src/glpapi02.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
/* glpapi02.c (problem retrieving routines) */
alpar@1
     2
alpar@1
     3
/***********************************************************************
alpar@1
     4
*  This code is part of GLPK (GNU Linear Programming Kit).
alpar@1
     5
*
alpar@1
     6
*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@1
     7
*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
alpar@1
     8
*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@1
     9
*  E-mail: <mao@gnu.org>.
alpar@1
    10
*
alpar@1
    11
*  GLPK is free software: you can redistribute it and/or modify it
alpar@1
    12
*  under the terms of the GNU General Public License as published by
alpar@1
    13
*  the Free Software Foundation, either version 3 of the License, or
alpar@1
    14
*  (at your option) any later version.
alpar@1
    15
*
alpar@1
    16
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@1
    17
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@1
    18
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@1
    19
*  License for more details.
alpar@1
    20
*
alpar@1
    21
*  You should have received a copy of the GNU General Public License
alpar@1
    22
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@1
    23
***********************************************************************/
alpar@1
    24
alpar@1
    25
#include "glpapi.h"
alpar@1
    26
alpar@1
    27
/***********************************************************************
alpar@1
    28
*  NAME
alpar@1
    29
*
alpar@1
    30
*  glp_get_prob_name - retrieve problem name
alpar@1
    31
*
alpar@1
    32
*  SYNOPSIS
alpar@1
    33
*
alpar@1
    34
*  const char *glp_get_prob_name(glp_prob *lp);
alpar@1
    35
*
alpar@1
    36
*  RETURNS
alpar@1
    37
*
alpar@1
    38
*  The routine glp_get_prob_name returns a pointer to an internal
alpar@1
    39
*  buffer, which contains symbolic name of the problem. However, if the
alpar@1
    40
*  problem has no assigned name, the routine returns NULL. */
alpar@1
    41
alpar@1
    42
const char *glp_get_prob_name(glp_prob *lp)
alpar@1
    43
{     char *name;
alpar@1
    44
      name = lp->name;
alpar@1
    45
      return name;
alpar@1
    46
}
alpar@1
    47
alpar@1
    48
/***********************************************************************
alpar@1
    49
*  NAME
alpar@1
    50
*
alpar@1
    51
*  glp_get_obj_name - retrieve objective function name
alpar@1
    52
*
alpar@1
    53
*  SYNOPSIS
alpar@1
    54
*
alpar@1
    55
*  const char *glp_get_obj_name(glp_prob *lp);
alpar@1
    56
*
alpar@1
    57
*  RETURNS
alpar@1
    58
*
alpar@1
    59
*  The routine glp_get_obj_name returns a pointer to an internal
alpar@1
    60
*  buffer, which contains a symbolic name of the objective function.
alpar@1
    61
*  However, if the objective function has no assigned name, the routine
alpar@1
    62
*  returns NULL. */
alpar@1
    63
alpar@1
    64
const char *glp_get_obj_name(glp_prob *lp)
alpar@1
    65
{     char *name;
alpar@1
    66
      name = lp->obj;
alpar@1
    67
      return name;
alpar@1
    68
}
alpar@1
    69
alpar@1
    70
/***********************************************************************
alpar@1
    71
*  NAME
alpar@1
    72
*
alpar@1
    73
*  glp_get_obj_dir - retrieve optimization direction flag
alpar@1
    74
*
alpar@1
    75
*  SYNOPSIS
alpar@1
    76
*
alpar@1
