src/glplpx02.c
changeset 2 4c8956a7bdf4
equal deleted inserted replaced
-1:000000000000 0:0ae388be1ed4
       
     1 /* glplpx02.c */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
       
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
       
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
       
     9 *  E-mail: <mao@gnu.org>.
       
    10 *
       
    11 *  GLPK is free software: you can redistribute it and/or modify it
       
    12 *  under the terms of the GNU General Public License as published by
       
    13 *  the Free Software Foundation, either version 3 of the License, or
       
    14 *  (at your option) any later version.
       
    15 *
       
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    19 *  License for more details.
       
    20 *
       
    21 *  You should have received a copy of the GNU General Public License
       
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    23 ***********************************************************************/
       
    24 
       
    25 #include "glpapi.h"
       
    26 
       
    27 /***********************************************************************
       
    28 *  NAME
       
    29 *
       
    30 *  lpx_put_solution - store basic solution components
       
    31 *
       
    32 *  SYNOPSIS
       
    33 *
       
    34 *  void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,
       
    35 *     const int *d_stat, const double *obj_val, const int r_stat[],
       
    36 *     const double r_prim[], const double r_dual[], const int c_stat[],
       
    37 *     const double c_prim[], const double c_dual[])
       
    38 *
       
    39 *  DESCRIPTION
       
    40 *
       
    41 *  The routine lpx_put_solution stores basic solution components to the
       
    42 *  specified problem object.
       
    43 *
       
    44 *  The parameter inval is the basis factorization invalidity flag.
       
    45 *  If this flag is clear, the current status of the basis factorization
       
    46 *  remains unchanged. If this flag is set, the routine invalidates the
       
    47 *  basis factorization.
       
    48 *
       
    49 *  The parameter p_stat is a pointer to the status of primal basic
       
    50 *  solution, which should be specified as follows:
       
    51 *
       
    52 *  GLP_UNDEF  - primal solution is undefined;
       
    53 *  GLP_FEAS   - primal solution is feasible;
       
    54 *  GLP_INFEAS - primal solution is infeasible;
       
    55 *  GLP_NOFEAS - no primal feasible solution exists.
       
    56 *
       
    57 *  If the parameter p_stat is NULL, the current status of primal basic
       
    58 *  solution remains unchanged.
       
    59 *
       
    60 *  The parameter d_stat is a pointer to the status of dual basic
       
    61 *  solution, which should be specified as follows:
       
    62 *
       
    63 *  GLP_UNDEF  - dual solution is undefined;
       
    64 *  GLP_FEAS   - dual solution is feasible;
       
    65 *  GLP_INFEAS - dual solution is infeasible;
       
    66 *  GLP_NOFEAS - no dual feasible solution exists.
       
    67 *
       
    68 *  If the parameter d_stat is NULL, the current status of dual basic
       
    69 *  solution remains unchanged.
       
    70 *
       
    71 *  The parameter obj_val is a pointer to the objective function value.
       
    72 *  If it is NULL, the current value of the objective function remains
       
    73 *  unchanged.
       
    74 *
       
    75 *  The array element r_stat[i], 1 <= i <= m (where m is the number of
       
    76 *  rows in the problem object), specifies the status of i-th auxiliary
       
    77 *  variable, which should be specified as follows:
       
    78 *
       
    79 *  GLP_BS - basic variable;
       
    80 *  GLP_NL - non-basic variable on lower bound;
       
    81 *  GLP_NU - non-basic variable on upper bound;
       
    82 *  GLP_NF - non-basic free variable;
       
    83 *  GLP_NS - non-basic fixed variable.
       
    84 *
       
    85 *  If the parameter r_stat is NULL, the current statuses of auxiliary
       
    86 *  variables remain unchanged.
       
    87 *
       
    88 *  The array element r_prim[i], 1 <= i <= m (where m is the number of
       
    89 *  rows in the problem object), specifies a primal value of i-th
       
    90 *  auxiliary variable. If the parameter r_prim is NULL, the current
       
    91 *  primal values of auxiliary variables remain unchanged.
       
    92 *
       
    93 *  The array element r_dual[i], 1 <= i <= m (where m is the number of
       
    94 *  rows in the problem object), specifies a dual value (reduced cost)
       
    95 *  of i-th auxiliary variable. If the parameter r_dual is NULL, the
       
    96 *  current dual values of auxiliary variables remain unchanged.
       
