|
1 /* glplpx02.c */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpapi.h" |
|
26 |
|
27 /*********************************************************************** |
|
28 * NAME |
|
29 * |
|
30 * lpx_put_solution - store basic solution components |
|
31 * |
|
32 * SYNOPSIS |
|
33 * |
|
34 * void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat, |
|
35 * const int *d_stat, const double *obj_val, const int r_stat[], |
|
36 * const double r_prim[], const double r_dual[], const int c_stat[], |
|
37 * const double c_prim[], const double c_dual[]) |
|
38 * |
|
39 * DESCRIPTION |
|
40 * |
|
41 * The routine lpx_put_solution stores basic solution components to the |
|
42 * specified problem object. |
|
43 * |
|
44 * The parameter inval is the basis factorization invalidity flag. |
|
45 * If this flag is clear, the current status of the basis factorization |
|
46 * remains unchanged. If this flag is set, the routine invalidates the |
|
47 * basis factorization. |
|
48 * |
|
49 * The parameter p_stat is a pointer to the status of primal basic |
|
50 * solution, which should be specified as follows: |
|
51 * |
|
52 * GLP_UNDEF - primal solution is undefined; |
|
53 * GLP_FEAS - primal solution is feasible; |
|
54 * GLP_INFEAS - primal solution is infeasible; |
|
55 * GLP_NOFEAS - no primal feasible solution exists. |
|
56 * |
|
57 * If the parameter p_stat is NULL, the current status of primal basic |
|
58 * solution remains unchanged. |
|
59 * |
|
60 * The parameter d_stat is a pointer to the status of dual basic |
|
61 * solution, which should be specified as follows: |
|
62 * |
|
63 * GLP_UNDEF - dual solution is undefined; |
|
64 * GLP_FEAS - dual solution is feasible; |
|
65 * GLP_INFEAS - dual solution is infeasible; |
|
66 * GLP_NOFEAS - no dual feasible solution exists. |
|
67 * |
|
68 * If the parameter d_stat is NULL, the current status of dual basic |
|
69 * solution remains unchanged. |
|
70 * |
|
71 * The parameter obj_val is a pointer to the objective function value. |
|
72 * If it is NULL, the current value of the objective function remains |
|
73 * unchanged. |
|
74 * |
|
75 * The array element r_stat[i], 1 <= i <= m (where m is the number of |
|
76 * rows in the problem object), specifies the status of i-th auxiliary |
|
77 * variable, which should be specified as follows: |
|
78 * |
|
79 * GLP_BS - basic variable; |
|
80 * GLP_NL - non-basic variable on lower bound; |
|
81 * GLP_NU - non-basic variable on upper bound; |
|
82 * GLP_NF - non-basic free variable; |
|
83 * GLP_NS - non-basic fixed variable. |
|
84 * |
|
85 * If the parameter r_stat is NULL, the current statuses of auxiliary |
|
86 * variables remain unchanged. |
|
87 * |
|
88 * The array element r_prim[i], 1 <= i <= m (where m is the number of |
|
89 * rows in the problem object), specifies a primal value of i-th |
|
90 * auxiliary variable. If the parameter r_prim is NULL, the current |
|
91 * primal values of auxiliary variables remain unchanged. |
|
92 * |
|
93 * The array element r_dual[i], 1 <= i <= m (where m is the number of |
|
94 * rows in the problem object), specifies a dual value (reduced cost) |
|
95 * of i-th auxiliary variable. If the parameter r_dual is NULL, the |
|
96 * current dual values of auxiliary variables remain unchanged. |
