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Abstract

The Lagrangean/surrogate relaxation was explored recently as a faster computational
alternative to traditional Lagrangean heuristics.  We combine the Lagrangean/surrogate
and the traditional column generation approaches to accelerate and stabilize primal and
dual bounds obtained using the reduced cost selection. The Lagrangean/surrogate
multiplier modifies the reduced cost criterion, providing the selection of new productive
columns. The p-median problem is the problem of locating p facilities (medians) on a
network such as the sum of all the distances from each demand point to its nearest facility
is minimized. Computational tests running p-median instances taken from the literature
are presented.
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1 Introduction

This work describes some relationships between the Lagrangean/surrogate relaxation and

the column generation process for linear programming problems. The

Lagrangean/surrogate relaxation applies the local surrogate information of constraints

relaxed in Lagrangean relaxation, to accelerate subgradient like methods. A local search

is conducted at some initial iteration of subgradient methods, correcting wrong step sizes.

The gain in computational times can be substantial for large-scale problems [18, 21].

Column generation is a powerful tool for solving large scale linear programming

problems. Such linear programming problems may arise when the columns in the

problem are not known in advance and a complete enumeration of all columns is not an

option, or the problem is rewritten using Dantzig-Wolfe decomposition (the columns

correspond to all extreme points of a certain constraint set) [3]. Column generation is a

natural choice in several applications, such as the well-known cutting-stock problem,

vehicle routing and crew scheduling [4, 5, 6, 12, 13, 23, 24, 25].

In a classical fashion of column generation, the algorithm iterates between a column

generation sub-problem and a restricted master problem. Solving the master problem

yields a certain dual solution, which is used in the sub-problem to determine whether

there is any column that might be an incoming column.

The equivalence between Dantzig-Wolfe decomposition, column generation and

Lagrangean relaxation optimization is well known. Solving a linear programming by

Dantzig-Wolfe decomposition is the same as solving the Lagrangean dual by Kelley's

cutting plane method [15]. However, in many cases a straightforward application of

column generation may result in slow convergence. The Lagrangean/surrogate relaxation

is showed in this paper to be an acceleration process to the column generation, generating

new productive sets of columns at each algorithm iteration.

Other attempts to stabilize the dual appeared before, like the Boxstep method [16], where

the optimization in the dual space is explicitly restricted to a bounded region with the

current dual point as the central point. The Bundle methods [19] define a trust region
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combined with penalty to prevent the next dual solution of changing too much. The

Analytic center cutting plane method [7], where the goal is to avoid the current dual

solution to change too dramatically, takes the analytic center of a region in the dual

function instead of having the optimal dual point as next iteration. Neame [19] describes

these and other recent alternative methods to stabilize the dual (du Merle et al. [8]).

The search for p-median nodes on a network is a classical location problem. The

objective is to locate p facilities (medians) such as the sum of the distances from each

demand point to its nearest facility is minimized. The problem is well known to be NP-

hard and several heuristics have been developed for p-median problems. The combined

use of Lagrangean relaxation and subgradient optimization in a primal-dual viewpoint

was found to be a good solution approach to the problem [21].

The use of column generation to solve p-median problems was not sufficiently explored.

The initial attempts appear to be the ones of [11]  and [22]. The authors report

convergence problems, even for small instances, when the number of medians is small

compared to the number of candidate points in the network. This observation was also

confirmed later by Galvão [10]. The solution of large-scale instances using a stabilized

approach is reported by du Merle et al.[8].

We explain in this paper the column generation approach to the p-median problem,

combined with the Lagrangean/surrogate relaxation. The paper is organized as follows.

Section two presents p-median formulations and the traditional column generation

process. The next section summarizes the Lagrangean/surrogate application to the

problem and how it can be used in conjunction with the column generation process.

Section four presents the algorithms and the next section gives computational results

evidencing the benefits of the new approach.
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2 P-median formulations and column generation

The p-median problem considered in this paper can be formulated as the following binary

integer programming problem:

(Pmed): ∑ ∑
= =

=
n

i

n

j
ijij xdMin)Pmed(v

1 1

subject to ∑
=

=
n

i
ijx

1
1;  j ∈N (1)

x pii
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n

=
∑ =

1
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x xij ii≤ ;  i, j ∈N (3)

ijx ∈{0,1};  i, j ∈N (4)

where:

[dij]nxn is a symmetric cost (distance) matrix, with dii = 0, ∀i;

p is the number of facilities (medians) to be located;

n is the number of nodes in the network, N = {1, ..., n};

[xij]nxn is the allocation matrix, with xij = 1 if median i is allocated to node j,

and xij = 0, otherwise; xii = 1 if node i is a median and xii = 0, otherwise.