    77
*  int glp_get_obj_dir(glp_prob *lp);
alpar@1
    78
*
alpar@1
    79
*  RETURNS
alpar@1
    80
*
alpar@1
    81
*  The routine glp_get_obj_dir returns the optimization direction flag
alpar@1
    82
*  (i.e. "sense" of the objective function):
alpar@1
    83
*
alpar@1
    84
*  GLP_MIN - minimization;
alpar@1
    85
*  GLP_MAX - maximization. */
alpar@1
    86
alpar@1
    87
int glp_get_obj_dir(glp_prob *lp)
alpar@1
    88
{     int dir = lp->dir;
alpar@1
    89
      return dir;
alpar@1
    90
}
alpar@1
    91
alpar@1
    92
/***********************************************************************
alpar@1
    93
*  NAME
alpar@1
    94
*
alpar@1
    95
*  glp_get_num_rows - retrieve number of rows
alpar@1
    96
*
alpar@1
    97
*  SYNOPSIS
alpar@1
    98
*
alpar@1
    99
*  int glp_get_num_rows(glp_prob *lp);
alpar@1
   100
*
alpar@1
   101
*  RETURNS
alpar@1
   102
*
alpar@1
   103
*  The routine glp_get_num_rows returns the current number of rows in
alpar@1
   104
*  the specified problem object. */
alpar@1
   105
alpar@1
   106
int glp_get_num_rows(glp_prob *lp)
alpar@1
   107
{     int m = lp->m;
alpar@1
   108
      return m;
alpar@1
   109
}
alpar@1
   110
alpar@1
   111
/***********************************************************************
alpar@1
   112
*  NAME
alpar@1
   113
*
alpar@1
   114
*  glp_get_num_cols - retrieve number of columns
alpar@1
   115
*
alpar@1
   116
*  SYNOPSIS
alpar@1
   117
*
alpar@1
   118
*  int glp_get_num_cols(glp_prob *lp);
alpar@1
   119
*
alpar@1
   120
*  RETURNS
alpar@1
   121
*
alpar@1
   122
*  The routine glp_get_num_cols returns the current number of columns
alpar@1
   123
*  in the specified problem object. */
alpar@1
   124
alpar@1
   125
int glp_get_num_cols(glp_prob *lp)
alpar@1
   126
{     int n = lp->n;
alpar@1
   127
      return n;
alpar@1
   128
}
alpar@1
   129
alpar@1
   130
/***********************************************************************
alpar@1
   131
*  NAME
alpar@1
   132
*
alpar@1
   133
*  glp_get_row_name - retrieve row name
alpar@1
   134
*
alpar@1
   135
*  SYNOPSIS
alpar@1
   136
*
alpar@1
   137
*  const char *glp_get_row_name(glp_prob *lp, int i);
alpar@1
   138
*
alpar@1
   139
*  RETURNS
alpar@1
   140
*
alpar@1
   141
*  The routine glp_get_row_name returns a pointer to an internal
alpar@1
   142
*  buffer, which contains symbolic name of i-th row. However, if i-th
alpar@1
   143
*  row has no assigned name, the routine returns NULL. */
alpar@1
   144
alpar@1
   145
const char *glp_get_row_name(glp_prob *lp, int i)
alpar@1
   146
{     char *name;
alpar@1
   147
      if (!(1 <= i && i <= lp->m))
alpar@1
   148
         xerror("glp_get_row_name: i = %d; row number out of range\n",
alpar@1
   149
            i);
alpar@1
   150
      name = lp->row[i]->name;
alpar@1
   151
      return name;
alpar@1
   152
}
alpar@1
   153
alpar@1
   154
/***********************************************************************
alpar@1
   155
*  NAME
alpar@1
   156
*
alpar@1
   157
*  glp_get_col_name - retrieve column name
alpar@1
   158
*
alpar@1
   159
*  SYNOPSIS
alpar@1
   160
*
alpar@1
   161
*  const char *glp_get_col_name(glp_prob *lp, int j);
alpar@1
   162
*
alpar@1
   163
*  RETURNS
alpar@1
   164
*
alpar@1
   165
*  The routine glp_get_col_name returns a pointer to an internal
alpar@1
   166
*  buffer, which contains symbolic name of j-th column. However, if j-th
