Changes in / [712:6d5f547e5bfb:715:ece80147fb08] in lemon-main
- Files:
-
- 9 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/groups.dox
r710 r715 281 281 282 282 /** 283 @defgroup geomdat Geometric Data Structures 284 @ingroup auxdat 285 \brief Geometric data structures implemented in LEMON. 286 287 This group contains geometric data structures implemented in LEMON. 288 289 - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional 290 vector with the usual operations. 291 - \ref lemon::dim2::Box "dim2::Box" can be used to determine the 292 rectangular bounding box of a set of \ref lemon::dim2::Point 293 "dim2::Point"'s. 294 */ 295 296 /** 297 @defgroup matrices Matrices 298 @ingroup auxdat 299 \brief Two dimensional data storages implemented in LEMON. 300 301 This group contains two dimensional data storages implemented in LEMON. 302 */ 303 304 /** 283 305 @defgroup algs Algorithms 284 306 \brief This group contains the several algorithms … … 320 342 321 343 /** 344 @defgroup spantree Minimum Spanning Tree Algorithms 345 @ingroup algs 346 \brief Algorithms for finding minimum cost spanning trees and arborescences. 347 348 This group contains the algorithms for finding minimum cost spanning 349 trees and arborescences. 350 */ 351 352 /** 322 353 @defgroup max_flow Maximum Flow Algorithms 323 354 @ingroup algs … … 397 428 398 429 \f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} 399 \sum_{uv\in A ,u\in X, v\not\in X}cap(uv) \f]430 \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] 400 431 401 432 LEMON contains several algorithms related to minimum cut problems: … … 410 441 If you want to find minimum cut just between two distinict nodes, 411 442 see the \ref max_flow "maximum flow problem". 412 */413 414 /**415 @defgroup graph_properties Connectivity and Other Graph Properties416 @ingroup algs417 \brief Algorithms for discovering the graph properties418 419 This group contains the algorithms for discovering the graph properties420 like connectivity, bipartiteness, euler property, simplicity etc.421 422 \image html edge_biconnected_components.png423 \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth424 */425 426 /**427 @defgroup planar Planarity Embedding and Drawing428 @ingroup algs429 \brief Algorithms for planarity checking, embedding and drawing430 431 This group contains the algorithms for planarity checking,432 embedding and drawing.433 434 \image html planar.png435 \image latex planar.eps "Plane graph" width=\textwidth436 443 */ 437 444 … … 477 484 478 485 /** 479 @defgroup spantree Minimum Spanning Tree Algorithms 480 @ingroup algs 481 \brief Algorithms for finding minimum cost spanning trees and arborescences. 482 483 This group contains the algorithms for finding minimum cost spanning 484 trees and arborescences. 486 @defgroup graph_properties Connectivity and Other Graph Properties 487 @ingroup algs 488 \brief Algorithms for discovering the graph properties 489 490 This group contains the algorithms for discovering the graph properties 491 like connectivity, bipartiteness, euler property, simplicity etc. 492 493 \image html connected_components.png 494 \image latex connected_components.eps "Connected components" width=\textwidth 495 */ 496 497 /** 498 @defgroup planar Planarity Embedding and Drawing 499 @ingroup algs 500 \brief Algorithms for planarity checking, embedding and drawing 501 502 This group contains the algorithms for planarity checking, 503 embedding and drawing. 504 505 \image html planar.png 506 \image latex planar.eps "Plane graph" width=\textwidth 507 */ 508 509 /** 510 @defgroup approx Approximation Algorithms 511 @ingroup algs 512 \brief Approximation algorithms. 513 514 This group contains the approximation and heuristic algorithms 515 implemented in LEMON. 485 516 */ 486 517 … … 492 523 This group contains some algorithms implemented in LEMON 493 524 in order to make it easier to implement complex algorithms. 