|
97 * |
|
98 * The array element c_stat[j], 1 <= j <= n (where n is the number of |
|
99 * columns in the problem object), specifies the status of j-th |
|
100 * structural variable, which should be specified as follows: |
|
101 * |
|
102 * GLP_BS - basic variable; |
|
103 * GLP_NL - non-basic variable on lower bound; |
|
104 * GLP_NU - non-basic variable on upper bound; |
|
105 * GLP_NF - non-basic free variable; |
|
106 * GLP_NS - non-basic fixed variable. |
|
107 * |
|
108 * If the parameter c_stat is NULL, the current statuses of structural |
|
109 * variables remain unchanged. |
|
110 * |
|
111 * The array element c_prim[j], 1 <= j <= n (where n is the number of |
|
112 * columns in the problem object), specifies a primal value of j-th |
|
113 * structural variable. If the parameter c_prim is NULL, the current |
|
114 * primal values of structural variables remain unchanged. |
|
115 * |
|
116 * The array element c_dual[j], 1 <= j <= n (where n is the number of |
|
117 * columns in the problem object), specifies a dual value (reduced cost) |
|
118 * of j-th structural variable. If the parameter c_dual is NULL, the |
|
119 * current dual values of structural variables remain unchanged. */ |
|
120 |
|
121 void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat, |
|
122 const int *d_stat, const double *obj_val, const int r_stat[], |
|
123 const double r_prim[], const double r_dual[], const int c_stat[], |
|
124 const double c_prim[], const double c_dual[]) |
|
125 { GLPROW *row; |
|
126 GLPCOL *col; |
|
127 int i, j; |
|
128 /* invalidate the basis factorization, if required */ |
|
129 if (inval) lp->valid = 0; |
|
130 /* store primal status */ |
|
131 if (p_stat != NULL) |
|
132 { if (!(*p_stat == GLP_UNDEF || *p_stat == GLP_FEAS || |
|
133 *p_stat == GLP_INFEAS || *p_stat == GLP_NOFEAS)) |
|
134 xerror("lpx_put_solution: p_stat = %d; invalid primal statu" |
|
135 "s\n", *p_stat); |
|
136 lp->pbs_stat = *p_stat; |
|
137 } |
|
138 /* store dual status */ |
|
139 if (d_stat != NULL) |
|
140 { if (!(*d_stat == GLP_UNDEF || *d_stat == GLP_FEAS || |
|
141 *d_stat == GLP_INFEAS || *d_stat == GLP_NOFEAS)) |
|
142 xerror("lpx_put_solution: d_stat = %d; invalid dual status " |
|
143 "\n", *d_stat); |
|
144 lp->dbs_stat = *d_stat; |
|
145 } |
|
146 /* store objective function value */ |
|
147 if (obj_val != NULL) lp->obj_val = *obj_val; |
|
148 /* store row solution components */ |
|
149 for (i = 1; i <= lp->m; i++) |
|
150 { row = lp->row[i]; |
|
151 if (r_stat != NULL) |
|
152 { if (!(r_stat[i] == GLP_BS || |
|
153 row->type == GLP_FR && r_stat[i] == GLP_NF || |
|
154 row->type == GLP_LO && r_stat[i] == GLP_NL || |
|
155 row->type == GLP_UP && r_stat[i] == GLP_NU || |
|
156 row->type == GLP_DB && r_stat[i] == GLP_NL || |
|
157 row->type == GLP_DB && r_stat[i] == GLP_NU || |
|
158 row->type == GLP_FX && r_stat[i] == GLP_NS)) |
|
159 xerror("lpx_put_solution: r_stat[%d] = %d; invalid row s" |
|
160 "tatus\n", i, r_stat[i]); |
|
161 row->stat = r_stat[i]; |
|
162 } |
|
163 if (r_prim != NULL) row->prim = r_prim[i]; |
|
164 if (r_dual != NULL) row->dual = r_dual[i]; |
|
165 } |
|
166 /* store column solution components */ |
|
167 for (j = 1; j <= lp->n; j++) |
|
168 { col = lp->col[j]; |
|