Constraints (1) and (3) ensure that each node  j  is allocated to only one node  i , which

must be a median. Constraint (2) determines the exact number, p, of medians to be

located, and (4) gives the integer conditions.

(Pmed) is a classical formulation explored in other papers [21]. Garfinkel et al. [11] and

Swain [22] applied the Dantzig-Wolfe decomposition to (Pmed) obtaining the following

problem (set partition with a cardinality constraint):
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},...,,{ 21 mSSSS = , is the set of all subsets of N,

A = [aik]nxm , is a matrix with aik = 1 if  kSi ∈  , and aik = 0 otherwise; and
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For each subset  Sk , the open median is decided when the cost  ck  is calculated. So, the

columns of (SP-Pmed) consider implicitly the constraints set (3) in (Pmed). Constraints

(1) and (2) are conserved and respectively updated to (5) and (6), according the Dantzig-

Wolfe decomposition process. The same formulation is found in Minoux [17].

The number of subsets in S can be huge, and a partial set of columns is considered

instead. In this case, problem (SP-Pmed) is also known as the restricted master problem

in the column generation context [1].

The search for exact solutions of (SP-Pmed) is not an objective of this paper. We are

dealing with relaxation relationships, respectively, the Lagrangean/surrogate (to be

defined in next section) and a relaxed master problem solved by the column generation

process. So, the problem to be solved by column generation is the linear programming set

covering relaxation of  (SP-Pmed):
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Observe that dij ≥ 0, ∀i,j and (5) can be replaced with (7) in the linear model. The main

advantage is that problem (SC-Pmed) is easier to be solved than (SP-Pmed).

After defining an initial pool of columns, problem (SC-Pmed) is solved and the final dual

costs iπ , i = 1,...,n and α are used to generate new columns by solving the following sub-

problem:
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Each vertex in N is selected to be a median and problem (Sub-Pmed) is easily solved

setting (for each j = 1,...,n) 0,1 ≤−= iijij dify π  and 0,0 >−= iijij dify π . Let  j*  be the

vertex index reaching the overall minimum on v(Sub-Pmed). The new sets  Sj  are {i | yij =

1 on (Sub-Pmed)}  and the column 







1

*jy
 is added to (SC-Pmed) if  v(Sub-Pmed) < α .

The reduced cost is rc = v(Sub-Pmed) - α and rc  < 0  is the condition for incoming

columns, but it is well known (see reference [1]) that, for  j = 1,...,n, all the corresponding

columns 







1

jy
 satisfying:
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ijiijy

ydMin
ij 1}1,0{

π  < α , (8)

can be added to the pool of columns, possibly accelerating the column generation

process.
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3 The Lagrangean/surrogate integration to column generation

It is well known the equivalencies of the Dantzig-Wolfe decomposition, column

generation and Lagrangean relaxation optimization. Solving a linear programming by

Dantzig-Wolfe decomposition is the same as solving the Lagrangean by Kelley's cutting

plane method [15]. The Lagrangean relaxation corresponding to the Dantzig-Wolfe

decomposition presented in section 2 is:

:)(LPmed απ , ∑ ∑ ∑∑
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
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n
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iiijiij pxxdMinLPmedv

1 1 11

, )()( παπαπ

subject to (3) and (4),

where  π ∈ nR+  and α  are the Lagrangean multipliers of constraints (1) and (2).

Solving (LPmedπ,α) generates new cutting planes on the Kelley´s method that

corresponds to new columns in (SC-Pmed). Since dii = 0, i = 1,…,n , the number of open

medians in (LPmedπ,α) depends on the number of coefficients ( ) 0<− iπα . Defined this

number, it can be identified the median given the smallest contribution to  v(LPmedπ,α)

(and their allocated non-medians). If the π ∈ nR+  and α  are dual variables coming from

(SC-Pmed) this result to be equivalent to find the column  j* using sub-problem (Sub-

Pmed). The column 







1

*jy
 is added to (SC-Pmed) if  rc < 0, as well as all the

corresponding columns 







1

jy
 satisfying expression  (8)  can be added to the pool of

columns.

