Changeset 372:e6a156fc186d in lemon-0.x
- Timestamp:
- 04/22/04 16:11:28 (20 years ago)
- Branch:
- default
- Phase:
- public
- Convert:
- svn:c9d7d8f5-90d6-0310-b91f-818b3a526b0e/lemon/trunk@502
- Location:
- src/work/jacint
- Files:
-
- 1 added
- 6 edited
Legend:
- Unmodified
- Added
- Removed
-
src/work/jacint/dijkstra.cc
r258 r372 2 2 #include <fstream> 3 3 4 #include <smart_graph.h> 5 #include <list_graph.h> 6 #include <dimacs.h> 4 #include <list_graph.hh> 5 #include <dimacs.hh> 7 6 #include <dijkstra.h> 8 7 #include <time_measure.h> 9 10 #include <bin_heap.h> 11 #include <fib_heap.h> 8 #include <bin_heap.hh> 12 9 13 10 using namespace hugo; 14 11 15 12 int main(int, char **) { 16 typedef SmartGraph::Node Node; 17 typedef SmartGraph::NodeIt NodeIt; 18 typedef SmartGraph::InEdgeIt InEdgeIt; 13 14 typedef ListGraph Graph; 19 15 20 SmartGraph G; 16 typedef Graph::Node Node; 17 typedef Graph::EdgeIt EdgeIt; 18 19 Graph G; 21 20 Node s, t; 22 SmartGraph::EdgeMap<int> cap(G);21 Graph::EdgeMap<int> cap(G); 23 22 readDimacsMaxFlow(std::cin, G, s, t, cap); 24 25 std::cout << "dijkstra demo ..." << std::endl; 23 Timer ts; 26 24 27 double pre_time=currTime(); 28 Dijkstra<SmartGraph, int, FibHeap<SmartGraph::Node, int, 29 SmartGraph::NodeMap<int> > > dijkstra_test(G, cap); 30 dijkstra_test.run(s); 25 std::cout << "Testing dijkstra.h with Fibonacci-heap 26 implementation fib_heap.h ..." << std::endl; 27 28 Dijkstra<Graph, int 29 // , BinHeap<ListGraph::NodeIt, int, ListGraph::NodeMap<int> > 30 > dijkstra_test(G, s, cap); 31 ts.reset(); 32 dijkstra_test.run(); 33 std::cout << "elapsed time: " << ts << std::endl; 31 34 double post_time=currTime(); 32 35 33 std::cout << "running time with fib_heap: " 34 << post_time-pre_time << " sec"<< std::endl; 36 std::cout << "running time: " << post_time-pre_time << " sec"<< std::endl; 35 37 36 pre_time=currTime(); 37 Dijkstra<SmartGraph, int, BinHeap<SmartGraph::Node, int, 38 SmartGraph::NodeMap<int> > > dijkstra_test2(G, cap); 39 dijkstra_test2.run(s); 40 post_time=currTime(); 41 42 std::cout << "running time with bin_heap: " 43 << post_time-pre_time << " sec"<< std::endl; 44 38 EachEdgeIt e; 45 39 46 int hiba_fib=0; 47 int hiba_bin=0; 48 NodeIt u; 49 for ( G.first(u) ; G.valid(u); G.next(u) ) { 50 InEdgeIt e; 51 for ( G.first(e,u); G.valid(e); G.next(e) ) { 52 Node v=G.tail(e); 53 if ( dijkstra_test.dist(u) - dijkstra_test.dist(v) > cap[e] ) 54 { 55 std::cout<<"Hibas el a fibonaccis Dijkstraban: " 56 << dijkstra_test.dist(u) - dijkstra_test.dist(v) - 57 cap[e]<<std::endl; 58 ++hiba_fib; 59 } 60 if ( dijkstra_test2.dist(u) - dijkstra_test2.dist(v) > cap[e] ) 61 { 62 std::cout<<"Hibas el a binarisos Dijkstraban: " 63 << dijkstra_test2.dist(u) - dijkstra_test2.dist(v) - 64 cap[e]<<std::endl; 65 ++hiba_bin; 66 } 67 if ( e==dijkstra_test.pred(u) && 68 dijkstra_test.dist(u) - dijkstra_test.dist(v) != cap[e] ) 69 { 70 std::cout<<"Hibas fael a fibonaccis Dijkstraban: "<< 71 