group contains algorithm objects and functions to calculate317 matchings in graphs and bipartite graphs. The general matching problem is318 finding a subset of the arcs which does not shares common endpoints.319 320 There are several different algorithms for calculate matchings in321 graphs. The matching problems in bipartite graphs are generally322 easier than in general graphs. The goal of the matching optimization323 can be the finding maximum cardinality, maximum weight or minimum cost324 matching. The search can be constrained to find perfect or325 maximum cardinality matching.326 327 LEMON contains the next algorithms:328 - \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp329 augmenting path algorithm for calculate maximum cardinality matching in330 bipartite graphs331 - \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel332 algorithm for calculate maximum cardinality matching in bipartite graphs333 - \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching"334 Successive shortest path algorithm for calculate maximum weighted matching335 and maximum weighted bipartite matching in bipartite graph336 - \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching"337 Successive shortest path algorithm for calculate minimum cost maximum338 matching in bipartite graph339 - \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm340 for calculate maximum cardinality matching in general graph341 - \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom342 shrinking algorithm for calculate maximum weighted matching in general343 graph344 - \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching"345 Edmond's blossom shrinking algorithm for calculate maximum weighted346 perfect matching in general graph347 348 \image html bipartite_matching.png349 \image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth350 */351 352 /**353 187 @defgroup spantree Minimum Spanning Tree Algorithms 354 188 @ingroup algs … … 360 194 361 195 /** 362 @defgroup auxalg Auxiliary Algorithms363 @ingroup algs364 \brief Auxiliary algorithms implemented in LEMON.365 366 This group describes some algorithms implemented in LEMON367 in order to make it easier to implement complex algorithms.368 */369 370 /**371 @defgroup approx Approximation Algorithms372 @ingroup algs373 \brief Approximation algorithms.374 375 This group describes the approximation and heuristic algorithms376 implemented in LEMON.377 */378 379 /**380 @defgroup gen_opt_group General Optimization Tools381 \brief This group describes some general optimization frameworks382 implemented in LEMON.383 384 This group describes some general optimization frameworks385 implemented in LEMON.386 */387 388 /**389 @defgroup lp_group Lp and Mip Solvers390 @ingroup gen_opt_group391 \brief Lp and Mip solver interfaces for LEMON.392 393 This group describes Lp and Mip solver interfaces for LEMON. The394 various LP solvers could be used in the same manner with this395 interface.396 */397 398 /**399 @defgroup lp_utils Tools for Lp and Mip Solvers400 @ingroup lp_group401 \brief Helper tools to the Lp and Mip solvers.402 403 This group adds some helper tools to general optimization framework404 implemented in LEMON.405 */406 407 /**408 @defgroup metah Metaheuristics409 @ingroup gen_opt_group410 \brief Metaheuristics for LEMON library.411 412 This group describes some metaheuristic optimization tools.413 */414 415 /**416 196 @defgroup utils Tools and Utilities 417 197 \brief Tools and utilities for programming in LEMON … … 459 239 460 240 This group describes the tools for importing and exporting graphs 461 and graph related data. Now it supports the \ref lgf-format462 "LEMON Graph Format", the \c DIMACS format and the encapsulated 241 and graph related data. Now it supports the LEMON format 242 and the encapsulated postscript (EPS) format. 463 243 postscript (EPS) format. 464 244 */ … … 524 304 @ingroup concept 525 305 \brief Skeleton and concept checking classes for maps 526 306 527 307 This group describes the skeletons and concept checking classes of maps. 528 308 */ … … 539 319 build the library. 540 320 */ 541 542 /**543 @defgroup tools Standalone utility applications544 545 Some utility applications are listed here.546 547 The standard compilation procedure (<tt>./configure;make</tt>) will compile548 them, as well.549 */550 -
doc/mainpage.dox
r314 r327 42 42 \subsection howtoread How to read the documentation 43 43 44 If you want to get a quick start and see the most important features then45 take a look at our \ref quicktour46 "Quick Tour to LEMON" which will guide you along.47 48 If you already feel like using our library, see the page that tells you49 \ref getstart "How to start using LEMON".50 51 44 If you 52 45 want to see how LEMON works, see -