While the number of medians is not implicitly considered in (Sub-Pmed) we decide to use

a relaxation only of constraints (1) (multipliers π ∈ nR+ ) for the planned combination of
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Lagrangean/surrogate relaxation and the column generation process. The

Lagrangean/surrogate relaxation for the p-median problem was presented in the work of

Senne and Lorena [21]. A general description of the Lagrangean/surrogate relaxation

appeared in the work of Narciso and Lorena [18]. We summarize the relaxation in this

section showing how to combine it with the column generation approach.

For a given t ≥ 0 and π ∈ nR+ , the Lagrangean/surrogate relaxation of problem (Pmed) is

given by:

:)Pmed(LS t
π ∑ ∑ ∑

= = =

+−=
n

i

n

j

n

i
iijiijt txtdMinPmedLSv

1 1 1

)()( πππ

subject to (2), (3) and (4).

Problem )( πPmedLS t is solved considering implicitly constraint (2) and decomposing

for index  j, obtaining the following  n  problems:

∑
=

−
n

i
ijiij xtdMin

1

)( π  subject to (3) and (4).

Each problem is easily solved letting  ( )[ ]∑
=

−=
n

i
iijj tdMin

1

,0 πβ , and choosing  I  as

the index set of  the  p  smallest jβ  (here constraint (2) is considered implicitly). Then, a

solution π
ijx  to problem )( πPmedLS t is:



 ∈

=
otherwise
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The Lagrangean/surrogate solution is given by ∑∑
==

+=
n

i
i

n

j
jjjt txPmedLSv

11

)( πβ ππ .

Note that π
jjx  is always candidate to be 1, since (djj - tπi) = - tπi ≤ 0, and this allows one

or more xij ś to be 1 if the corresponding (dij - tπi) are negative.

If  t  is set to  1  it results on the usual Lagrangean relaxation.  For a fixed multiplier π,

the best value for  t  can be found solving approximately a local Lagrangean dual

)PmedLS(vMax)D(v t
0t

t
ππ

≥
= . It is well known that the function l: R+ → R, (t,

)( πPmedLSv t ) is concave and piecewise linear. Figure 1 shows a typical situation for the

Lagrangean/surrogate bounds.

Figure 1 – Lagrangean/surrogate bounds

An exact solution to ( π
tD ) may be obtained by a search over different values of t [21].

For the purpose of this paper, however, it is enough that t ∈ (a, b) in order to obtain an

improved bound in relation to the usual Lagrangean relaxation. So, a convenient value for

t  can be found by the following search procedure:

t

)( π
tDv

)( πPmedLSv t

)( 1
πPmedLSv

*ta b
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Let 0t  be the initial value for t, and s be the step size.

1. Set a = b = undefined.

2. Repeat the steps 3 and 4 while a or b are undefined.

3. Solve )( πPmedLSt  obtaining πx  and calculate the slope of the

Lagrangean/surrogate function as ∑ ∑
= =








 −=
n

i

n

i
iji xs

1 1

1 ππ π .

4. Set a = t, if ( πs < 0). Otherwise, set b = t. If b remains undefined set t = t + s.

Otherwise, set t = t – s, if a remains undefined.

5. Find the improved value of t by a dichotomous search on (a, b).

We have used 0t  = 0.1 and s = 0.1 in the computational tests.

The Lagrangean/surrogate problem is integrated to the column generation process

transferring the multipliers iπ  (i = 1,...,n) of problem (SC-Pmed) to the problem

)(
0

πPmedLSvMax t
t≥

. The median with smallest contribution on v[ )(
0

πPmedLSvMax t
t≥

]

(and allocated non-medians) results to be the one selected to produce the incoming

column on the new sub-problem:

:Pmed)(Sub t v(SubtPmed) ( ) 




 −= ∑
=

∈∈

n

i
ijiijyNj

ytdMinMin
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}1,0{
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Let  j**  be the vertex index reaching the overall minimum on v(SubtPmed). The new sets

Sj  are {i | yij = 1 on (SubtPmed)}  and the column 







1

**jy
 is added to (SC-Pmed) if

( ) 