alpar@1
   167
*  column has no assigned name, the routine returns NULL. */
alpar@1
   168
alpar@1
   169
const char *glp_get_col_name(glp_prob *lp, int j)
alpar@1
   170
{     char *name;
alpar@1
   171
      if (!(1 <= j && j <= lp->n))
alpar@1
   172
         xerror("glp_get_col_name: j = %d; column number out of range\n"
alpar@1
   173
            , j);
alpar@1
   174
      name = lp->col[j]->name;
alpar@1
   175
      return name;
alpar@1
   176
}
alpar@1
   177
alpar@1
   178
/***********************************************************************
alpar@1
   179
*  NAME
alpar@1
   180
*
alpar@1
   181
*  glp_get_row_type - retrieve row type
alpar@1
   182
*
alpar@1
   183
*  SYNOPSIS
alpar@1
   184
*
alpar@1
   185
*  int glp_get_row_type(glp_prob *lp, int i);
alpar@1
   186
*
alpar@1
   187
*  RETURNS
alpar@1
   188
*
alpar@1
   189
*  The routine glp_get_row_type returns the type of i-th row, i.e. the
alpar@1
   190
*  type of corresponding auxiliary variable, as follows:
alpar@1
   191
*
alpar@1
   192
*  GLP_FR - free (unbounded) variable;
alpar@1
   193
*  GLP_LO - variable with lower bound;
alpar@1
   194
*  GLP_UP - variable with upper bound;
alpar@1
   195
*  GLP_DB - double-bounded variable;
alpar@1
   196
*  GLP_FX - fixed variable. */
alpar@1
   197
alpar@1
   198
int glp_get_row_type(glp_prob *lp, int i)
alpar@1
   199
{     if (!(1 <= i && i <= lp->m))
alpar@1
   200
         xerror("glp_get_row_type: i = %d; row number out of range\n",
alpar@1
   201
            i);
alpar@1
   202
      return lp->row[i]->type;
alpar@1
   203
}
alpar@1
   204
alpar@1
   205
/***********************************************************************
alpar@1
   206
*  NAME
alpar@1
   207
*
alpar@1
   208
*  glp_get_row_lb - retrieve row lower bound
alpar@1
   209
*
alpar@1
   210
*  SYNOPSIS
alpar@1
   211
*
alpar@1
   212
*  double glp_get_row_lb(glp_prob *lp, int i);
alpar@1
   213
*
alpar@1
   214
*  RETURNS
alpar@1
   215
*
alpar@1
   216
*  The routine glp_get_row_lb returns the lower bound of i-th row, i.e.
alpar@1
   217
*  the lower bound of corresponding auxiliary variable. However, if the
alpar@1
   218
*  row has no lower bound, the routine returns -DBL_MAX. */
alpar@1
   219
alpar@1
   220
double glp_get_row_lb(glp_prob *lp, int i)
alpar@1
   221
{     double lb;
alpar@1
   222
      if (!(1 <= i && i <= lp->m))
alpar@1
   223
         xerror("glp_get_row_lb: i = %d; row number out of range\n", i);
alpar@1
   224
      switch (lp->row[i]->type)
alpar@1
   225
      {  case GLP_FR:
alpar@1
   226
         case GLP_UP:
alpar@1
   227
            lb = -DBL_MAX; break;
alpar@1
   228
         case GLP_LO:
alpar@1
   229
         case GLP_DB:
alpar@1
   230
         case GLP_FX:
alpar@1
   231
            lb = lp->row[i]->lb; break;
alpar@1
   232
         default:
alpar@1
   233
            xassert(lp != lp);
alpar@1
   234
      }
alpar@1
   235
      return lb;
alpar@1
   236
}
alpar@1
   237
alpar@1
   238
/***********************************************************************
alpar@1
   239
*  NAME
alpar@1
   240
*
alpar@1
   241
*  glp_get_row_ub - retrieve row upper bound
alpar@1
   242
*
alpar@1
   243
*  SYNOPSIS
alpar@1
   244
*
alpar@1
   245
*  double glp_get_row_ub(glp_prob *lp, int i);
alpar@1
   246
*
alpar@1
   247
*  RETURNS
alpar@1
   248
*
alpar@1
   249
*  The routine glp_get_row_ub returns the upper bound of i-th row, i.e.