lemon/maps.h
r314 r327 1856 1856 InverseMap inverse() const { return InverseMap(*_graph);} 1857 1857 1858 };1859 1860 1861 /// \brief General invertable graph-map type.1862 1863 /// This type provides simple invertable graph-maps.1864 /// The InvertableMap wraps an arbitrary ReadWriteMap1865 /// and if a key is set to a new value then store it1866 /// in the inverse map.1867 ///1868 /// The values of the map can be accessed1869 /// with stl compatible forward iterator.1870 ///1871 /// \tparam _Graph The graph type.1872 /// \tparam _Item The item type of the graph.1873 /// \tparam _Value The value type of the map.1874 ///1875 /// \see IterableValueMap1876 template <typename _Graph, typename _Item, typename _Value>1877 class InvertableMap1878 : protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type {1879 private:1880 1881 typedef typename ItemSetTraits<_Graph, _Item>::1882 template Map<_Value>::Type Map;1883 typedef _Graph Graph;1884 1885 typedef std::map<_Value, _Item> Container;1886 Container _inv_map;1887 1888 public:1889 1890 /// The key type of InvertableMap (Node, Arc, Edge).1891 typedef typename Map::Key Key;1892 /// The value type of the InvertableMap.1893 typedef typename Map::Value Value;1894 1895 /// \brief Constructor.1896 ///1897 /// Construct a new InvertableMap for the graph.1898 ///1899 explicit InvertableMap(const Graph& graph) : Map(graph) {}1900 1901 /// \brief Forward iterator for values.1902 ///1903 /// This iterator is an stl compatible forward1904 /// iterator on the values of the map. The values can1905 /// be accessed in the [beginValue, endValue) range.1906 ///1907 class ValueIterator1908 : public std::iterator<std::forward_iterator_tag, Value> {1909 friend class InvertableMap;1910 private:1911 ValueIterator(typename Container::const_iterator _it)1912 : it(_it) {}1913 public:1914 1915 ValueIterator() {}1916 1917 ValueIterator& operator++() { ++it; return *this; }1918 ValueIterator operator++(int) {1919 ValueIterator tmp(*this);1920 operator++();1921 return tmp;1922 }1923 1924 const Value& operator*() const { return it->first; }1925 const Value* operator->() const { return &(it->first); }1926 1927 bool operator==(ValueIterator jt) const { return it == jt.it; }1928 bool operator!=(ValueIterator jt) const { return it != jt.it; }1929 1930 private:1931 typename Container::const_iterator it;1932 };1933 1934 /// \brief Returns an iterator to the first value.1935 ///1936 /// Returns an stl compatible iterator to the1937 /// first value of the map. The values of the1938 /// map can be accessed in the [beginValue, endValue)1939 /// range.1940 ValueIterator beginValue() const {1941 return ValueIterator(_inv_map.begin());1942 }1943 1944 /// \brief Returns an iterator after the last value.1945 ///1946 /// Returns an stl compatible iterator after the1947 /// last value of the map. The values of the1948 /// map can be accessed in the [beginValue, endValue)1949 /// range.1950 ValueIterator endValue() const {1951 return ValueIterator(_inv_map.end());1952 }1953 1954 /// \brief The setter function of the map.1955 ///1956 /// Sets the mapped value.1957 void set(const Key& key, const Value& val) {1958 Value oldval = Map::operator[](key);1959 typename Container::iterator it = _inv_map.find(oldval);1960 if (it != _inv_map.end() && it->second == key) {1961 _inv_map.erase(it);1962 }1963 _inv_map.insert(make_pair(val, key));1964 Map::set(key, val);1965 }1966 1967 /// \brief The getter function of the map.1968 ///1969 /// It gives back the value associated with the key.1970 typename MapTraits<Map>::ConstReturnValue1971 operator[](const Key& key) const {1972 return Map::operator[](key);1973 }1974 1975 /// \brief Gives back the item by its value.1976 ///1977 /// Gives back the item by its value.1978 Key operator()(const Value& key) const {1979 typename Container::const_iterator it = _inv_map.find(key);1980 return it != _inv_map.end() ? it->second : INVALID;1981 }1982 1983 protected:1984 1985 /// \brief Erase the key from the map.1986 ///1987 /// Erase the key to the map. It is called by the1988 /// \c AlterationNotifier.1989 virtual void erase(const Key& key) {1990 Value val = Map::operator[](key);1991 typename Container::iterator it = _inv_map.find(val);1992 if (it != _inv_map.end() && it->second == key) {1993 _inv_map.erase(it);1994 }1995 Map::erase(key);1996 }1997 1998 /// \brief Erase more keys from the map.1999 ///2000 /// Erase more keys from the map. It