src/glpios05.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
/* glpios05.c (Gomory's mixed integer cut generator) */
alpar@1
     2
alpar@1
     3
/***********************************************************************
alpar@1
     4
*  This code is part of GLPK (GNU Linear Programming Kit).
alpar@1
     5
*
alpar@1
     6
*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@1
     7
*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
alpar@1
     8
*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@1
     9
*  E-mail: <mao@gnu.org>.
alpar@1
    10
*
alpar@1
    11
*  GLPK is free software: you can redistribute it and/or modify it
alpar@1
    12
*  under the terms of the GNU General Public License as published by
alpar@1
    13
*  the Free Software Foundation, either version 3 of the License, or
alpar@1
    14
*  (at your option) any later version.
alpar@1
    15
*
alpar@1
    16
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@1
    17
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@1
    18
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@1
    19
*  License for more details.
alpar@1
    20
*
alpar@1
    21
*  You should have received a copy of the GNU General Public License
alpar@1
    22
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@1
    23
***********************************************************************/
alpar@1
    24
alpar@1
    25
#include "glpios.h"
alpar@1
    26
alpar@1
    27
/***********************************************************************
alpar@1
    28
*  NAME
alpar@1
    29
*
alpar@1
    30
*  ios_gmi_gen - generate Gomory's mixed integer cuts.
alpar@1
    31
*
alpar@1
    32
*  SYNOPSIS
alpar@1
    33
*
alpar@1
    34
*  #include "glpios.h"
alpar@1
    35
*  void ios_gmi_gen(glp_tree *tree, IOSPOOL *pool);
alpar@1
    36
*
alpar@1
    37
*  DESCRIPTION
alpar@1
    38
*
alpar@1
    39
*  The routine ios_gmi_gen generates Gomory's mixed integer cuts for
alpar@1
    40
*  the current point and adds them to the cut pool. */
alpar@1
    41
alpar@1
    42
#define MAXCUTS 50
alpar@1
    43
/* maximal number of cuts to be generated for one round */
alpar@1
    44
alpar@1
    45
struct worka
alpar@1
    46
{     /* Gomory's cut generator working area */
alpar@1
    47
      int *ind; /* int ind[1+n]; */
alpar@1
    48
      double *val; /* double val[1+n]; */
alpar@1
    49
      double *phi; /* double phi[1+m+n]; */
alpar@1
    50
};
alpar@1
    51
alpar@1
    52
#define f(x) ((x) - floor(x))
alpar@1
    53
/* compute fractional part of x */
alpar@1
    54
alpar@1
    55
static void gen_cut(glp_tree *tree, struct worka *worka, int j)
alpar@1
    56
{     /* this routine tries to generate Gomory's mixed integer cut for
alpar@1
    57
         specified structural variable x[m+j] of integer kind, which is
alpar@1
    58
         basic and has fractional value in optimal solution to current
alpar@1
    59
         LP relaxation */
alpar@1
    60
      glp_prob *mip = tree->mip;
alpar@1
    61
      int m = mip->m;
alpar@1
    62
      int n = mip->n;
alpar@1
    63
      int *ind = worka->ind;
alpar@1
    64
      double *val = worka->val;
alpar@1
    65
      double *phi = worka->phi;
alpar@1
    66
      int i, k, len, kind, stat;
alpar@1
    67
      double lb, ub, alfa, beta, ksi, phi1, rhs;
alpar@1
    68
      /* compute row of the simplex tableau, which (row) corresponds
alpar@1
    69
         to specified basic variable xB[i] = x[m+j]; see (23) */
alpar@1
    70
      len = glp_eval_tab_row(mip, m+j, ind, val);
alpar@1
    71
      /* determine beta[i], which a value of xB[i] in optimal solution
alpar@1
    72
         to current LP relaxation; note that this value is the same as
alpar@1
    73
         if it would be computed with formula (27); it is assumed that
alpar@1
    74
         beta[i] is fractional enough */
alpar@1
    75
      beta = mip->col[j]->prim;
alpar@1
    76
      /* compute cut coefficients phi and right-hand side rho, which
alpar@1
    77
         correspond to formula (30); dense format is used, because rows
alpar@1