dijkstra_test.dist(u) - dijkstra_test.dist(v)- cap[e]<<std::endl; 72 ++hiba_fib; 73 } 74 if ( e==dijkstra_test2.pred(u) && 75 dijkstra_test2.dist(u) - dijkstra_test2.dist(v) != cap[e] ) 76 { 77 std::cout<<"Hibas fael a binarisos Dijkstraban: "<< 78 dijkstra_test2.dist(u) - dijkstra_test2.dist(v)- cap[e]<<std::endl; 79 ++hiba_bin; 80 } 40 int hiba=0; 41 42 int edge=0; 43 44 for ( G.getFirst(e) ; G.valid(e); G.next(e) ) { 45 NodeIt u=G.tail(e); 46 NodeIt v=G.head(e); 47 ++edge; 48 if ( dijkstra_test.dist(v) - dijkstra_test.dist(u) > cap.get(e) ) { 49 std::cout<<"Hiba: "<<edge<<": "<<dijkstra_test.dist(v) - dijkstra_test.dist(u) - cap.get(e)<<std::endl; 50 ++hiba; 81 51 } 82 83 if ( dijkstra_test.dist(u) != dijkstra_test2.dist(u) ) 84 std::cout << "Nem egyezik meg a tavolsag!"<<std::endl; 52 } 85 53 86 87 } 88 89 std::cout << "Hibas elek szama a fibonaccis Dijkstraban: " 90 << hiba_fib << " a " << G.edgeNum() <<"-bol."<< std::endl; 91 92 std::cout << "Hibas elek szama a binarisos Dijkstraban: " 93 << hiba_bin << " a " << G.edgeNum() <<"-bol."<< std::endl; 94 95 96 54 std::cout << "Osszhibas el: " << hiba << " osszel: " << G.edgeNum() << std::endl; 97 55 98 56 return 0; -
src/work/jacint/dijkstra.h
r220 r372 1 1 // -*- C++ -*- 2 2 3 /* 3 4 *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> > … … 27 28 #define HUGO_DIJKSTRA_H 28 29 30 ///\file 31 ///\brief Dijkstra algorithm. 32 29 33 #include <fib_heap.h> 34 #include <bin_heap.h> 30 35 #include <invalid.h> 31 36 32 37 namespace hugo { 33 38 34 template <typename Graph, typename T, 35 typename Heap=FibHeap<typename Graph::Node, T, 36 typename Graph::NodeMap<int> >, 37 typename LengthMap=typename Graph::EdgeMap<T> > 39 //Alpar: Changed the order of the parameters 40 41 ///%Dijkstra algorithm class. 42 43 ///This class provides an efficient implementation of %Dijkstra algorithm. 44 ///The edge lengths are passed to the algorithm using a 45 ///\ref ReadMapSkeleton "readable map", 46 ///so it is easy to change it to any kind of length. 47 /// 48 ///The type of the length is determined by the \c ValueType of the length map. 49 /// 50 ///It is also possible to change the underlying priority heap. 51 /// 52 ///\param Graph The graph type the algorithm runs on. 53 ///\param LengthMap This read-only 54 ///EdgeMap 55 ///determines the 56 ///lengths of the edges. It is read once for each edge, so the map 57 ///may involve in relatively time consuming process to compute the edge 58 ///length if it is necessary. The default map type is 59 ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>" 60 ///\param Heap The heap type used by the %Dijkstra 61 ///algorithm. The default 62 ///is using \ref BinHeap "binary heap". 