    97 *
       
    98 *  The array element c_stat[j], 1 <= j <= n (where n is the number of
       
    99 *  columns in the problem object), specifies the status of j-th
       
   100 *  structural variable, which should be specified as follows:
       
   101 *
       
   102 *  GLP_BS - basic variable;
       
   103 *  GLP_NL - non-basic variable on lower bound;
       
   104 *  GLP_NU - non-basic variable on upper bound;
       
   105 *  GLP_NF - non-basic free variable;
       
   106 *  GLP_NS - non-basic fixed variable.
       
   107 *
       
   108 *  If the parameter c_stat is NULL, the current statuses of structural
       
   109 *  variables remain unchanged.
       
   110 *
       
   111 *  The array element c_prim[j], 1 <= j <= n (where n is the number of
       
   112 *  columns in the problem object), specifies a primal value of j-th
       
   113 *  structural variable. If the parameter c_prim is NULL, the current
       
   114 *  primal values of structural variables remain unchanged.
       
   115 *
       
   116 *  The array element c_dual[j], 1 <= j <= n (where n is the number of
       
   117 *  columns in the problem object), specifies a dual value (reduced cost)
       
   118 *  of j-th structural variable. If the parameter c_dual is NULL, the
       
   119 *  current dual values of structural variables remain unchanged. */
       
   120 
       
   121 void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,
       
   122       const int *d_stat, const double *obj_val, const int r_stat[],
       
   123       const double r_prim[], const double r_dual[], const int c_stat[],
       
   124       const double c_prim[], const double c_dual[])
       
   125 {     GLPROW *row;
       
   126       GLPCOL *col;
       
   127       int i, j;
       
   128       /* invalidate the basis factorization, if required */
       
   129       if (inval) lp->valid = 0;
       
   130       /* store primal status */
       
   131       if (p_stat != NULL)
       
   132       {  if (!(*p_stat == GLP_UNDEF  || *p_stat == GLP_FEAS ||
       
   133                *p_stat == GLP_INFEAS || *p_stat == GLP_NOFEAS))
       
   134             xerror("lpx_put_solution: p_stat = %d; invalid primal statu"
       
   135                "s\n", *p_stat);
       
   136          lp->pbs_stat = *p_stat;
       
   137       }
       
   138       /* store dual status */
       
   139       if (d_stat != NULL)
       
   140       {  if (!(*d_stat == GLP_UNDEF  || *d_stat == GLP_FEAS ||
       
   141                *d_stat == GLP_INFEAS || *d_stat == GLP_NOFEAS))
       
   142             xerror("lpx_put_solution: d_stat = %d; invalid dual status "
       
   143                "\n", *d_stat);
       
   144          lp->dbs_stat = *d_stat;
       
   145       }
       
   146       /* store objective function value */
       
   147       if (obj_val != NULL) lp->obj_val = *obj_val;
       
   148       /* store row solution components */
       
   149       for (i = 1; i <= lp->m; i++)
       
   150       {  row = lp->row[i];
       
   151          if (r_stat != NULL)
       
   152          {  if (!(r_stat[i] == GLP_BS ||
       
   153                   row->type == GLP_FR && r_stat[i] == GLP_NF ||
       
   154                   row->type == GLP_LO && r_stat[i] == GLP_NL ||
       
   155                   row->type == GLP_UP && r_stat[i] == GLP_NU ||
       
   156                   row->type == GLP_DB && r_stat[i] == GLP_NL ||
       
   157                   row->type == GLP_DB && r_stat[i] == GLP_NU ||
       
   158                   row->type == GLP_FX && r_stat[i] == GLP_NS))
       
   159                xerror("lpx_put_solution: r_stat[%d] = %d; invalid row s"
       
   160                   "tatus\n", i, r_stat[i]);
       
   161             row->stat = r_stat[i];
       
   162          }
       
   163          if (r_prim != NULL) row->prim = r_prim[i];
       
   164          if (r_dual != NULL) row->dual = r_dual[i];
       
   165       }
       
   166       /* store column solution components */
       
   167       for (j = 1; j <= lp->n; j++)
       
   168       {  col = lp->col[j];
       
   169          if (c_stat != NULL)
       
