alpar@1
|
1 |
/* PBN, Paint-By-Numbers Puzzle */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
|
alpar@1
|
4 |
|
alpar@1
|
5 |
/* A paint-by-number puzzle consists of an m*n grid of pixels (the
|
alpar@1
|
6 |
canvas) together with m+n cluster-size sequences, one for each row
|
alpar@1
|
7 |
and column. The goal is to paint the canvas with a picture that
|
alpar@1
|
8 |
satisfies the following constraints:
|
alpar@1
|
9 |
|
alpar@1
|
10 |
1. Each pixel must be blank or white.
|
alpar@1
|
11 |
|
alpar@1
|
12 |
2. If a row or column has cluster-size sequence s1, s2, ..., sk,
|
alpar@1
|
13 |
then it must contain k clusters of black pixels - the first with
|
alpar@1
|
14 |
s1 black pixels, the second with s2 black pixels, and so on.
|
alpar@1
|
15 |
|
alpar@1
|
16 |
It should be noted that "first" means "leftmost" for rows and
|
alpar@1
|
17 |
"topmost" for columns, and that rows and columns need not begin or
|
alpar@1
|
18 |
end with black pixels.
|
alpar@1
|
19 |
|
alpar@1
|
20 |
Example:
|
alpar@1
|
21 |
1 1
|
alpar@1
|
22 |
1 1
|
alpar@1
|
23 |
2 1 1 1 1 1 2 3
|
alpar@1
|
24 |
3 2 1 2 1 2 3 4 8 9
|
alpar@1
|
25 |
|
alpar@1
|
26 |
3 6 # # # . # # # # # #
|
alpar@1
|
27 |
1 4 # . . . . . # # # #
|
alpar@1
|
28 |
1 1 3 . . # . # . . # # #
|
alpar@1
|
29 |
2 . . . . . . . . # #
|
alpar@1
|
30 |
3 3 . . # # # . . # # #
|
alpar@1
|
31 |
1 4 # . . . . . # # # #
|
alpar@1
|
32 |
2 5 # # . . . # # # # #
|
alpar@1
|
33 |
2 5 # # . . . # # # # #
|
alpar@1
|
34 |
1 1 . . . # . . . . . #
|
alpar@1
|
35 |
3 . . # # # . . . . .
|
alpar@1
|
36 |
|
alpar@1
|
37 |
(In Russia this sort of puzzles is known as "Japanese crossword".)
|
alpar@1
|
38 |
|
alpar@1
|
39 |
References:
|
alpar@1
|
40 |
Robert A. Bosch, "Painting by Numbers", 2000.
|
alpar@1
|
41 |
<http://www.oberlin.edu/~math/faculty/bosch/pbn-page.html> */
|
alpar@1
|
42 |
|
alpar@1
|
43 |
param m, integer, >= 1;
|
alpar@1
|
44 |
/* the number of rows */
|
alpar@1
|
45 |
|
alpar@1
|
46 |
param n, integer, >= 1;
|
alpar@1
|
47 |
/* the number of columns */
|
alpar@1
|
48 |
|
alpar@1
|
49 |
param row{i in 1..m, 1..n div 2}, integer, >= 0, default 0;
|
alpar@1
|
50 |
/* the cluster-size sequence for row i (raw data) */
|
alpar@1
|
51 |
|
alpar@1
|
52 |
param col{j in 1..n, 1..m div 2}, integer, >= 0, default 0;
|
alpar@1
|
53 |
/* the cluster-size sequence for column j (raw data) */
|
alpar@1
|
54 |
|
alpar@1
|
55 |
param kr{i in 1..m} := sum{t in 1..n div 2: row[i,t] > 0} 1;
|
alpar@1
|
56 |
/* the number of clusters in row i */
|
alpar@1
|
57 |
|
alpar@1
|
58 |
param kc{j in 1..n} := sum{t in 1..m div 2: col[j,t] > 0} 1;
|
alpar@1
|
59 |
/* the number of clusters in column j */
|
alpar@1
|
60 |
|
alpar@1
|
61 |
param sr{i in 1..m, t in 1..kr[i]} := row[i,t], integer, >= 1;
|
alpar@1
|
62 |
/* the cluster-size sequence for row i */
|
alpar@1
|
63 |
|
alpar@1
|
64 |
param sc{j in 1..n, t in 1..kc[j]} := col[j,t], integer, >= 1;
|
alpar@1
|
65 |
/* the cluster-size sequence for column j */
|
alpar@1
|
66 |
|
alpar@1
|
67 |
check{i in 1..m}: sum{t in 1..kr[i]} sr[i,t] <= n - (kr[i] - 1);
|
alpar@1
|
68 |