63 64 #ifdef DOXYGEN 65 template <typename Graph, 66 typename LengthMap, 67 typename Heap> 68 #else 69 template <typename Graph, 70 typename LengthMap=typename Graph::EdgeMap<int>, 71 template <class,class,class> class Heap = BinHeap > 72 #endif 38 73 class Dijkstra{ 74 public: 39 75 typedef typename Graph::Node Node; 40 76 typedef typename Graph::NodeIt NodeIt; … … 42 78 typedef typename Graph::OutEdgeIt OutEdgeIt; 43 79 80 typedef typename LengthMap::ValueType ValueType; 81 typedef typename Graph::NodeMap<Edge> PredMap; 82 typedef typename Graph::NodeMap<Node> PredNodeMap; 83 typedef typename Graph::NodeMap<ValueType> DistMap; 84 85 private: 44 86 const Graph& G; 45 87 const LengthMap& length; 46 typename Graph::NodeMap<Edge> predecessor; 47 typename Graph::NodeMap<T> distance; 48 //FIXME: 49 typename Graph::NodeMap<bool> reach; 50 //typename Graph::NodeMap<int> reach; 88 PredMap predecessor; 89 PredNodeMap pred_node; 90 DistMap distance; 51 91 52 92 public : 53 93 54 /* 55 The distance of the nodes is 0. 56 */ 57 Dijkstra(Graph& _G, LengthMap& _length) : G(_G), 58 length(_length), predecessor(_G), distance(_G), reach(_G) { } 59 60 61 void run(Node s) { 62 63 NodeIt u; 64 for ( G.first(u) ; G.valid(u) ; G.next(u) ) { 65 predecessor.set(u,INVALID); 66 distance.set(u,0); 67 reach.set(u,false); 68 } 69 70 //FIXME: 71 typename Graph::NodeMap<bool> scanned(G,false); 72 //typename Graph::NodeMap<int> scanned(G,false); 73 typename Graph::NodeMap<int> heap_map(G,-1); 74 75 Heap heap(heap_map); 76 77 heap.push(s,0); 78 reach.set(s, true); 79 94 Dijkstra(Graph& _G, LengthMap& _length) : 95 G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { } 96 97 void run(Node s); 98 99 ///The distance of a node from the source. 100 101 ///Returns the distance of a node from the source. 102 ///\pre \ref run() must be called before using this function. 103 ///\warning If node \c v in unreachable from the source the return value 104 ///of this funcion is undefined. 105 ValueType dist(Node v) const { return distance[v]; } 106 ///Returns the edges of the shortest path tree. 107 108 ///For a node \c v it returns the last edge of the shortest path 109 ///from the source to \c v or INVALID if \c v is unreachable 110 ///from the source. 111 ///\pre \ref run() must be called before using this function. 112 Edge pred(Node v) const { return predecessor[v]; } 113 ///Returns the nodes of the shortest paths. 114 115 ///For a node \c v it returns the last but one node of the shortest path 116 ///from the source to \c v or INVALID if \c v is unreachable 117 ///from the source. 118 ///\pre \ref run() must be called before using this function. 119 Node predNode(Node v) const { return pred_node[v]; } 120 121 ///Returns a reference to the NodeMap of distances. 122 123 ///\pre \ref run() must be called before using this function. 124 /// 125 const DistMap &distMap() const { return distance;} 126 ///Returns a reference to the shortest path tree map. 127 128 ///Returns a reference to the NodeMap of the edges of the 129 ///shortest path tree. 130 ///\pre \ref run() must be called before using this function. 131 const PredMap &predMap() const { return predecessor;} 132 ///Returns a reference to the map of nodes of shortest paths. 