   170          {  if (!(c_stat[j] == GLP_BS ||
       
   171                   col->type == GLP_FR && c_stat[j] == GLP_NF ||
       
   172                   col->type == GLP_LO && c_stat[j] == GLP_NL ||
       
   173                   col->type == GLP_UP && c_stat[j] == GLP_NU ||
       
   174                   col->type == GLP_DB && c_stat[j] == GLP_NL ||
       
   175                   col->type == GLP_DB && c_stat[j] == GLP_NU ||
       
   176                   col->type == GLP_FX && c_stat[j] == GLP_NS))
       
   177                xerror("lpx_put_solution: c_stat[%d] = %d; invalid colum"
       
   178                   "n status\n", j, c_stat[j]);
       
   179             col->stat = c_stat[j];
       
   180          }
       
   181          if (c_prim != NULL) col->prim = c_prim[j];
       
   182          if (c_dual != NULL) col->dual = c_dual[j];
       
   183       }
       
   184       return;
       
   185 }
       
   186 
       
   187 /*----------------------------------------------------------------------
       
   188 -- lpx_put_mip_soln - store mixed integer solution components.
       
   189 --
       
   190 -- *Synopsis*
       
   191 --
       
   192 -- #include "glplpx.h"
       
   193 -- void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],
       
   194 --    double col_mipx[]);
       
   195 --
       
   196 -- *Description*
       
   197 --
       
   198 -- The routine lpx_put_mip_soln stores solution components obtained by
       
   199 -- branch-and-bound solver into the specified problem object.
       
   200 --
       
   201 -- NOTE: This routine is intended for internal use only. */
       
   202 
       
   203 void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],
       
   204       double col_mipx[])
       
   205 {     GLPROW *row;
       
   206       GLPCOL *col;
       
   207       int i, j;
       
   208       double sum;
       
   209       /* store mixed integer status */
       
   210 #if 0
       
   211       if (!(i_stat == LPX_I_UNDEF || i_stat == LPX_I_OPT ||
       
   212             i_stat == LPX_I_FEAS  || i_stat == LPX_I_NOFEAS))
       
   213          fault("lpx_put_mip_soln: i_stat = %d; invalid mixed integer st"
       
   214             "atus", i_stat);
       
   215       lp->i_stat = i_stat;
       
   216 #else
       
   217       switch (i_stat)
       
   218       {  case LPX_I_UNDEF:
       
   219             lp->mip_stat = GLP_UNDEF; break;
       
   220          case LPX_I_OPT:
       
   221             lp->mip_stat = GLP_OPT;  break;
       
   222          case LPX_I_FEAS:
       
   223             lp->mip_stat = GLP_FEAS; break;
       
   224          case LPX_I_NOFEAS:
       
   225             lp->mip_stat = GLP_NOFEAS; break;
       
   226          default:
       
   227             xerror("lpx_put_mip_soln: i_stat = %d; invalid mixed intege"
       
   228                "r status\n", i_stat);
       
   229       }
       
   230 #endif
       
   231       /* store row solution components */
       
   232       if (row_mipx != NULL)
       
   233       {  for (i = 1; i <= lp->m; i++)
       
   234          {  row = lp->row[i];
       
   235             row->mipx = row_mipx[i];
       
   236          }
       
   237       }
       
   238       /* store column solution components */
       
   239       if (col_mipx != NULL)
       
   240       {  for (j = 1; j <= lp->n; j++)
       
   241          {  col = lp->col[j];
       
   242             col->mipx = col_mipx[j];
       
   243          }
       
   244       }
       
   245       /* if the solution is claimed to be integer feasible, check it */
       
   246       if (lp->mip_stat == GLP_OPT || lp->mip_stat == GLP_FEAS)
       
   247       {  for (j = 1; j <= lp->n; j++)
       
   248          {  col = lp->col[j];
       
   249             if (col->kind == GLP_IV && col->mipx != floor(col->mipx))
       
   250                xerror("lpx_put_mip_soln: col_mipx[%d] = %.*g; must be i"
       
   251                   "ntegral\n", j, DBL_DIG, col->mipx);
       
   252          }
       
   253       }
       
   254       /* compute the objective function value */
       
   255       sum = lp->c0;
       
   256       for (j = 1; j <= lp->n; j++)
       
   257       {  col = lp->col[j];
       
   258          sum += col->coef * col->mipx;
       
   259       }
       
   260       lp->mip_obj = sum;
       
   261       return;
       
   262 }
       
   263 
       
   264 /* eof */