alpar@1
|
1 |
/* glplpx02.c */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpapi.h"
|
alpar@1
|
26 |
|
alpar@1
|
27 |
/***********************************************************************
|
alpar@1
|
28 |
* NAME
|
alpar@1
|
29 |
*
|
alpar@1
|
30 |
* lpx_put_solution - store basic solution components
|
alpar@1
|
31 |
*
|
alpar@1
|
32 |
* SYNOPSIS
|
alpar@1
|
33 |
*
|
alpar@1
|
34 |
* void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,
|
alpar@1
|
35 |
* const int *d_stat, const double *obj_val, const int r_stat[],
|
alpar@1
|
36 |
* const double r_prim[], const double r_dual[], const int c_stat[],
|
alpar@1
|
37 |
* const double c_prim[], const double c_dual[])
|
alpar@1
|
38 |
*
|
alpar@1
|
39 |
* DESCRIPTION
|
alpar@1
|
40 |
*
|
alpar@1
|
41 |
* The routine lpx_put_solution stores basic solution components to the
|
alpar@1
|
42 |
* specified problem object.
|
alpar@1
|
43 |
*
|
alpar@1
|
44 |
* The parameter inval is the basis factorization invalidity flag.
|
alpar@1
|
45 |
* If this flag is clear, the current status of the basis factorization
|
alpar@1
|
46 |
* remains unchanged. If this flag is set, the routine invalidates the
|
alpar@1
|
47 |
* basis factorization.
|
alpar@1
|
48 |
*
|
alpar@1
|
49 |
* The parameter p_stat is a pointer to the status of primal basic
|
alpar@1
|
50 |
* solution, which should be specified as follows:
|
alpar@1
|
51 |
*
|
alpar@1
|
52 |
* GLP_UNDEF - primal solution is undefined;
|
alpar@1
|
53 |
* GLP_FEAS - primal solution is feasible;
|
alpar@1
|
54 |
* GLP_INFEAS - primal solution is infeasible;
|
alpar@1
|
55 |
* GLP_NOFEAS - no primal feasible solution exists.
|
alpar@1
|
56 |
*
|
alpar@1
|
57 |
* If the parameter p_stat is NULL, the current status of primal basic
|
alpar@1
|
58 |
* solution remains unchanged.
|
alpar@1
|
59 |
*
|
alpar@1
|
60 |
* The parameter d_stat is a pointer to the status of dual basic
|
alpar@1
|
61 |
* solution, which should be specified as follows:
|
alpar@1
|
62 |
*
|
alpar@1
|
63 |
* GLP_UNDEF - dual solution is undefined;
|
alpar@1
|
64 |
* GLP_FEAS - dual solution is feasible;
|
alpar@1
|
65 |
* GLP_INFEAS - dual solution is infeasible;
|
alpar@1
|
66 |
* GLP_NOFEAS - no dual feasible solution exists.
|
alpar@1
|
67 |
*
|
alpar@1
|
68 |
* If the parameter d_stat is NULL, the current status of dual basic
|
alpar@1
|
69 |
* solution remains unchanged.
|
alpar@1
|
70 |
*
|
alpar@1
|
71 |
* The parameter obj_val is a pointer to the objective function value.
|
alpar@1
|
72 |
* If it is NULL, the current value of the objective function remains
|
alpar@1
|
73 |
* unchanged.
|
alpar@1
|
74 |
*
|
alpar@1
|
75 |
* The array element r_stat[i], 1 <= i <= m (where m is the number of
|
alpar@1
|
76 |
* rows in the problem object), specifies the status of i-th auxiliary
|
alpar@1
|
77 |
* variable, which should be specified as follows:
|
alpar@1
|
78 |
*
|
alpar@1
|
79 |
* GLP_BS - basic variable;
|
alpar@1
|
80 |
* GLP_NL - non-basic variable on lower bound;
|
alpar@1
|
81 |
* GLP_NU - non-basic variable on upper bound;
|
alpar@1
|
82 |
* GLP_NF - non-basic free variable;
|
alpar@1
|
83 |
* GLP_NS - non-basic fixed variable.
|
alpar@1
|
84 |
*
|
alpar@1
|
85 |
* If the parameter r_stat is NULL, the current statuses of auxiliary
|
alpar@1
|
86 |
* variables remain unchanged.