alpar@1
   250
*  the upper bound of corresponding auxiliary variable. However, if the
alpar@1
   251
*  row has no upper bound, the routine returns +DBL_MAX. */
alpar@1
   252
alpar@1
   253
double glp_get_row_ub(glp_prob *lp, int i)
alpar@1
   254
{     double ub;
alpar@1
   255
      if (!(1 <= i && i <= lp->m))
alpar@1
   256
         xerror("glp_get_row_ub: i = %d; row number out of range\n", i);
alpar@1
   257
      switch (lp->row[i]->type)
alpar@1
   258
      {  case GLP_FR:
alpar@1
   259
         case GLP_LO:
alpar@1
   260
            ub = +DBL_MAX; break;
alpar@1
   261
         case GLP_UP:
alpar@1
   262
         case GLP_DB:
alpar@1
   263
         case GLP_FX:
alpar@1
   264
            ub = lp->row[i]->ub; break;
alpar@1
   265
         default:
alpar@1
   266
            xassert(lp != lp);
alpar@1
   267
      }
alpar@1
   268
      return ub;
alpar@1
   269
}
alpar@1
   270
alpar@1
   271
/***********************************************************************
alpar@1
   272
*  NAME
alpar@1
   273
*
alpar@1
   274
*  glp_get_col_type - retrieve column type
alpar@1
   275
*
alpar@1
   276
*  SYNOPSIS
alpar@1
   277
*
alpar@1
   278
*  int glp_get_col_type(glp_prob *lp, int j);
alpar@1
   279
*
alpar@1
   280
*  RETURNS
alpar@1
   281
*
alpar@1
   282
*  The routine glp_get_col_type returns the type of j-th column, i.e.
alpar@1
   283
*  the type of corresponding structural variable, as follows:
alpar@1
   284
*
alpar@1
   285
*  GLP_FR - free (unbounded) variable;
alpar@1
   286
*  GLP_LO - variable with lower bound;
alpar@1
   287
*  GLP_UP - variable with upper bound;
alpar@1
   288
*  GLP_DB - double-bounded variable;
alpar@1
   289
*  GLP_FX - fixed variable. */
alpar@1
   290
alpar@1
   291
int glp_get_col_type(glp_prob *lp, int j)
alpar@1
   292
{     if (!(1 <= j && j <= lp->n))
alpar@1
   293
         xerror("glp_get_col_type: j = %d; column number out of range\n"
alpar@1
   294
            , j);
alpar@1
   295
      return lp->col[j]->type;
alpar@1
   296
}
alpar@1
   297
alpar@1
   298
/***********************************************************************
alpar@1
   299
*  NAME
alpar@1
   300
*
alpar@1
   301
*  glp_get_col_lb - retrieve column lower bound
alpar@1
   302
*
alpar@1
   303
*  SYNOPSIS
alpar@1
   304
*
alpar@1
   305
*  double glp_get_col_lb(glp_prob *lp, int j);
alpar@1
   306
*
alpar@1
   307
*  RETURNS
alpar@1
   308
*
alpar@1
   309
*  The routine glp_get_col_lb returns the lower bound of j-th column,
alpar@1
   310
*  i.e. the lower bound of corresponding structural variable. However,
alpar@1
   311
*  if the column has no lower bound, the routine returns -DBL_MAX. */
alpar@1
   312
alpar@1
   313
double glp_get_col_lb(glp_prob *lp, int j)
alpar@1
   314
{     double lb;
alpar@1
   315
      if (!(1 <= j && j <= lp->n))
alpar@1
   316
         xerror("glp_get_col_lb: j = %d; column number out of range\n",
alpar@1
   317
            j);
alpar@1
   318
      switch (lp->col[j]->type)
alpar@1
   319
      {  case GLP_FR:
alpar@1
   320
         case GLP_UP:
alpar@1
   321
            lb = -DBL_MAX; break;
alpar@1
   322
         case GLP_LO:
alpar@1
   323
         case GLP_DB:
alpar@1
   324
         case GLP_FX:
alpar@1
   325
            lb = lp->col[j]->lb; break;
alpar@1
   326
         default:
alpar@1
   327
            xassert(lp != lp);
alpar@1
   328
      }
alpar@1
   329
      return lb;
alpar@1
   330
}
alpar@1
   331
alpar@1
   332
/***********************************************************************
alpar@1
   333
*  NAME
alpar@1
   334
*
alpar@1
   335
*  glp_get_col_ub - retrieve column upper bound
alpar@1
   336
*
alpar@1
   337
*  SYNOPSIS
alpar@1
   338
*
alpar@1
   339