π−∑

=

n

i
**ij**jij yd

1
 < α , as well as the corresponding columns 








1

jy
 satisfying

expression (8) can be added to the pool of columns. Note that the columns generated can

be different from the ones generated using  (SubPmed), but they are incoming columns

only if satisfy the usual reduced cost tests.
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Rewriting (SubtPmed),
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and the multiplier (1 – t) can be seen as a dual variable corresponding to the following

additional constraint in the master problem (SC-Pmed):

∑∑∑
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≥
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k
kki xA

11 1

ππ (9)

Constraint (9) is obtained taking the dual variables  πi (i = 1,…,n) in the current master

problem. The new (SC-Pmed) is:

(SC-Pmedπ): v(SC-Pmedπ) k
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Constraint (9) is a surrogate constraint derived of constraints (5) in (SC-Pmed) and is

considered only implicitly by the dual variable (1 – t). It follows by linear programming

duality that (1 – t) ≥ 0 and as defined before, that t ≥ 0. Therefore the multiplier  t  is

always situated in the interval [0,1].

It appears that the implicit consideration of (9) could be beneficial to the column

generation process. Some columns can be anticipated in the process. We conjecture in the

following that these new identified columns can be more productive for the column

generation process than the ones generated by (SubPmed).
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The joint application of the Dantzig-Wolfe and Kelley´s methods give an indication that

the Lagrangean/surrogate multiplier t must converge to 1 as the primal/dual process

converge.

Comparing the sub-problems )PmedSub( t  and )SubPmed(  it is easy to see that for

0 ≤ t ≤ 1, if 0>− iijd π  then 0>− iij td π  and in the column 







1

jy
 the corresponding

0=ijy  was not modified using multiplier t. If 0≤− iijd π  then 0≤− iij td π  or

0>− iij td π  and in the column 







1

jy
 some 1=ijy  can be flipped to 0=ijy . A direct

consequence is that for the same multipliers iπ  (i = 1,...,n), the column cost









= ∑

∈
∈

k
k Sj

ijSik dMinc  calculated for problem (SC-Pmed) can be smaller using the

Lagrangean/surrogate approach. This effect is best shown on computational tests of

section 5 and results on faster convergence, even when multiple columns are added to the

pool at each iteration of the process.

4 The algorithms

The column generation algorithms proposed in this paper can be stated as:

CG (t)

(i) Set an initial pool of columns to (SC-Pmed);

(ii) Solve (SC-Pmed) using the CPLEX [14] and return the duals prices  iπ ( i =
1,...,n ) and α;

(iii) Solve approximately a local Lagrangean/surrogate dual )(
0

πPmedLSvMax t
t≥

,

returning the corresponding columns of (SubtPmed);
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(iv) Append to (SC-Pmed) the columns 







1

jy
 satisfying expression (8);

(v) If no columns are found in step (iv) then stop;

(vi) Perform tests to remove columns and return to step (ii).

Steps (i) and (vi) will be described below. Making  t = 1, CG (1) gives the traditional

column generation process. In this case, the search for t in the step (iii) is no more

necessary, and the usual Lagrangean bound )( 1
πPmedLS  implicitly solves the

)PmedSub( 1  problem. In any case the bounds v(SC-Pmed) and )( πPmedLSv t are

calculated at each iteration.

The following algorithm is used in step (i):

IC

Let
Num_Cols be the maximum number of columns for the initial pool of

columns.

ncols = 0;
While (ncols < Num_Cols) do

Let  M = { 1n , 2n , ..., pn } ⊂ N  be a randomly generated set of nodes.
For each k = 1, 2, ..., p do

})d(Mind|MNi{}n{S ij
Mj

inkk k ∈
=−∈= U









= ∑

∈
∈

k
k Sj

ijSik dMinc

For j = 1,…,n do
Set 1y j =  if kSj ∈

      0y j = , otherwise
End_for

Include column 







1

jy
 in the initial pool of columns.

End_For;
ncols = ncols + p;

End_While;
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The algorithm used in step (vi) is the following:

RC

Let
mean_rc be the average of the reduced costs for the initial pool of columns

(after IC application) of (SC-Pmed);
tot_cols be the total number of columns in the current (SC-Pmed);

irc  be the reduced cost of the columns in the current (SC-Pmed) (i =
1,..., tot_cols);

rc_factor be a parameter to control the strength of the test.