|
alpar@1
|
87 |
*
|
alpar@1
|
88 |
* The array element r_prim[i], 1 <= i <= m (where m is the number of
|
alpar@1
|
89 |
* rows in the problem object), specifies a primal value of i-th
|
alpar@1
|
90 |
* auxiliary variable. If the parameter r_prim is NULL, the current
|
alpar@1
|
91 |
* primal values of auxiliary variables remain unchanged.
|
alpar@1
|
92 |
*
|
alpar@1
|
93 |
* The array element r_dual[i], 1 <= i <= m (where m is the number of
|
alpar@1
|
94 |
* rows in the problem object), specifies a dual value (reduced cost)
|
alpar@1
|
95 |
* of i-th auxiliary variable. If the parameter r_dual is NULL, the
|
alpar@1
|
96 |
* current dual values of auxiliary variables remain unchanged.
|
alpar@1
|
97 |
*
|
alpar@1
|
98 |
* The array element c_stat[j], 1 <= j <= n (where n is the number of
|
alpar@1
|
99 |
* columns in the problem object), specifies the status of j-th
|
alpar@1
|
100 |
* structural variable, which should be specified as follows:
|
alpar@1
|
101 |
*
|
alpar@1
|
102 |
* GLP_BS - basic variable;
|
alpar@1
|
103 |
* GLP_NL - non-basic variable on lower bound;
|
alpar@1
|
104 |
* GLP_NU - non-basic variable on upper bound;
|
alpar@1
|
105 |
* GLP_NF - non-basic free variable;
|
alpar@1
|
106 |
* GLP_NS - non-basic fixed variable.
|
alpar@1
|
107 |
*
|
alpar@1
|
108 |
* If the parameter c_stat is NULL, the current statuses of structural
|
alpar@1
|
109 |
* variables remain unchanged.
|
alpar@1
|
110 |
*
|
alpar@1
|
111 |
* The array element c_prim[j], 1 <= j <= n (where n is the number of
|
alpar@1
|
112 |
* columns in the problem object), specifies a primal value of j-th
|
alpar@1
|
113 |
* structural variable. If the parameter c_prim is NULL, the current
|
alpar@1
|
114 |
* primal values of structural variables remain unchanged.
|
alpar@1
|
115 |
*
|
alpar@1
|
116 |
* The array element c_dual[j], 1 <= j <= n (where n is the number of
|
alpar@1
|
117 |
* columns in the problem object), specifies a dual value (reduced cost)
|
alpar@1
|
118 |
* of j-th structural variable. If the parameter c_dual is NULL, the
|
alpar@1
|
119 |
* current dual values of structural variables remain unchanged. */
|
alpar@1
|
120 |
|
alpar@1
|
121 |
void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,
|
alpar@1
|
122 |
const int *d_stat, const double *obj_val, const int r_stat[],
|
alpar@1
|
123 |
const double r_prim[], const double r_dual[], const int c_stat[],
|
alpar@1
|
124 |
const double c_prim[], const double c_dual[])
|
alpar@1
|
125 |
{ GLPROW *row;
|
alpar@1
|
126 |
GLPCOL *col;
|
alpar@1
|
127 |
int i, j;
|
alpar@1
|
128 |
/* invalidate the basis factorization, if required */
|
alpar@1
|
129 |
if (inval) lp->valid = 0;
|
alpar@1
|
130 |
/* store primal status */
|
alpar@1
|
131 |
if (p_stat != NULL)
|
alpar@1
|
132 |
{ if (!(*p_stat == GLP_UNDEF || *p_stat == GLP_FEAS ||
|
alpar@1
|
133 |
*p_stat == GLP_INFEAS || *p_stat == GLP_NOFEAS))
|
alpar@1
|
134 |
xerror("lpx_put_solution: p_stat = %d; invalid primal statu"
|
alpar@1
|
135 |
"s\n", *p_stat);
|
alpar@1
|
136 |
lp->pbs_stat = *p_stat;
|
alpar@1
|
137 |
}
|
alpar@1
|