133 134 ///Returns a reference to the NodeMap of the last but one nodes of the 135 ///shortest paths. 136 ///\pre \ref run() must be called before using this function. 137 const PredNodeMap &predNodeMap() const { return pred_node;} 138 139 ///Checks if a node is reachable from the source. 140 141 ///Returns \c true if \c v is reachable from the source. 142 ///\warning the source node is reported to be unreached! 143 ///\todo Is this what we want? 144 ///\pre \ref run() must be called before using this function. 145 /// 146 bool reached(Node v) { return G.valid(predecessor[v]); } 147 148 }; 149 150 151 // ********************************************************************** 152 // IMPLEMENTATIONS 153 // ********************************************************************** 154 155 ///Runs %Dijkstra algorithm from node the source. 156 157 ///This method runs the %Dijkstra algorithm from a source node \c s 158 ///in order to 159 ///compute the 160 ///shortest path to each node. The algorithm computes 161 ///- The shortest path tree. 162 ///- The distance of each node from the source. 163 template <typename Graph, typename LengthMap, 164 template<class,class,class> class Heap > 165 void Dijkstra<Graph,LengthMap,Heap>::run(Node s) { 166 167 NodeIt u; 168 for ( G.first(u) ; G.valid(u) ; G.next(u) ) { 169 predecessor.set(u,INVALID); 170 pred_node.set(u,INVALID); 171 // If a node is unreacheable, then why should be the dist=0? 172 // distance.set(u,0); 173 // reach.set(u,false); 174 } 175 176 typename Graph::NodeMap<int> heap_map(G,-1); 177 178 Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map); 179 180 heap.push(s,0); 181 80 182 while ( !heap.empty() ) { 81 183 82 184 Node v=heap.top(); 83 T oldvalue=heap.get(v);185 ValueType oldvalue=heap[v]; 84 186 heap.pop(); 85 187 distance.set(v, oldvalue); 86 scanned.set(v,true); 87 88 OutEdgeIt e; 89 for( G.first(e,v); G.valid(e); G.next(e)) { 188 189 { //FIXME this bracket is for e to be local 190 OutEdgeIt e; 191 for(G.first(e, v); 192 G.valid(e); G.next(e)) { 90 193 Node w=G.head(e); 91 92 if ( !scanned[w] ) { 93 if ( !reach[w] ) { 94 reach.set(w,true); 95 heap.push(w,oldvalue+length[e]); 194 195 switch(heap.state(w)) { 196 case heap.PRE_HEAP: 197 heap.push(w,oldvalue+length[e]); 198 predecessor.set(w,e); 199 pred_node.set(w,v); 200 break; 201 case heap.IN_HEAP: 202 if ( oldvalue+length[e] < heap[w] ) { 203 heap.decrease(w, oldvalue+length[e]); 96 204 predecessor.set(w,e); 97 } else if ( oldvalue+length[e] < heap.get(w) ) { 98 predecessor.set(w,e); 99 heap.decrease(w, oldvalue+length[e]); 205 pred_node.set(w,v); 100 206 } 207 break; 208 case heap.POST_HEAP: 209 break; 101 210 } 102 211 } 212 } //FIXME tis bracket 103 213 } 104 } 105 106 T dist(Node v) { 107 return distance[v]; 108 } 109 110 Edge pred(Node v) { 111 return predecessor[v]; 112 } 113 114 bool reached(Node v) { 115 return reach[v]; 116 } 117 118 }; 119 120 } 214 } 215 216 } //END OF NAMESPACE HUGO 121 217 122 218 #endif -
src/work/jacint/makefile