For i = 1, ..., tot_cols do
Delete column i from the current (SC-Pmed) if  irc > rc_factor * mean_rc.

End_For;

5 Computational tests

The approach discussed above was programmed in C and run on a Sun Ultra 30

workstation. The initial set of instances used for the tests is drawn from OR-Library [2].

The results are reported in the tables below (note that the symbol “–” in these tables

means “null gap”) and the algorithms are summarized as:

• CG(t) – described in section 4, and uses the column generation process combined

with the Lagrangean/surrogate relaxation;

• CG(1) – described in section 4, and uses the traditional column generation

process and also gives the Lagrangean relaxation bound;

• LS – described in the paper [21], and uses the Lagrangean/surrogate relaxation

embedded on a dual optimized by a subgradient method.

In these tables, all the computer times do not include the time needed to setup the

problem.

Table 1 reports the results for CG(t) and CG(1) (in parentheses) obtained for rc_factor =

1.0 and maximum number of iterations = 1000. Table 1 contains:
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− the number of nodes in the network and the number of medians to be located;

− the optimal integer solution for the instance (available in OR-Library);

− iter = the number of iterations;

− the total number of columns generated;

− the number of columns effectively used in the process;

− gap_primal = 100 * | (v(SC-Pmed)  – optimal) | / optimal, that is, the percentage

deviation from optimal to the best primal solution value v(SC-Pmed) found by

CPLEX ;

− gap_dual = 100 * (optimal – )( πPmedLSv t ) / optimal, that is, the percentage

deviation from optimal to the best relaxation value )( πPmedLSv t   found;

− the total computational time (in seconds).

Table 1. Computational results for instances from OR-Library

n p
optimal
solution iter

columns
generated

columns
used gap_primal gap_dual

total
time

100 5 5819 184
(155)

5458
(5969)

3861
(3775)

–
(–)

–
(–)

36.35
(36.31)

200 5 7824 399
(381)

16929
(23630)

11763
(12533)

–
(–)

–
(–)

902.77
(1625.63)

200 10 5631 936
(757)

24375
(24483)

20584
(18701)

–
(–)

–
(–)

996.00
(864.83)

300 5 7696 1000
(919)

39299
(48431)

38173
(42704)

0.246
(–)

1.796
(–)

17889.12
(23337.79)

300 10 6634 731
(1000)

33342
(55200)

26638
(36864)

–
(0.108)

–
(0.215)

10749.91
(13214.36)

300 30 4374 198
(1000)

12040
(40166)

8016
(30381)

–
(–)

–
(0.118)

831.22
(1057.43)

400 5 8162 1000
(1000)

60624
(85762)

53181
(64266)

0.686
(0.832)

1.662
(1.022)

52807.93
(83877.77)

400 10 6999 675
(627)

41156
(66680)

26561
(26070)

–
(–)

–
(–)

36829.25
(41202.98)

400 40 4809 195
(191)

18160
(24213)

13130
(13101)

–
(–)

–
(–)

1055.20
(1078.27)

The combined use of Lagrangean/surrogate and column generation can be very

interesting, especially for large-scale problems. Algorithm CG(t)  is faster and found the

same results of CG(1) generating a small number of columns. Figure 2 shows that the
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typical behaviors of )( 1
πPmedLSv  (called here the Lagrangean bound) and

)( πPmedLSv t  (called here the Lagrangean/surrogate bound) are conserved using column

generation. The figure shows the values obtained at each iteration of CG(t) and CG(1) for

a problem with n = 900 and p = 300.

-10000

-8000

-6000

-4000

-2000

0

2000

4000

0 10 20 30 40 50 60

CG(1) CG(t)

Figure 2. Typical computational behavior of the dual bounds
)( 1

πPmedLSv and )( πPmedLSv t

The results of Table 1 also show that for a given number of nodes, the smaller the number

of medians in the instance, the harder is the problem to be solved using the column

generation approaches CG(t) or CG(1). The opposite occurs for Lagrangean and

Lagrangean/surrogate approaches combined with subgradient search methods (algorithm

LS in [21]), i.e., the instances for which the number of medians is about 1/3 of the

number the nodes are the more difficult ones to solve.