/* check that the sum of the cluster sizes in each row is valid */
|
alpar@1
|
69 |
|
alpar@1
|
70 |
check{j in 1..n}: sum{t in 1..kc[j]} sc[j,t] <= m - (kc[j] - 1);
|
alpar@1
|
71 |
/* check that the sum of the cluster sizes in each column is valid */
|
alpar@1
|
72 |
|
alpar@1
|
73 |
check: sum{i in 1..m, t in 1..kr[i]} sr[i,t] =
|
alpar@1
|
74 |
sum{j in 1..n, t in 1..kc[j]} sc[j,t];
|
alpar@1
|
75 |
/* check that the sum of the cluster sizes in all rows is equal to the
|
alpar@1
|
76 |
sum of the cluster sizes in all columns */
|
alpar@1
|
77 |
|
alpar@1
|
78 |
param er{i in 1..m, t in 1..kr[i]} :=
|
alpar@1
|
79 |
if t = 1 then 1 else er[i,t-1] + sr[i,t-1] + 1;
|
alpar@1
|
80 |
/* the smallest value of j such that row i's t-th cluster can be
|
alpar@1
|
81 |
placed in row i with its leftmost pixel occupying pixel j */
|
alpar@1
|
82 |
|
alpar@1
|
83 |
param lr{i in 1..m, t in 1..kr[i]} :=
|
alpar@1
|
84 |
if t = kr[i] then n + 1 - sr[i,t] else lr[i,t+1] - sr[i,t] - 1;
|
alpar@1
|
85 |
/* the largest value of j such that row i's t-th cluster can be
|
alpar@1
|
86 |
placed in row i with its leftmost pixel occupying pixel j */
|
alpar@1
|
87 |
|
alpar@1
|
88 |
param ec{j in 1..n, t in 1..kc[j]} :=
|
alpar@1
|
89 |
if t = 1 then 1 else ec[j,t-1] + sc[j,t-1] + 1;
|
alpar@1
|
90 |
/* the smallest value of i such that column j's t-th cluster can be
|
alpar@1
|
91 |
placed in column j with its topmost pixel occupying pixel i */
|
alpar@1
|
92 |
|
alpar@1
|
93 |
param lc{j in 1..n, t in 1..kc[j]} :=
|
alpar@1
|
94 |
if t = kc[j] then m + 1 - sc[j,t] else lc[j,t+1] - sc[j,t] - 1;
|
alpar@1
|
95 |
/* the largest value of i such that column j's t-th cluster can be
|
alpar@1
|
96 |
placed in column j with its topmost pixel occupying pixel i */
|
alpar@1
|
97 |
|
alpar@1
|
98 |
var z{i in 1..m, j in 1..n}, binary;
|
alpar@1
|
99 |
/* z[i,j] = 1, if row i's j-th pixel is painted black
|
alpar@1
|
100 |
z[i,j] = 0, if row i's j-th pixel is painted white */
|
alpar@1
|
101 |
|
alpar@1
|
102 |
var y{i in 1..m, t in 1..kr[i], j in er[i,t]..lr[i,t]}, binary;
|
alpar@1
|
103 |
/* y[i,t,j] = 1, if row i's t-th cluster is placed in row i with its
|
alpar@1
|
104 |
leftmost pixel occupying pixel j
|
alpar@1
|
105 |
y[i,t,j] = 0, if not */
|
alpar@1
|
106 |
|
alpar@1
|
107 |
var x{j in 1..n, t in 1..kc[j], i in ec[j,t]..lc[j,t]}, binary;
|
alpar@1
|
108 |
/* x[j,t,i] = 1, if column j's t-th cluster is placed in column j with
|
alpar@1
|
109 |
its topmost pixel occupying pixel i
|
alpar@1
|
110 |
x[j,t,i] = 0, if not */
|
alpar@1
|
111 |
|
alpar@1
|
112 |
s.t. fa{i in 1..m, t in 1..kr[i]}:
|
alpar@1
|
113 |
sum{j in er[i,t]..lr[i,t]} y[i,t,j] = 1;
|
alpar@1
|
114 |
/* row i's t-th cluster must appear in row i exactly once */
|
alpar@1
|
115 |
|
alpar@1
|
116 |
s.t. fb{i in 1..m, t in 1..kr[i]-1, j in er[i,t]..lr[i,t]}:
|
alpar@1
|
117 |
y[i,t,j] <= sum{jp in j+sr[i,t]+1..lr[i,t+1]} y[i,t+1,jp];
|
alpar@1
|
118 |
/* row i's (t+1)-th cluster must be placed to the right of its t-th
|
alpar@1
|
119 |
cluster */
|
alpar@1
|
120 |
|
alpar@1
|
121 |
s.t. fc{j in 1..n, t in 1..kc[j]}:
|
alpar@1
|
122 |
sum{i in ec[j,t]..lc[j,t]} x[j,t,i] = 1;
|
alpar@1
|
123 |
/* column j's t-th cluster must appear in column j exactly once */
|
alpar@1
|
124 |
|
alpar@1
|
125 |
s.t. fd{j in 1..n, t in 1..kc[j]-1, i in ec[j,t]..lc[j,t]}:
|
alpar@1
|
126 |
x[j,t,i] <= sum{ip in i+sc[j,t]+1..lc[j,t+1]} x[j,t+1,ip];
|
alpar@1
|
127 |
/* column j's (t+1)-th cluster must be placed below its t-th cluster */
|
alpar@1
|
128 |
|
alpar@1
|
129 |
s.t. fe{i in 1..m, j in 1..n}:
|
alpar@1
|
130 |
z[i,j] <= sum{t in 1..kr[i], jp in er[i,t]..lr[i,t]:
|
alpar@1
|
131 |
j-sr[i,t]+1 <= jp and jp <= j} y[i,t,jp];
|
alpar@1
|
132 |
/* the double coverage constraint stating that if row i's j-th pixel
|
alpar@1
|
133 |
is painted black, then at least one of row i's clusters must be
|
alpar@1
|
134 |
placed in such a way that it covers row i's j-th pixel */
|
alpar@1
|
135 |
|
alpar@1
|
136 |
s.t. ff{i in 1..m, j in 1..n}:
|
alpar@1
|
137 |
z[i,j] <= sum{t in 1..kc[j], ip in ec[j,t]..lc[j,t]:
|
alpar@1
|
138 |
i-sc[j,t]+1 <= ip and ip <= i} x[j,t,ip];
|
alpar@1
|
139 |
/* the double coverage constraint making sure that if row i's j-th
|
alpar@1
|
140 |
pixel is painted black, then at least one of column j's clusters
|
alpar@1
|
141 |
covers it */
|
alpar@1
|
142 |
|
alpar@1
|
143 |
s.t. fg{i in 1..m, j in 1..n, t in 1..kr[i], jp in er[i,t]..lr[i,t]:
|
alpar@1
|
144 |
j-sr[i,t]+1 <= jp and jp <= j}: z[i,j] >= y[i,t,jp];
|
alpar@1
|
145 |
/* the constraint to prevent white pixels from being covered by the
|
alpar@1
|
146 |
row clusters */
|
alpar@1
|
147 |
|
alpar@1
|
148 |
s.t. fh{i in 1..m, j in 1..n, t in 1..kc[j], ip in ec[j,t]..lc[j,t]:
|
alpar@1
|
149 |
i-sc[j,t]+1 <= ip and ip <= i}: z[i,j] >= x[j,t,ip];
|
alpar@1
|
150 |
/* the constraint to prevent white pixels from being covered by the
|
alpar@1
|
151 |
column clusters */
|
alpar@1
|
152 |
|
alpar@1
|
153 |
/* there is no need for an objective function here */
|
alpar@1
|
154 |
|
alpar@1
|
155 |
solve;
|
alpar@1
|
156 |
|
alpar@1
|
157 |
for {i in 1..m}
|
alpar@1
|
158 |
{ printf{j in 1..n} " %s", if z[i,j] then "#" else ".";
|
alpar@1
|
159 |
printf "\n";
|
alpar@1
|
160 |
}
|
alpar@1
|
161 |
|
alpar@1
|
162 |
data;
|
alpar@1
|
163 |
|
alpar@1
|
164 |
/* These data correspond to the example above. */
|
alpar@1
|
165 |
|
alpar@1
|
166 |
param m := 10;
|
alpar@1
|
167 |
|
alpar@1
|
168 |
param n := 10;
|
alpar@1
|
169 |
|
alpar@1
|
170 |
param row : 1 2 3 4 :=
|
alpar@1
|
171 |
1 3 6 . .
|
alpar@1
|
172 |
2 1 4 . .
|
alpar@1
|
173 |
3 1 1 3 .
|
alpar@1
|
174 |
4 2 . . .
|
alpar@1
|
175 |
5 3 3 . .
|
alpar@1
|
176 |
6 1 4 . .
|
alpar@1
|
177 |
7 2 5 . .
|
alpar@1
|
178 |
8 2 5 . .
|
alpar@1
|
179 |
9 1 1 . .
|
alpar@1
|
180 |
10 3 . . . ;
|
alpar@1
|
181 |
|
alpar@1
|
182 |
param col : 1 2 3 4 :=
|
alpar@1
|
183 |
1 2 3 . .
|
alpar@1
|
184 |
2 1 2 . .
|
alpar@1
|
185 |
3 1 1 1 1
|
alpar@1
|
186 |
4 1 2 . .
|
alpar@1
|
187 |
5 1 1 1 1
|
alpar@1
|
188 |
6 1 2 . .
|
alpar@1
|
189 |
7 2 3 . .
|
alpar@1
|
190 |
8 3 4 . .
|
alpar@1
|
191 |
9 8 . . .
|
alpar@1
|
192 |
10 9 . . . ;
|
alpar@1
|
193 |
|
alpar@1
|
194 |
end;
|