494 */495 496 /**497 @defgroup approx Approximation Algorithms498 @ingroup algs499 \brief Approximation algorithms.500 501 This group contains the approximation and heuristic algorithms502 implemented in LEMON.503 525 */ 504 526 … … 609 631 610 632 /** 611 @defgroup dimacs_group DIMACS format633 @defgroup dimacs_group DIMACS Format 612 634 @ingroup io_group 613 635 \brief Read and write files in DIMACS format … … 671 693 672 694 /** 695 @defgroup tools Standalone Utility Applications 696 697 Some utility applications are listed here. 698 699 The standard compilation procedure (<tt>./configure;make</tt>) will compile 700 them, as well. 701 */ 702 703 /** 673 704 \anchor demoprograms 674 705 … … 682 713 */ 683 714 684 /**685 @defgroup tools Standalone Utility Applications686 687 Some utility applications are listed here.688 689 The standard compilation procedure (<tt>./configure;make</tt>) will compile690 them, as well.691 */692 693 715 } -
lemon/bfs.h
r503 r713 414 414 ///The simplest way to execute the BFS algorithm is to use one of the 415 415 ///member functions called \ref run(Node) "run()".\n 416 ///If you need more control on the execution, firstyou have to call417 ///\ref init() , then you can add several source nodes with416 ///If you need better control on the execution, you have to call 417 ///\ref init() first, then you can add several source nodes with 418 418 ///\ref addSource(). Finally the actual path computation can be 419 419 ///performed with one of the \ref start() functions. … … 1426 1426 /// The simplest way to execute the BFS algorithm is to use one of the 1427 1427 /// member functions called \ref run(Node) "run()".\n 1428 /// If you need more control on the execution, firstyou have to call1429 /// \ref init() , then you can add several source nodes with1428 /// If you need better control on the execution, you have to call 1429 /// \ref init() first, then you can add several source nodes with 1430 1430 /// \ref addSource(). Finally the actual path computation can be 1431 1431 /// performed with one of the \ref start() functions. -
lemon/circulation.h
r689 r715 73 73 /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" 74 74 /// concept. 75 #ifdef DOXYGEN 76 typedef GR::ArcMap<Value> FlowMap; 77 #else 75 78 typedef typename Digraph::template ArcMap<Value> FlowMap; 79 #endif 76 80 77 81 /// \brief Instantiates a FlowMap. … … 88 92 /// The elevator type used by the algorithm. 89 93 /// 90 /// \sa Elevator 91 /// \sa LinkedElevator 94 /// \sa Elevator, LinkedElevator 95 #ifdef DOXYGEN 96 typedef lemon::Elevator<GR, GR::Node> Elevator; 97 #else 92 98 typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; 99 #endif 93 100 94 101 /// \brief Instantiates an Elevator. … … 470 477 /// \name Execution Control 471 478 /// The simplest way to execute the algorithm is to call \ref run().\n 472 /// If you need morecontrol on the initial solution or the execution,473 /// first you have to call one of the \ref init() functions, then479 /// If you need better control on the initial solution or the execution, 480 /// you have to call one of the \ref init() functions first, then 474 481 /// the \ref start() function. 475 482 -
lemon/dfs.h
r584 r713 412 412 ///The simplest way to execute the DFS algorithm is to use one of the 413 413 ///member functions called \ref run(Node) "run()".\n 414 ///If you need more control on the execution, firstyou have to call415 ///\ref init() , then you can add a source node with \ref addSource()414 ///If you need better control on the execution, you have to call 415 ///\ref init() first, then you can add a source node with \ref addSource() 416 416 ///and perform the actual computation with \ref start(). 417 417 ///This procedure can be repeated if there are nodes that have not … … 1370 1370 /// The simplest way to execute the DFS algorithm is to use one of the 1371 1371 /// member functions called \ref run(Node) "run()".\n 1372 /// If you need more control on the execution, firstyou have to call1373 /// \ref init() , then you can add a source node with \ref addSource()1372 /// If you need better control on the execution, you have to call 1373 /// \ref init() first, then you can add a source node with \ref addSource() 1374 1374 /// and perform the actual computation with \ref start(). 1375 1375 /// This procedure can be repeated if there are nodes that have not -