138 |
/* store dual status */
|
alpar@1
|
139 |
if (d_stat != NULL)
|
alpar@1
|
140 |
{ if (!(*d_stat == GLP_UNDEF || *d_stat == GLP_FEAS ||
|
alpar@1
|
141 |
*d_stat == GLP_INFEAS || *d_stat == GLP_NOFEAS))
|
alpar@1
|
142 |
xerror("lpx_put_solution: d_stat = %d; invalid dual status "
|
alpar@1
|
143 |
"\n", *d_stat);
|
alpar@1
|
144 |
lp->dbs_stat = *d_stat;
|
alpar@1
|
145 |
}
|
alpar@1
|
146 |
/* store objective function value */
|
alpar@1
|
147 |
if (obj_val != NULL) lp->obj_val = *obj_val;
|
alpar@1
|
148 |
/* store row solution components */
|
alpar@1
|
149 |
for (i = 1; i <= lp->m; i++)
|
alpar@1
|
150 |
{ row = lp->row[i];
|
alpar@1
|
151 |
if (r_stat != NULL)
|
alpar@1
|
152 |
{ if (!(r_stat[i] == GLP_BS ||
|
alpar@1
|
153 |
row->type == GLP_FR && r_stat[i] == GLP_NF ||
|
alpar@1
|
154 |
row->type == GLP_LO && r_stat[i] == GLP_NL ||
|
alpar@1
|
155 |
row->type == GLP_UP && r_stat[i] == GLP_NU ||
|
alpar@1
|
156 |
row->type == GLP_DB && r_stat[i] == GLP_NL ||
|
alpar@1
|
157 |
row->type == GLP_DB && r_stat[i] == GLP_NU ||
|
alpar@1
|
158 |
row->type == GLP_FX && r_stat[i] == GLP_NS))
|
alpar@1
|
159 |
xerror("lpx_put_solution: r_stat[%d] = %d; invalid row s"
|
alpar@1
|
160 |
"tatus\n", i, r_stat[i]);
|
alpar@1
|
161 |
row->stat = r_stat[i];
|
alpar@1
|
162 |
}
|
alpar@1
|
163 |
if (r_prim != NULL) row->prim = r_prim[i];
|
alpar@1
|
164 |
if (r_dual != NULL) row->dual = r_dual[i];
|
alpar@1
|
165 |
}
|
alpar@1
|
166 |
/* store column solution components */
|
alpar@1
|
167 |
for (j = 1; j <= lp->n; j++)
|
alpar@1
|
168 |
{ col = lp->col[j];
|
alpar@1
|
169 |
if (c_stat != NULL)
|
alpar@1
|
170 |
{ if (!(c_stat[j] == GLP_BS ||
|
alpar@1
|
171 |
col->type == GLP_FR && c_stat[j] == GLP_NF ||
|
alpar@1
|
172 |
col->type == GLP_LO && c_stat[j] == GLP_NL ||
|
alpar@1
|
173 |
col->type == GLP_UP && c_stat[j] == GLP_NU ||
|
alpar@1
|
174 |
col->type == GLP_DB && c_stat[j] == GLP_NL ||
|
alpar@1
|
175 |
col->type == GLP_DB && c_stat[j] == GLP_NU ||
|
alpar@1
|
176 |
col->type == GLP_FX && c_stat[j] == GLP_NS))
|
alpar@1
|
177 |
xerror("lpx_put_solution: c_stat[%d] = %d; invalid colum"
|
alpar@1
|
178 |
"n status\n", j, c_stat[j]);
|
alpar@1
|
179 |
col->stat = c_stat[j];
|
alpar@1
|
180 |
}
|
alpar@1
|
181 |
if (c_prim != NULL) col->prim = c_prim[j];
|
alpar@1
|
182 |
if (c_dual != NULL) col->dual = c_dual[j];
|
alpar@1
|
183 |
}
|
alpar@1
|
184 |
return;
|
alpar@1
|
185 |
}
|
alpar@1
|
186 |
|
alpar@1
|
187 |
/*----------------------------------------------------------------------
|
alpar@1
|
188 |
-- lpx_put_mip_soln - store mixed integer solution components.
|
alpar@1
|
189 |
--
|
alpar@1
|
190 |
-- *Synopsis*
|
alpar@1
|
191 |
--
|
alpar@1
|
192 |
-- #include "glplpx.h"
|
alpar@1
|
193 |
-- void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],
|
alpar@1
|
194 |
-- double col_mipx[]);
|
alpar@1
|
195 |
--
|
alpar@1
|
196 |
-- *Description*
|
alpar@1
|
197 |
--
|
alpar@1
|
198 |
-- The routine lpx_put_mip_soln stores solution components obtained by
|
alpar@1
|
199 |
-- branch-and-bound solver into the specified problem object.