    78
         of the simplex tableau is usually dense */
alpar@1
    79
      for (k = 1; k <= m+n; k++) phi[k] = 0.0;
alpar@1
    80
      rhs = f(beta); /* initial value of rho; see (28), (32) */
alpar@1
    81
      for (j = 1; j <= len; j++)
alpar@1
    82
      {  /* determine original number of non-basic variable xN[j] */
alpar@1
    83
         k = ind[j];
alpar@1
    84
         xassert(1 <= k && k <= m+n);
alpar@1
    85
         /* determine the kind, bounds and current status of xN[j] in
alpar@1
    86
            optimal solution to LP relaxation */
alpar@1
    87
         if (k <= m)
alpar@1
    88
         {  /* auxiliary variable */
alpar@1
    89
            GLPROW *row = mip->row[k];
alpar@1
    90
            kind = GLP_CV;
alpar@1
    91
            lb = row->lb;
alpar@1
    92
            ub = row->ub;
alpar@1
    93
            stat = row->stat;
alpar@1
    94
         }
alpar@1
    95
         else
alpar@1
    96
         {  /* structural variable */
alpar@1
    97
            GLPCOL *col = mip->col[k-m];
alpar@1
    98
            kind = col->kind;
alpar@1
    99
            lb = col->lb;
alpar@1
   100
            ub = col->ub;
alpar@1
   101
            stat = col->stat;
alpar@1
   102
         }
alpar@1
   103
         /* xN[j] cannot be basic */
alpar@1
   104
         xassert(stat != GLP_BS);
alpar@1
   105
         /* determine row coefficient ksi[i,j] at xN[j]; see (23) */
alpar@1
   106
         ksi = val[j];
alpar@1
   107
         /* if ksi[i,j] is too large in the magnitude, do not generate
alpar@1
   108
            the cut */
alpar@1
   109
         if (fabs(ksi) > 1e+05) goto fini;
alpar@1
   110
         /* if ksi[i,j] is too small in the magnitude, skip it */
alpar@1
   111
         if (fabs(ksi) < 1e-10) goto skip;
alpar@1
   112
         /* compute row coefficient alfa[i,j] at y[j]; see (26) */
alpar@1
   113
         switch (stat)
alpar@1
   114
         {  case GLP_NF:
alpar@1
   115
               /* xN[j] is free (unbounded) having non-zero ksi[i,j];
alpar@1
   116
                  do not generate the cut */
alpar@1
   117
               goto fini;
alpar@1
   118
            case GLP_NL:
alpar@1
   119
               /* xN[j] has active lower bound */
alpar@1
   120
               alfa = - ksi;
alpar@1
   121
               break;
alpar@1
   122
            case GLP_NU:
alpar@1
   123
               /* xN[j] has active upper bound */
alpar@1
   124
               alfa = + ksi;
alpar@1
   125
               break;
alpar@1
   126
            case GLP_NS:
alpar@1
   127
               /* xN[j] is fixed; skip it */
alpar@1
   128
               goto skip;
alpar@1
   129
            default:
alpar@1
   130
               xassert(stat != stat);
alpar@1
   131
         }
alpar@1
   132
         /* compute cut coefficient phi'[j] at y[j]; see (21), (28) */
alpar@1
   133
         switch (kind)
alpar@1
   134
         {  case GLP_IV:
alpar@1
   135
               /* y[j] is integer */
alpar@1
   136
               if (fabs(alfa - floor(alfa + 0.5)) < 1e-10)
alpar@1
   137
               {  /* alfa[i,j] is close to nearest integer; skip it */
alpar@1
   138
                  goto skip;
alpar@1
   139
               }
alpar@1
   140
               else if (f(alfa) <= f(beta))
alpar@1
   141
                  phi1 = f(alfa);
alpar@1
   142
               else
alpar@1
   143
                  phi1 = (f(beta) / (1.0 - f(beta))) * (1.0 - f(alfa));
alpar@1
   144
               break;
alpar@1
   145
            case GLP_CV:
alpar@1
   146
               /* y[j] is continuous */
alpar@1
   147
               if (alfa >= 0.0)
alpar@1
   148
                  phi1 = + alfa;
alpar@1
   149
               else
alpar@1
   150
                  phi1 = (f(beta) / (1.0 - f(beta))) * (- alfa);
alpar@1
   151
               break;
alpar@1
   152
            default:
alpar@1
   153
               xassert(kind != kind);
alpar@1
   154
         }
alpar@1
   155
         /* compute cut coefficient phi[j] at xN[j] and update right-
alpar@1
   156
            hand side rho; see (31), (32) */