r311 r372 4 4 CC=$(CXX) 5 5 INCLUDEDIRS ?= -I../../include -I.. -I../{marci,jacint,alpar,klao,akos,athos} 6 CXXFLAGS = -W -Wall -ansi -pedantic -O3 $(INCLUDEDIRS) 6 CXXFLAGS = -W -Wall -ansi -pedantic -O3 $(INCLUDEDIRS) 7 7 LEDAROOT ?= /ledasrc/LEDA-4.1 8 8 9 BINARIES = preflow #dijkstra prim9 BINARIES = preflow #dijkstra_bin_fib_test #preflow # prim 10 10 11 11 all: $(BINARIES) -
src/work/jacint/preflow.cc
r220 r372 1 1 #include <iostream> 2 #include <fstream>3 2 4 3 #include <smart_graph.h> 5 4 #include <list_graph.h> 6 5 #include <dimacs.h> 7 #include <preflow .h>6 #include <preflowproba.h> 8 7 #include <time_measure.h> 9 8 10 9 using namespace hugo; 11 10 12 // Use a DIMACS max flow file as stdin.13 // read_dimacs_demo < dimacs_max_flow_file14 11 int main(int, char **) { 15 typedef SmartGraph::Node Node; 16 typedef SmartGraph::EdgeIt EdgeIt; 12 13 typedef SmartGraph Graph; 14 15 typedef Graph::Node Node; 16 typedef Graph::EdgeIt EdgeIt; 17 17 18 SmartGraph G;18 Graph G; 19 19 Node s, t; 20 SmartGraph::EdgeMap<int> cap(G);20 Graph::EdgeMap<int> cap(G); 21 21 readDimacsMaxFlow(std::cin, G, s, t, cap); 22 22 Timer ts; 23 23 24 std::cout << "preflow demo ..." << std::endl; 24 25 25 double mintime=1000000; 26 27 for ( int i=1; i!=11; ++i ) { 28 SmartGraph::EdgeMap<int> flow(G); 29 double pre_time=currTime(); 30 Preflow<SmartGraph, int> max_flow_test(G, s, t, cap, flow); 31 max_flow_test.run(); 32 double post_time=currTime(); 33 if ( mintime > post_time-pre_time ) mintime = post_time-pre_time; 34 } 35 36 SmartGraph::EdgeMap<int> flow(G); 37 Preflow<SmartGraph, int> max_flow_test(G, s, t, cap, flow); 26 Graph::EdgeMap<int> flow(G); 27 Preflow<Graph, int> max_flow_test(G, s, t, cap, flow, 1); 28 ts.reset(); 38 29 max_flow_test.run(); 30 std::cout << "elapsed time: " << ts << std::endl; 39 31 40 SmartGraph::NodeMap<bool> cut(G);32 Graph::NodeMap<bool> cut(G); 41 33 max_flow_test.minCut(cut); 42 34 int min_cut_value=0; … … 46 38 } 47 39 48 SmartGraph::NodeMap<bool> cut1(G);40 Graph::NodeMap<bool> cut1(G); 49 41 max_flow_test.minMinCut(cut1); 50 42 int min_min_cut_value=0; … … 54 46 } 55 47 56 SmartGraph::NodeMap<bool> cut2(G);48 Graph::NodeMap<bool> cut2(G); 57 49 max_flow_test.maxMinCut(cut2); 58 50 int max_min_cut_value=0; … … 62 54 } 63 55 64 std::cout << "min time of 10 runs: " << mintime << " sec"<< std::endl;65 56 std::cout << "flow value: "<< max_flow_test.flowValue() << std::endl; 66 57 std::cout << "min cut value: "<< min_cut_value << std::endl; -
src/work/jacint/preflow.h
r330 r372 1 1 // -*- C++ -*- 2 3 //run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet? 4 //constzero jo igy? 5 6 //majd marci megmondja betegyem-e bfs-t meg resgraphot 7 2 8 /* 3 9 Heuristics: … … 13 19 Constructors: 14 20 15 Preflow(Graph, Node, Node, CapMap, FlowMap) 21 Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 22 FlowMap is not constant zero, and should be true if it is 16 23 17 24 Members: … … 30 37 a min cut. M should be a map of bools initialized to false. 