is called by the2001 /// \c AlterationNotifier.2002 virtual void erase(const std::vector<Key>& keys) {2003 for (int i = 0; i < int(keys.size()); ++i) {2004 Value val = Map::operator[](keys[i]);2005 typename Container::iterator it = _inv_map.find(val);2006 if (it != _inv_map.end() && it->second == keys[i]) {2007 _inv_map.erase(it);2008 }2009 }2010 Map::erase(keys);2011 }2012 2013 /// \brief Clear the keys from the map and inverse map.2014 ///2015 /// Clear the keys from the map and inverse map. It is called by the2016 /// \c AlterationNotifier.2017 virtual void clear() {2018 _inv_map.clear();2019 Map::clear();2020 }2021 2022 public:2023 2024 /// \brief The inverse map type.2025 ///2026 /// The inverse of this map. The subscript operator of the map2027 /// gives back always the item what was last assigned to the value.2028 class InverseMap {2029 public:2030 /// \brief Constructor of the InverseMap.2031 ///2032 /// Constructor of the InverseMap.2033 explicit InverseMap(const InvertableMap& inverted)2034 : _inverted(inverted) {}2035 2036 /// The value type of the InverseMap.2037 typedef typename InvertableMap::Key Value;2038 /// The key type of the InverseMap.2039 typedef typename InvertableMap::Value Key;2040 2041 /// \brief Subscript operator.2042 ///2043 /// Subscript operator. It gives back always the item2044 /// what was last assigned to the value.2045 Value operator[](const Key& key) const {2046 return _inverted(key);2047 }2048 2049 private:2050 const InvertableMap& _inverted;2051 };2052 2053 /// \brief It gives back the just readable inverse map.2054 ///2055 /// It gives back the just readable inverse map.2056 InverseMap inverse() const {2057 return InverseMap(*this);2058 }2059 2060 };2061 2062 /// \brief Provides a mutable, continuous and unique descriptor for each2063 /// item in the graph.2064 ///2065 /// The DescriptorMap class provides a unique and continuous (but mutable)2066 /// descriptor (id) for each item of the same type (e.g. node) in the2067 /// graph. This id is <ul><li>\b unique: different items (nodes) get2068 /// different ids <li>\b continuous: the range of the ids is the set of2069 /// integers between 0 and \c n-1, where \c n is the number of the items of2070 /// this type (e.g. nodes) (so the id of a node can change if you delete an2071 /// other node, i.e. this id is mutable). </ul> This map can be inverted2072 /// with its member class \c InverseMap, or with the \c operator() member.2073 ///2074 /// \tparam _Graph The graph class the \c DescriptorMap belongs to.2075 /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or2076 /// Edge.2077 template <typename _Graph, typename _Item>2078 class DescriptorMap2079 : protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type {2080 2081 typedef _Item Item;2082 typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map;2083 2084 public:2085 /// The graph class of DescriptorMap.2086 typedef _Graph Graph;2087 2088 /// The key type of DescriptorMap (Node, Arc, Edge).2089 typedef typename Map::Key Key;2090 /// The value type of DescriptorMap.2091 typedef typename Map::Value Value;2092 2093 /// \brief Constructor.2094 ///2095 /// Constructor for descriptor map.2096 explicit DescriptorMap(const Graph& _graph) : Map(_graph) {2097 Item it;2098 const typename Map::Notifier* nf = Map::notifier();2099 for (nf->first(it); it != INVALID; nf->next(it)) {2100 Map::set(it, _inv_map.size());2101 _inv_map.push_back(it);2102 }2103 }2104 2105 protected:2106 2107 /// \brief Add a new key to the map.2108 ///2109 /// Add a new key to the map. It is called by the2110 /// \c AlterationNotifier.2111 virtual void add(const Item& item) {2112 Map::add(item);2113 Map::set(item, _inv_map.size());2114 _inv_map.push_back(item);2115 }2116 2117 /// \brief Add more new keys to the map.2118 ///2119 /// Add more new keys to the map. It is called by the2120 /// \c AlterationNotifier.2121 virtual void add(const std::vector<Item>& items) {2122 Map::add(items);2123 for (int i = 0; i < int(items.size()); ++i) {2124 Map::set(items[i], _inv_map.size());2125 _inv_map.push_back(items[i]);2126 }2127 }2128 2129 /// \brief Erase the key from the map.2130 ///2131 /// Erase the key from the map. It is called by the2132 /// \c AlterationNotifier.2133 virtual void erase(const Item& item) {2134 Map::set(_inv_map.back(), Map::operator[](item));2135 _inv_map[Map::operator[](item)] = _inv_map.back();2136 _inv_map.pop_back();2137 Map::erase(item);2138 }2139 2140 /// \brief Erase more keys from the map.2141 ///2142 /// Erase more keys from the map. It is called by the2143 /// \c AlterationNotifier.2144 virtual