lemon/dijkstra.h
r584 r713 585 585 ///The simplest way to execute the %Dijkstra algorithm is to use 586 586 ///one of the member functions called \ref run(Node) "run()".\n 587 ///If you need more control on the execution, firstyou have to call588 ///\ref init() , then you can add several source nodes with587 ///If you need better control on the execution, you have to call 588 ///\ref init() first, then you can add several source nodes with 589 589 ///\ref addSource(). Finally the actual path computation can be 590 590 ///performed with one of the \ref start() functions. -
lemon/dim2.h
r440 r714 22 22 #include <iostream> 23 23 24 ///\ingroup misc24 ///\ingroup geomdat 25 25 ///\file 26 26 ///\brief A simple two dimensional vector and a bounding box implementation 27 ///28 /// The class \ref lemon::dim2::Point "dim2::Point" implements29 /// a two dimensional vector with the usual operations.30 ///31 /// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine32 /// the rectangular bounding box of a set of33 /// \ref lemon::dim2::Point "dim2::Point"'s.34 27 35 28 namespace lemon { … … 41 34 namespace dim2 { 42 35 43 /// \addtogroup misc36 /// \addtogroup geomdat 44 37 /// @{ 45 38 -
lemon/gomory_hu.h
r596 r713 360 360 /// \c t. 361 361 /// \code 362 /// Gomor uHu<Graph> gom(g, capacities);362 /// GomoryHu<Graph> gom(g, capacities); 363 363 /// gom.run(); 364 364 /// int cnt=0; 365 /// for(Gomor uHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;365 /// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; 366 366 /// \endcode 367 367 class MinCutNodeIt … … 457 457 /// \c t. 458 458 /// \code 459 /// Gomor uHu<Graph> gom(g, capacities);459 /// GomoryHu<Graph> gom(g, capacities); 460 460 /// gom.run(); 461 461 /// int value=0; 462 /// for(Gomor uHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)462 /// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) 463 463 /// value+=capacities[e]; 464 464 /// \endcode -
lemon/min_cost_arborescence.h
r625 r713 489 489 /// The simplest way to execute the algorithm is to use 490 490 /// one of the member functions called \c run(...). \n 491 /// If you need morecontrol on the execution,492 /// first you must call \ref init(), then you can add several491 /// If you need better control on the execution, 492 /// you have to call \ref init() first, then you can add several 493 493 /// source nodes with \ref addSource(). 494 494 /// Finally \ref start() will perform the arborescence -
lemon/preflow.h
r689 r715 53 53 /// The type of the map that stores the flow values. 54 54 /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. 55 #ifdef DOXYGEN 56 typedef GR::ArcMap<Value> FlowMap; 57 #else 55 58 typedef typename Digraph::template ArcMap<Value> FlowMap; 59 #endif 56 60 57 61 /// \brief Instantiates a FlowMap. … … 68 72 /// The elevator type used by Preflow algorithm. 69 73 /// 70 /// \sa Elevator 71 /// \sa LinkedElevator 72 typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator; 74 /// \sa Elevator, LinkedElevator 75 #ifdef DOXYGEN 76 typedef lemon::Elevator<GR, GR::Node> Elevator; 77 #else 78 typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; 79 #endif 73 80 74 81 /// \brief Instantiates an Elevator. … … 392 399 /// The simplest way to execute the preflow algorithm is to use 393 400 /// \ref run() or \ref runMinCut().\n 394 /// If you need morecontrol on the initial solution or the execution,395 /// first you have to call one of the \ref init() functions, then401 /// If you need better control on the initial solution or the execution, 402 /// you have to call one of the \ref init() functions first, then 396 403 /// \ref startFirstPhase() and if you need it \ref startSecondPhase(). 397 404
Note: See TracChangeset
for help on using the changeset viewer.