Table 2 shows the results obtained for the set of the most time consuming instances (for

LS approaches) from OR-Library in order to compare the CG approaches discussed here

and the Lagrangean/surrogate approach presented in [21]. The results presented in Table2

were obtained for rc_factor = 1.0 and the maximum number of iterations = 50. The

columns CG show the results for CG(t) and CG(1) (in parentheses). For the LS algorithm,

the gap_primal = 100 * (feasible solution – optimal)/ optimal, where the feasible solution

is obtained after a local search procedure performed on the clusters identified by medians.

Iterations
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Table 2. Comparison of LS and CG approaches

optimal gap_primal gap_dual total time
n p solution LS CG LS CG LS CG

100 33 1355 – –
(–) – –

(–) 0.58 0.37
(0.35)

200 67 1255 – –
(–) – –

(0.667) 4.00 1.29
(1.89)

300 100 1729 – 0.116
(–) – 0.058

(–) 16.78 4.55
(4.90)

400 133 1789 – 0.112
(–)

– 0.950
(0.783)

51.80 6.21
(6.04)

500 167 1828 – 0.055
(0.036) – 0.310

(0.210) 127.60 11.00
(12.91)

600 200 1989 – 0.302
(0.101) – 0.285

(0.235) 257.02 15.81
(17.59)

700 233 1847 – 0.081
(0.325) – 0.379

(0.785) 482.97 21.50
(21.41)

800 267 2026 – 0.518
(0.222) – 0.346

(0.271) 1374.74 26.14
(27.95)

900 300 2106 0.047 0.518
(0.607) 0.004 0.827

(0.443) 3058.65 33.37
(49.99)

The instances in Table 2 seem to be easy for CG approaches and hard for LS approach.

For these instances the computational tests have confirmed the superiority of the

combined use of Lagrangean/surrogate and column generation compared to the

Lagrangean/surrogate embedded in a subgradient search method (note that the LS

approach was already shown to be faster than Lagrangean heuristics in [21]).

The results from Table 1 show that CG(t) is able to generate fewer and higher quality

columns than CG(1). This becomes evident when the number of useful columns is limited

by decreasing rc_factor, as reported by Table 3 and shown by Figure 3, for the instance

with n = 200 and p = 5.

Table 3 – Limiting useful columns by rc_factor

rc_factor iter
columns

generated
columns

used gap_primal gap_dual
total
time

0.5 403
(487)

18493
(47634)

7543
(7364)

–
(–)

–
(–)

619.63
(971.59)

0.4 414
(1000)

20395
(167247)

6627
(3270)

–
(0.631)

–
(4.635)

613.79
(1370.99)

0.3 400
(1000)

23521
(186267)

3886
(421)

–0.276
(11.171)

2.010
(65.181)

532.27
(905.67)
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Figure 3 – (SC-Pmed) values at each iteration
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The results from Table 3 and Figure 3 show that a column generation procedure which

includes a Lagrangean/surrogate algorithm CG(t) is able to produce high quality

approximate solutions even if only a few number of columns is used. The traditional

approach CG(1) keeps on several iterations with no improvement on the optimal value of

the master problem, or it can stay unchanged all the time (see Figure 3 for rc_factor =

0.3).

As commented before the Lagrangean/surrogate multiplier t is situated on the interval

[0, 1], and as the iteration number increases, the usefulness of the surrogate inequality (9)

disappears. Figure 4 shows the values of this multiplier at each iteration of the CG(t) for

the problem n = 300 and p = 5 presented in Table 1.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 200 400 600 800 1000

Figure 4. The increasing of the Lagrangean/surrogate multiplier

The computational tests proceeded now considering a large-scale instance. The Pcb3038

instance in the TSPLIB, compiled by Reinelt [20], was considered for the tests. The

results are given in Table 4, Table 5 and Table 6. In these tables gap_primal and

gap_dual are calculated as following:

− gap_primal = 100 * | (v(SC-Pmed)  – best known solution) | / best known solution

− gap_dual = 100 * (best known solution – )( πPmedLSv t ) / best known solution

Iterations
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Table 4. Computational results for Pcb3038 instances (rc_factor = 1.0)

p
best known

solution iter
columns

generated
columns

used gap_primal gap_dual
total
time

300 187723.46 42
(48)