*  double glp_get_col_ub(glp_prob *lp, int j);
alpar@1
   340
*
alpar@1
   341
*  RETURNS
alpar@1
   342
*
alpar@1
   343
*  The routine glp_get_col_ub returns the upper bound of j-th column,
alpar@1
   344
*  i.e. the upper bound of corresponding structural variable. However,
alpar@1
   345
*  if the column has no upper bound, the routine returns +DBL_MAX. */
alpar@1
   346
alpar@1
   347
double glp_get_col_ub(glp_prob *lp, int j)
alpar@1
   348
{     double ub;
alpar@1
   349
      if (!(1 <= j && j <= lp->n))
alpar@1
   350
         xerror("glp_get_col_ub: j = %d; column number out of range\n",
alpar@1
   351
            j);
alpar@1
   352
      switch (lp->col[j]->type)
alpar@1
   353
      {  case GLP_FR:
alpar@1
   354
         case GLP_LO:
alpar@1
   355
            ub = +DBL_MAX; break;
alpar@1
   356
         case GLP_UP:
alpar@1
   357
         case GLP_DB:
alpar@1
   358
         case GLP_FX:
alpar@1
   359
            ub = lp->col[j]->ub; break;
alpar@1
   360
         default:
alpar@1
   361
            xassert(lp != lp);
alpar@1
   362
      }
alpar@1
   363
      return ub;
alpar@1
   364
}
alpar@1
   365
alpar@1
   366
/***********************************************************************
alpar@1
   367
*  NAME
alpar@1
   368
*
alpar@1
   369
*  glp_get_obj_coef - retrieve obj. coefficient or constant term
alpar@1
   370
*
alpar@1
   371
*  SYNOPSIS
alpar@1
   372
*
alpar@1
   373
*  double glp_get_obj_coef(glp_prob *lp, int j);
alpar@1
   374
*
alpar@1
   375
*  RETURNS
alpar@1
   376
*
alpar@1
   377
*  The routine glp_get_obj_coef returns the objective coefficient at
alpar@1
   378
*  j-th structural variable (column) of the specified problem object.
alpar@1
   379
*
alpar@1
   380
*  If the parameter j is zero, the routine returns the constant term
alpar@1
   381
*  ("shift") of the objective function. */
alpar@1
   382
alpar@1
   383
double glp_get_obj_coef(glp_prob *lp, int j)
alpar@1
   384
{     if (!(0 <= j && j <= lp->n))
alpar@1
   385
         xerror("glp_get_obj_coef: j = %d; column number out of range\n"
alpar@1
   386
            , j);
alpar@1
   387
      return j == 0 ? lp->c0 : lp->col[j]->coef;
alpar@1
   388
}
alpar@1
   389
alpar@1
   390
/***********************************************************************
alpar@1
   391
*  NAME
alpar@1
   392
*
alpar@1
   393
*  glp_get_num_nz - retrieve number of constraint coefficients
alpar@1
   394
*
alpar@1
   395
*  SYNOPSIS
alpar@1
   396
*
alpar@1
   397
*  int glp_get_num_nz(glp_prob *lp);
alpar@1
   398
*
alpar@1
   399
*  RETURNS
alpar@1
   400
*
alpar@1
   401
*  The routine glp_get_num_nz returns the number of (non-zero) elements
alpar@1
   402
*  in the constraint matrix of the specified problem object. */
alpar@1
   403
alpar@1
   404
int glp_get_num_nz(glp_prob *lp)
alpar@1
   405
{     int nnz = lp->nnz;
alpar@1
   406
      return nnz;
alpar@1
   407
}
alpar@1
   408
alpar@1
   409
/***********************************************************************
alpar@1
   410
*  NAME
alpar@1
   411
*
alpar@1
   412
*  glp_get_mat_row - retrieve row of the constraint matrix
alpar@1
   413
*
alpar@1
   414
*  SYNOPSIS
alpar@1
   415
*
alpar@1
   416
*  int glp_get_mat_row(glp_prob *lp, int i, int ind[], double val[]);
alpar@1
   417
*
alpar@1
   418
*  DESCRIPTION
alpar@1
   419
*
alpar@1
   420
*  The routine glp_get_mat_row scans (non-zero) elements of i-th row
alpar@1
   421
*  of the constraint matrix of the specified problem object and stores
alpar@1
   422
*  their column indices and numeric values to locations ind[1], ...,
alpar@1
   423
*  ind[len] and val[1], ..., val[len], respectively, where 0 <= len <= n
alpar@1
   424
*  is the number of elements in i-th row, n is the number of columns.