|
alpar@1
|
200 |
--
|
alpar@1
|
201 |
-- NOTE: This routine is intended for internal use only. */
|
alpar@1
|
202 |
|
alpar@1
|
203 |
void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],
|
alpar@1
|
204 |
double col_mipx[])
|
alpar@1
|
205 |
{ GLPROW *row;
|
alpar@1
|
206 |
GLPCOL *col;
|
alpar@1
|
207 |
int i, j;
|
alpar@1
|
208 |
double sum;
|
alpar@1
|
209 |
/* store mixed integer status */
|
alpar@1
|
210 |
#if 0
|
alpar@1
|
211 |
if (!(i_stat == LPX_I_UNDEF || i_stat == LPX_I_OPT ||
|
alpar@1
|
212 |
i_stat == LPX_I_FEAS || i_stat == LPX_I_NOFEAS))
|
alpar@1
|
213 |
fault("lpx_put_mip_soln: i_stat = %d; invalid mixed integer st"
|
alpar@1
|
214 |
"atus", i_stat);
|
alpar@1
|
215 |
lp->i_stat = i_stat;
|
alpar@1
|
216 |
#else
|
alpar@1
|
217 |
switch (i_stat)
|
alpar@1
|
218 |
{ case LPX_I_UNDEF:
|
alpar@1
|
219 |
lp->mip_stat = GLP_UNDEF; break;
|
alpar@1
|
220 |
case LPX_I_OPT:
|
alpar@1
|
221 |
lp->mip_stat = GLP_OPT; break;
|
alpar@1
|
222 |
case LPX_I_FEAS:
|
alpar@1
|
223 |
lp->mip_stat = GLP_FEAS; break;
|
alpar@1
|
224 |
case LPX_I_NOFEAS:
|
alpar@1
|
225 |
lp->mip_stat = GLP_NOFEAS; break;
|
alpar@1
|
226 |
default:
|
alpar@1
|
227 |
xerror("lpx_put_mip_soln: i_stat = %d; invalid mixed intege"
|
alpar@1
|
228 |
"r status\n", i_stat);
|
alpar@1
|
229 |
}
|
alpar@1
|
230 |
#endif
|
alpar@1
|
231 |
/* store row solution components */
|
alpar@1
|
232 |
if (row_mipx != NULL)
|
alpar@1
|
233 |
{ for (i = 1; i <= lp->m; i++)
|
alpar@1
|
234 |
{ row = lp->row[i];
|
alpar@1
|
235 |
row->mipx = row_mipx[i];
|
alpar@1
|
236 |
}
|
alpar@1
|
237 |
}
|
alpar@1
|
238 |
/* store column solution components */
|
alpar@1
|
239 |
if (col_mipx != NULL)
|
alpar@1
|
240 |
{ for (j = 1; j <= lp->n; j++)
|
alpar@1
|
241 |
{ col = lp->col[j];
|
alpar@1
|
242 |
col->mipx = col_mipx[j];
|
alpar@1
|
243 |
}
|
alpar@1
|
244 |
}
|
alpar@1
|
245 |
/* if the solution is claimed to be integer feasible, check it */
|
alpar@1
|
246 |
if (lp->mip_stat == GLP_OPT || lp->mip_stat == GLP_FEAS)
|
alpar@1
|
247 |
{ for (j = 1; j <= lp->n; j++)
|
alpar@1
|
248 |
{ col = lp->col[j];
|
alpar@1
|
249 |
if (col->kind == GLP_IV && col->mipx != floor(col->mipx))
|
alpar@1
|
250 |
xerror("lpx_put_mip_soln: col_mipx[%d] = %.*g; must be i"
|
alpar@1
|
251 |
"ntegral\n", j, DBL_DIG, col->mipx);
|
alpar@1
|
252 |
}
|
alpar@1
|
253 |
}
|
alpar@1
|
254 |
/* compute the objective function value */
|
alpar@1
|
255 |
sum = lp->c0;
|
alpar@1
|
256 |
for (j = 1; j <= lp->n; j++)
|
alpar@1
|
257 |
{ col = lp->col[j];
|
alpar@1
|
258 |
sum += col->coef * col->mipx;
|
alpar@1
|
259 |
}
|
alpar@1
|
260 |
lp->mip_obj = sum;
|
alpar@1
|
261 |
return;
|
alpar@1
|
262 |
}
|
alpar@1
|
263 |
|
alpar@1
|
264 |
/* eof */
|