void erase(const std::vector<Item>& items) {2145 for (int i = 0; i < int(items.size()); ++i) {2146 Map::set(_inv_map.back(), Map::operator[](items[i]));2147 _inv_map[Map::operator[](items[i])] = _inv_map.back();2148 _inv_map.pop_back();2149 }2150 Map::erase(items);2151 }2152 2153 /// \brief Build the unique map.2154 ///2155 /// Build the unique map. It is called by the2156 /// \c AlterationNotifier.2157 virtual void build() {2158 Map::build();2159 Item it;2160 const typename Map::Notifier* nf = Map::notifier();2161 for (nf->first(it); it != INVALID; nf->next(it)) {2162 Map::set(it, _inv_map.size());2163 _inv_map.push_back(it);2164 }2165 }2166 2167 /// \brief Clear the keys from the map.2168 ///2169 /// Clear the keys from the map. It is called by the2170 /// \c AlterationNotifier.2171 virtual void clear() {2172 _inv_map.clear();2173 Map::clear();2174 }2175 2176 public:2177 2178 /// \brief Returns the maximal value plus one.2179 ///2180 /// Returns the maximal value plus one in the map.2181 unsigned int size() const {2182 return _inv_map.size();2183 }2184 2185 /// \brief Swaps the position of the two items in the map.2186 ///2187 /// Swaps the position of the two items in the map.2188 void swap(const Item& p, const Item& q) {2189 int pi = Map::operator[](p);2190 int qi = Map::operator[](q);2191 Map::set(p, qi);2192 _inv_map[qi] = p;2193 Map::set(q, pi);2194 _inv_map[pi] = q;2195 }2196 2197 /// \brief Gives back the \e descriptor of the item.2198 ///2199 /// Gives back the mutable and unique \e descriptor of the map.2200 int operator[](const Item& item) const {2201 return Map::operator[](item);2202 }2203 2204 /// \brief Gives back the item by its descriptor.2205 ///2206 /// Gives back th item by its descriptor.2207 Item operator()(int id) const {2208 return _inv_map[id];2209 }2210 2211 private:2212 2213 typedef std::vector<Item> Container;2214 Container _inv_map;2215 2216 public:2217 /// \brief The inverse map type of DescriptorMap.2218 ///2219 /// The inverse map type of DescriptorMap.2220 class InverseMap {2221 public:2222 /// \brief Constructor of the InverseMap.2223 ///2224 /// Constructor of the InverseMap.2225 explicit InverseMap(const DescriptorMap& inverted)2226 : _inverted(inverted) {}2227 2228 2229 /// The value type of the InverseMap.2230 typedef typename DescriptorMap::Key Value;2231 /// The key type of the InverseMap.2232 typedef typename DescriptorMap::Value Key;2233 2234 /// \brief Subscript operator.2235 ///2236 /// Subscript operator. It gives back the item2237 /// that the descriptor belongs to currently.2238 Value operator[](const Key& key) const {2239 return _inverted(key);2240 }2241 2242 /// \brief Size of the map.2243 ///2244 /// Returns the size of the map.2245 unsigned int size() const {2246 return _inverted.size();2247 }2248 2249 private:2250 const DescriptorMap& _inverted;2251 };2252 2253 /// \brief Gives back the inverse of the map.2254 ///2255 /// Gives back the inverse of the map.2256 const InverseMap inverse() const {2257 return InverseMap(*this);2258 }2259 1858 }; 2260 1859 -
test/graph_utils_test.cc
r220 r324 36 36 { 37 37 Digraph digraph; 38 typename Digraph::template NodeMap<int> nodes(digraph); 39 std::vector<Node> invNodes; 38 40 for (int i = 0; i < 10; ++i) { 39 digraph.addNode(); 40 } 41 DescriptorMap<Digraph, Node> nodes(digraph); 42 typename DescriptorMap<Digraph, Node>::InverseMap invNodes(nodes); 41 invNodes.push_back(digraph.addNode()); 42 nodes[invNodes.back()]=invNodes.size()-1; 43 } 43 44 for (int i = 0; i < 100; ++i) { 44 45 int src = rnd[invNodes.size()]; … … 47 48 } 48 49 typename Digraph::template ArcMap<bool> found(digraph, false); 49 DescriptorMap<Digraph, Arc> arcs(digraph);50 50 for (NodeIt src(digraph); src != INVALID; ++src) { 51 51 for (NodeIt trg(digraph); trg != INVALID; ++trg) { … … 111 111 TEMPLATE_GRAPH_TYPEDEFS(Graph); 112 112 Graph graph; 113 typename Graph::template NodeMap<int> nodes(graph); 114 std::vector<Node> invNodes; 113 115 for (int i = 0; i < 10; ++i) { 114 graph.addNode(); 115 } 116 DescriptorMap<Graph, Node> nodes(graph); 117 typename DescriptorMap<Graph, Node>::InverseMap invNodes(nodes); 116 invNodes.push_back(graph.addNode()); 117 nodes[invNodes.back()]=invNodes.size()-1; 118 } 118 119 for (int i = 0; i < 100; ++i) { 119 120 int src = rnd[invNodes.size()]; … … 122 123 } 123 124 typename Graph::template EdgeMap<int> found(graph, 0); 124 DescriptorMap<Graph, Edge> edges(graph);125 125 for (NodeIt src(graph); src != INVALID; ++src) { 126 126 for (NodeIt trg(graph); trg != INVALID; ++trg) {
Note: See TracChangeset
for help on using the changeset viewer.