31 38 39 FIXME reset 40 32 41 */ 33 42 … … 45 54 template <typename Graph, typename T, 46 55 typename CapMap=typename Graph::EdgeMap<T>, 47 56 typename FlowMap=typename Graph::EdgeMap<T> > 48 57 class Preflow { 49 58 … … 60 69 FlowMap& flow; 61 70 T value; 71 bool constzero; 62 72 63 73 public: 64 Preflow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 65 FlowMap& _flow ) : 66 G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow) {} 67 74 Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity, 75 FlowMap& _flow, bool _constzero ) : 76 G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero) {} 77 78 68 79 void run() { 80 81 value=0; //for the subsequent runs 69 82 70 83 bool phase=0; //phase 0 is the 1st phase, phase 1 is the 2nd … … 90 103 typename Graph::NodeMap<T> excess(G); 91 104 92 std::vector<Node> active(n ,INVALID);105 std::vector<Node> active(n-1,INVALID); 93 106 typename Graph::NodeMap<Node> next(G,INVALID); 94 107 //Stack of the active nodes in level i < n. … … 102 115 */ 103 116 104 /*Reverse_bfs from t, to find the starting level.*/ 105 level.set(t,0);106 std::queue<Node> bfs_queue;107 bfs_queue.push(t); 108 109 while (!bfs_queue.empty()) { 110 111 Node v=bfs_queue.front();112 bfs_queue.pop();113 int l=level[v]+1;114 115 InEdgeIt e;116 for(G.first(e,v); G.valid(e); G.next(e)) {117 Node w=G.tail(e);118 if ( level[w] == n && w != s ) {119 bfs_queue.push(w);120 Node first=level_list[l];121 if ( G.valid(first) ) left.set(first,w);122 right.set(w,first);123 level_list[l]=w;124 level.set(w, l);125 }126 }127 } 128 129 level.set(s,n); 130 131 132 /* Starting flow. It is everywhere 0 at the moment. */ 133 134 117 118 if ( constzero ) { 119 120 /*Reverse_bfs from t, to find the starting level.*/ 121 level.set(t,0); 122 std::queue<Node> bfs_queue; 123 bfs_queue.push(t); 124 125 while (!bfs_queue.empty()) { 126 127 Node v=bfs_queue.front(); 128 bfs_queue.pop(); 129 int l=level[v]+1; 130 131 InEdgeIt e; 132 for(G.first(e,v); G.valid(e); G.next(e)) { 133 Node w=G.tail(e); 134 if ( level[w] == n && w != s ) { 135 bfs_queue.push(w); 136 Node first=level_list[l]; 137 if ( G.valid(first) ) left.set(first,w); 138 right.set(w,first); 139 level_list[l]=w; 140 level.set(w, l); 141 } 142 } 143 } 144 145 //the starting flow 146 OutEdgeIt e; 147 for(G.first(e,s); G.valid(e); G.next(e)) 135 148 { 136 149 T c=capacity[e]; … … 146 159 } 147 160 } 161 } 162 else 163 { 164 165 /* 166 Reverse_bfs from t in the residual graph, 167 to find the starting level. 168 */ 169 level.set(t,0); 170 std::queue<Node> bfs_queue; 171 bfs_queue.push(t); 172 173 while (!bfs_queue.empty()) { 174 175 Node v=bfs_queue.front(); 176 bfs_queue.pop(); 177 int l=level[v]+1; 178 179 InEdgeIt e; 180 for(G.first(e,v); G.valid(e); G.next(e)) { 181 if ( capacity[e] == flow[e] ) continue; 182 Node w=G.tail(e); 183 if ( level[w] == n && w != s ) { 184 bfs_queue.push(w); 185 Node first=level_list[l]; 186 if ( G.valid(first) ) left.set(first,w); 187 