alpar@1
   425
*
alpar@1
   426
*  The parameter ind and/or val can be specified as NULL, in which case
alpar@1
   427
*  corresponding information is not stored.
alpar@1
   428
*
alpar@1
   429
*  RETURNS
alpar@1
   430
*
alpar@1
   431
*  The routine glp_get_mat_row returns the length len, i.e. the number
alpar@1
   432
*  of (non-zero) elements in i-th row. */
alpar@1
   433
alpar@1
   434
int glp_get_mat_row(glp_prob *lp, int i, int ind[], double val[])
alpar@1
   435
{     GLPAIJ *aij;
alpar@1
   436
      int len;
alpar@1
   437
      if (!(1 <= i && i <= lp->m))
alpar@1
   438
         xerror("glp_get_mat_row: i = %d; row number out of range\n",
alpar@1
   439
            i);
alpar@1
   440
      len = 0;
alpar@1
   441
      for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)
alpar@1
   442
      {  len++;
alpar@1
   443
         if (ind != NULL) ind[len] = aij->col->j;
alpar@1
   444
         if (val != NULL) val[len] = aij->val;
alpar@1
   445
      }
alpar@1
   446
      xassert(len <= lp->n);
alpar@1
   447
      return len;
alpar@1
   448
}
alpar@1
   449
alpar@1
   450
/***********************************************************************
alpar@1
   451
*  NAME
alpar@1
   452
*
alpar@1
   453
*  glp_get_mat_col - retrieve column of the constraint matrix
alpar@1
   454
*
alpar@1
   455
*  SYNOPSIS
alpar@1
   456
*
alpar@1
   457
*  int glp_get_mat_col(glp_prob *lp, int j, int ind[], double val[]);
alpar@1
   458
*
alpar@1
   459
*  DESCRIPTION
alpar@1
   460
*
alpar@1
   461
*  The routine glp_get_mat_col scans (non-zero) elements of j-th column
alpar@1
   462
*  of the constraint matrix of the specified problem object and stores
alpar@1
   463
*  their row indices and numeric values to locations ind[1], ...,
alpar@1
   464
*  ind[len] and val[1], ..., val[len], respectively, where 0 <= len <= m
alpar@1
   465
*  is the number of elements in j-th column, m is the number of rows.
alpar@1
   466
*
alpar@1
   467
*  The parameter ind or/and val can be specified as NULL, in which case
alpar@1
   468
*  corresponding information is not stored.
alpar@1
   469
*
alpar@1
   470
*  RETURNS
alpar@1
   471
*
alpar@1
   472
*  The routine glp_get_mat_col returns the length len, i.e. the number
alpar@1
   473
*  of (non-zero) elements in j-th column. */
alpar@1
   474
alpar@1
   475
int glp_get_mat_col(glp_prob *lp, int j, int ind[], double val[])
alpar@1
   476
{     GLPAIJ *aij;
alpar@1
   477
      int len;
alpar@1
   478
      if (!(1 <= j && j <= lp->n))
alpar@1
   479
         xerror("glp_get_mat_col: j = %d; column number out of range\n",
alpar@1
   480
            j);
alpar@1
   481
      len = 0;
alpar@1
   482
      for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
alpar@1
   483
      {  len++;
alpar@1
   484
         if (ind != NULL) ind[len] = aij->row->i;
alpar@1
   485
         if (val != NULL) val[len] = aij->val;
alpar@1
   486
      }
alpar@1
   487
      xassert(len <= lp->m);
alpar@1
   488
      return len;
alpar@1
   489
}
alpar@1
   490
alpar@1
   491
/* eof */