169 if (c_stat != NULL) |
|
170 { if (!(c_stat[j] == GLP_BS || |
|
171 col->type == GLP_FR && c_stat[j] == GLP_NF || |
|
172 col->type == GLP_LO && c_stat[j] == GLP_NL || |
|
173 col->type == GLP_UP && c_stat[j] == GLP_NU || |
|
174 col->type == GLP_DB && c_stat[j] == GLP_NL || |
|
175 col->type == GLP_DB && c_stat[j] == GLP_NU || |
|
176 col->type == GLP_FX && c_stat[j] == GLP_NS)) |
|
177 xerror("lpx_put_solution: c_stat[%d] = %d; invalid colum" |
|
178 "n status\n", j, c_stat[j]); |
|
179 col->stat = c_stat[j]; |
|
180 } |
|
181 if (c_prim != NULL) col->prim = c_prim[j]; |
|
182 if (c_dual != NULL) col->dual = c_dual[j]; |
|
183 } |
|
184 return; |
|
185 } |
|
186 |
|
187 /*---------------------------------------------------------------------- |
|
188 -- lpx_put_mip_soln - store mixed integer solution components. |
|
189 -- |
|
190 -- *Synopsis* |
|
191 -- |
|
192 -- #include "glplpx.h" |
|
193 -- void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[], |
|
194 -- double col_mipx[]); |
|
195 -- |
|
196 -- *Description* |
|
197 -- |
|
198 -- The routine lpx_put_mip_soln stores solution components obtained by |
|
199 -- branch-and-bound solver into the specified problem object. |
|
200 -- |
|
201 -- NOTE: This routine is intended for internal use only. */ |
|
202 |
|
203 void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[], |
|
204 double col_mipx[]) |
|
205 { GLPROW *row; |
|
206 GLPCOL *col; |
|
207 int i, j; |
|
208 double sum; |
|
209 /* store mixed integer status */ |
|
210 #if 0 |
|
211 if (!(i_stat == LPX_I_UNDEF || i_stat == LPX_I_OPT || |
|
212 i_stat == LPX_I_FEAS || i_stat == LPX_I_NOFEAS)) |
|
213 fault("lpx_put_mip_soln: i_stat = %d; invalid mixed integer st" |
|
214 "atus", i_stat); |
|
215 lp->i_stat = i_stat; |
|
216 #else |
|
217 switch (i_stat) |
|
218 { case LPX_I_UNDEF: |
|
219 lp->mip_stat = GLP_UNDEF; break; |
|
220 case LPX_I_OPT: |
|
221 lp->mip_stat = GLP_OPT; break; |
|
222 case LPX_I_FEAS: |
|
223 lp->mip_stat = GLP_FEAS; break; |
|
224 case LPX_I_NOFEAS: |
|
225 lp->mip_stat = GLP_NOFEAS; break; |
|
226 default: |
|
227 xerror("lpx_put_mip_soln: i_stat = %d; invalid mixed intege" |
|
228 "r status\n", i_stat); |
|
229 } |
|
230 #endif |
|
231 /* store row solution components */ |
|
232 if (row_mipx != NULL) |
|
233 { for (i = 1; i <= lp->m; i++) |
|
234 { row = lp->row[i]; |
|
235 row->mipx = row_mipx[i]; |
|
236 } |
|
237 } |
|
238 /* store column solution components */ |
|
239 if (col_mipx != NULL) |
|
240 { for (j = 1; j <= lp->n; j++) |
|
241 { col = lp->col[j]; |
|
242 col->mipx = col_mipx[j]; |
|
243 } |
|
244 } |
|
245 /* if the solution is claimed to be integer feasible, check it */ |
|
246 if (lp->mip_stat == GLP_OPT || lp->mip_stat == GLP_FEAS) |
|
247 { for (j = 1; j <= lp->n; j++) |
|
248 { col = lp->col[j]; |
|
249 if (col->kind == GLP_IV && col->mipx != floor(col->mipx)) |
|
250 xerror("lpx_put_mip_soln: col_mipx[%d] = %.*g; must be i" |
|
251 "ntegral\n", j, DBL_DIG, col->mipx); |
|
252 } |
|
253 } |
|
254 /* compute the objective function value */ |
|
255 sum = lp->c0; |
|
256 for (j = 1; j <= lp->n; j++) |
|
257 { col = lp->col[j]; |
|
258 sum += col->coef * col->mipx; |
|
259 } |
|
260 lp->mip_obj = sum; |
|
261 return; |
|
262 } |
|
263 |
|
264 /* eof */ |