58339
(65007)

44599
(44081)

0.043
(0.043)

0.044
(0.043)

22235.02
(35132.76)

350 170973.34 47
(37)

58758
(65545)

45576
(43956)

0.044
(0.044)

0.045
(0.045)

10505.93
(20457.59)

400 157030.46 33
(35)

50807
(60287)

37318
(39563)

0.008
(0.008)

0.008
(0.008)

4686.27
(8962.82)

450 145422.94 32
(30)

45338
(52515)

32637
(33544)

0.052
(0.052)

0.053
(0.052)

1915.84
(3241.71)

500 135467.85 22
(21)

31778
(36386)

22854
(22839)

0.036
(0.035)

0.036
(0.036)

597.86
(787.46)

Table 5. Computational results for Pcb3038 instances (rc_factor = 0.5)

p
best known

solution iter
columns

generated
columns

used gap_primal gap_dual
total
time

300 187723.46 79
(67)

96798
(111597)

40053
(39448)

0.043
(0.043)

0.044
(0.043)

19371.01
(36029.23)

350 170973.34 65
(53)

86113
(90651)

29179
(31664)

0.044
(0.044)

0.045
(0.044)

7077.99
(12905.94)

400 157030.46 53
(49)

77174
(94716)

22857
(30101)

0.008
(0.008)

0.008
(0.008)

2872.48
(5682.90)

450 145422.94 40
(41)

55870
(80631)

18662
(23767)

0.052
(0.052)

0.052
(0.053)

1288.56
(2568.56)

500 135467.85 34
(53)

45092
(79338)

16750
(22956)

0.036
(0.036)

0.036
(0.044)

716.78
(1425.33)

Table 6. Computational results for Pcb3038 instances (rc_factor = 0.2)

p
best known

solution iter
columns

generated
columns

used gap_primal gap_dual
total
time

300 187723.46 617
(834)

958984
(1655221)

28718
(93535)

0.043
(0.043)

0.044
(0.043)

36333.01
(117707.31)

350 170973.34 393
(719)

576789
(1232357)

24475
(74005)

0.044
(0.044)

0.044
(0.044)

10823.10
(49874.03)

400 157030.46 235
(586)

330475
(1232440)

15973
(54724)

0.008
(0.008)

0.008
(0.008)

4529.20
(39883.02)

450 145422.94 155
(363)

176348
(843026)

13489
(20517)

0.052
(0.052)

0.052
(0.052)

2356.97
(12990.88)

500 135467.85 121
(210)

119884
(420737)

12997
(24254)

0.035
(0.036)

0.035
(0.036)

1682.15
(4340.33)

The results from tables 4, 5 and 6 confirm that CG(t) is really able to generate better

quality columns than CG(1). Evidently, if more columns are deleted by RC algorithm,
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more iterations are necessary to reach the same results, which highlights the superiority

of CG(t) as compared to CG(1). The rc_factor can be viewed as a trade-off parameter to

decide about available time and storage conditions.

Based on the computational tests we can draw the following overall conclusions:

− It appears that instances with small number of medians are hard to column generation

approaches and easy for Lagrangean/surrogate and subgradient methods. But

instances with large number of medians are easy to column generation and hard to

Lagrangean/surrogate and subgradient methods. It seems that they are companion

methods in this sense.

−  Algorithm CG(t) can be used as a substitute of CG(1), specially on hard instances

and when the limit of generated columns is an important factor.

6 Comments and conclusion

The column generation has been recognized as a useful tool for modeling and solving

large-scale linear programming problems. Despite that, the column generation application

may have some computational problems, when the sub-problem generates too many

columns not improving the master problem bound.

The combined use of Lagrangean/surrogate relaxation and column generation shows

some improvement to the traditional column generation process. Depending on the

instance both methods, the column generation and the Lagrangean/surrogate embedded

with subgradient like methods, can be improved.

Algorithm CG(t) also calculates lower bounds, the Lagrangean/surrogate bound, that can

be used, in similar way to other bounds [9], to stop the process at a convenient iterations

limit. It also can be useful to branch-and-price methods [1, 25].
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The CG(t) application to p-median problems is an alternative to Lagrangean heuristics,

especially on hard instances. Some instances remains hard to column generation and

more research need to be addressed to this topic.
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