right.set(w,first); 188 level_list[l]=w; 189 level.set(w, l); 190 } 191 } 192 193 OutEdgeIt f; 194 for(G.first(f,v); G.valid(f); G.next(f)) { 195 if ( 0 == flow[f] ) continue; 196 Node w=G.head(f); 197 if ( level[w] == n && w != s ) { 198 bfs_queue.push(w); 199 Node first=level_list[l]; 200 if ( G.valid(first) ) left.set(first,w); 201 right.set(w,first); 202 level_list[l]=w; 203 level.set(w, l); 204 } 205 } 206 } 207 208 209 /* 210 Counting the excess 211 */ 212 NodeIt v; 213 for(G.first(v); G.valid(v); G.next(v)) { 214 T exc=0; 215 216 InEdgeIt e; 217 for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e]; 218 OutEdgeIt f; 219 for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[e]; 220 221 excess.set(v,exc); 222 223 //putting the active nodes into the stack 224 int lev=level[v]; 225 if ( exc > 0 && lev < n ) { 226 next.set(v,active[lev]); 227 active[lev]=v; 228 } 229 } 230 231 232 //the starting flow 233 OutEdgeIt e; 234 for(G.first(e,s); G.valid(e); G.next(e)) 235 { 236 T rem=capacity[e]-flow[e]; 237 if ( rem == 0 ) continue; 238 Node w=G.head(e); 239 if ( level[w] < n ) { 240 if ( excess[w] == 0 && w!=t ) { 241 next.set(w,active[level[w]]); 242 active[level[w]]=w; 243 } 244 flow.set(e, capacity[e]); 245 excess.set(w, excess[w]+rem); 246 } 247 } 248 249 InEdgeIt f; 250 for(G.first(f,s); G.valid(f); G.next(f)) 251 { 252 if ( flow[f] == 0 ) continue; 253 Node w=G.head(f); 254 if ( level[w] < n ) { 255 if ( excess[w] == 0 && w!=t ) { 256 next.set(w,active[level[w]]); 257 active[level[w]]=w; 258 } 259 excess.set(w, excess[w]+flow[f]); 260 flow.set(f, 0); 261 } 262 } 263 } 264 265 266 148 267 149 268 /* … … 339 458 //unlacing ends 340 459 341 //gapping starts342 460 if ( !G.valid(level_list[lev]) ) { 343 461 462 //gapping starts 344 463 for (int i=lev; i!=k ; ) { 345 464 Node v=level_list[++i]; … … 356 475 k=b; 357 476 //gapping ends 477 358 478 } else { 359 479 … … 364 484 active[newlevel]=w; 365 485 if ( what_heur ) b=newlevel; 366 if ( k < newlevel ) ++k; 486 if ( k < newlevel ) ++k; //now k=newlevel 367 487 Node first=level_list[newlevel]; 368 488 if ( G.valid(first) ) left.set(first,w); … … 519 639 } 520 640 641 642 void reset_target (Node _t) {t=_t;} 643 void reset_source (Node _s) {s=_s;} 644 645 template<typename _CapMap> 646 void reset_cap (_CapMap _cap) {capacity=_cap;} 647 648 template<typename _FlowMap> 649 void reset_cap (_FlowMap _flow, bool _constzero) { 650 flow=_flow; 651 constzero=_constzero; 652 } 653 654 521 655 522 656 }; -
src/work/jacint/preflowproba.h
r370 r372 303 303 int l=level[v]+1; 304 304 305 ResInEdgeIt e;305 /* ResInEdgeIt e; 306 306 for(res_graph.first(e,s); res_graph.valid(e); 307 307 res_graph.next(e)) { … … 315 315 } 316 316 } 317 }318 /*InEdgeIt e;317 }*/ 318 InEdgeIt e; 319 319 for(G.first(e,v); G.valid(e); G.next(e)) { 320 320 if ( capacity[e] == flow[e] ) continue; … … 342 342 } 343 343 } 344 } */344 } 345 345 } 346 346 b=n-2;
Note: See TracChangeset
for help on using the changeset viewer.