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Hyper-parameter (HP) tuning of machine learning (ML) algorithms is, in gen-
eral, treated as a black-box optimization problem [1] which objective function1

f : A×D×H → R captures the predictive performance of the algorithm a ∈ A
with the HP setting h = (h1, h2, . . . , hk) ∈ H on the dataset D ∈ D where A is
the set of ML algorithms, D is the set of datasets and H = H1×H2×· · ·×Hk is
the space of admissible values (usually defined by some constraints) of HPs for
the algorithm a. The task of HP tuning is, given a, H and D, to find h? ∈ H
such that

h? = arg max
h∈H

f(a,D,h) (1)

Various approaches to HP tuning were developed ranging from simpler grid
[2] or random search [3], direct search methods [4] through more sophisticated
approaches such as Evolutionary Algorithms [5], Particle Swarm Optimiza-
tion [6], Sequential Model-based Optimization [7], Bayesian methods [8], etc.

The goal of the work is to create a sandbox framework for test and compar-
ison of HP tuning approaches including the following steps:

• Search for freely available tools and their installation

• Implement not freely available approaches

• Download real-world and generate sythetic benchmark datasets

• Propose a sound experimental methodology for testing and comparison

• Evaluate and analyze the obtained results
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1

horvathtomi1976@gmail.com


[5] F. Friedrichs and C. Igel (2005). Evolutionary tuning of multiple svm param-
eters. Neurocomputing, vol. 64, p:107–117.

[6] A. Kalos (2005). Automated neural network structure determination via dis-
crete particle swarm optimization (for non-linear time series models). In 5th
WSEAS International Conference on Simulation, Modeling and Optimiza-
tion, p:325–331.

[7] F. Hutter, H. H. Hoos, and K. Leyton-Brown (2011). Sequential model-based
optimization for general algorithm configuration. In Lecture Notes in Com-
puter Science, vol. 6683, Springer, p:507–523.

[8] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown (2013). Auto-
WEKA: Combined selection and hyperparameter optimization of classifica-
tion algorithms. Proceedings of the International Conference on Knowledge
Discovery in Databases 2013, pp:847–855.

2