alpar@1
   157
         switch (stat)
alpar@1
   158
         {  case GLP_NL:
alpar@1
   159
               /* xN[j] has active lower bound */
alpar@1
   160
               phi[k] = + phi1;
alpar@1
   161
               rhs += phi1 * lb;
alpar@1
   162
               break;
alpar@1
   163
            case GLP_NU:
alpar@1
   164
               /* xN[j] has active upper bound */
alpar@1
   165
               phi[k] = - phi1;
alpar@1
   166
               rhs -= phi1 * ub;
alpar@1
   167
               break;
alpar@1
   168
            default:
alpar@1
   169
               xassert(stat != stat);
alpar@1
   170
         }
alpar@1
   171
skip:    ;
alpar@1
   172
      }
alpar@1
   173
      /* now the cut has the form sum_k phi[k] * x[k] >= rho, where cut
alpar@1
   174
         coefficients are stored in the array phi in dense format;
alpar@1
   175
         x[1,...,m] are auxiliary variables, x[m+1,...,m+n] are struc-
alpar@1
   176
         tural variables; see (30) */
alpar@1
   177
      /* eliminate auxiliary variables in order to express the cut only
alpar@1
   178
         through structural variables; see (33) */
alpar@1
   179
      for (i = 1; i <= m; i++)
alpar@1
   180
      {  GLPROW *row;
alpar@1
   181
         GLPAIJ *aij;
alpar@1
   182
         if (fabs(phi[i]) < 1e-10) continue;
alpar@1
   183
         /* auxiliary variable x[i] has non-zero cut coefficient */
alpar@1
   184
         row = mip->row[i];
alpar@1
   185
         /* x[i] cannot be fixed */
alpar@1
   186
         xassert(row->type != GLP_FX);
alpar@1
   187
         /* substitute x[i] = sum_j a[i,j] * x[m+j] */
alpar@1
   188
         for (aij = row->ptr; aij != NULL; aij = aij->r_next)
alpar@1
   189
            phi[m+aij->col->j] += phi[i] * aij->val;
alpar@1
   190
      }
alpar@1
   191
      /* convert the final cut to sparse format and substitute fixed
alpar@1
   192
         (structural) variables */
alpar@1
   193
      len = 0;
alpar@1
   194
      for (j = 1; j <= n; j++)
alpar@1
   195
      {  GLPCOL *col;
alpar@1
   196
         if (fabs(phi[m+j]) < 1e-10) continue;
alpar@1
   197
         /* structural variable x[m+j] has non-zero cut coefficient */
alpar@1
   198
         col = mip->col[j];
alpar@1
   199
         if (col->type == GLP_FX)
alpar@1
   200
         {  /* eliminate x[m+j] */
alpar@1
   201
            rhs -= phi[m+j] * col->lb;
alpar@1
   202
         }
alpar@1
   203
         else
alpar@1
   204
         {  len++;
alpar@1
   205
            ind[len] = j;
alpar@1
   206
            val[len] = phi[m+j];
alpar@1
   207
         }
alpar@1
   208
      }
alpar@1
   209
      if (fabs(rhs) < 1e-12) rhs = 0.0;
alpar@1
   210
      /* if the cut inequality seems to be badly scaled, reject it to
alpar@1
   211
         avoid numeric difficulties */
alpar@1
   212
      for (k = 1; k <= len; k++)
alpar@1
   213
      {  if (fabs(val[k]) < 1e-03) goto fini;
alpar@1
   214
         if (fabs(val[k]) > 1e+03) goto fini;
alpar@1
   215
      }
alpar@1
   216
      /* add the cut to the cut pool for further consideration */
alpar@1
   217
#if 0
alpar@1
   218
      ios_add_cut_row(tree, pool, GLP_RF_GMI, len, ind, val, GLP_LO,
alpar@1
   219
         rhs);
alpar@1
   220
#else
alpar@1
   221
      glp_ios_add_row(tree, NULL, GLP_RF_GMI, 0, len, ind, val, GLP_LO,
alpar@1
   222
         rhs);
alpar@1
   223
#endif
alpar@1
   224
fini: return;
alpar@1
   225
}
alpar@1
   226
alpar@1
   227
struct var { int j; double f; };
alpar@1
   228
alpar@1
   229
static int fcmp(const void *p1, const void *p2)
alpar@1
   230
{     const struct var *v1 = p1, *v2 = p2;
alpar@1
   231
      if (v1->f > v2->f) return -1;
alpar@1
   232
      if (v1->f < v2->f) return +1;
alpar@1
   233
      return 0;
alpar@1
   234
}
alpar@1
   235
alpar@1
   236
void ios_gmi_gen(glp_tree *tree)
alpar@1
   237
{     /* main routine to generate Gomory's cuts */
alpar@1
   238
      glp_prob *mip = tree->mip;
alpar@1
   239
      int m = mip->m;
alpar@1
   240
      int n = mip->n;
alpar@1
   241
      struct var *var;
alpar@1
   242
      int k, nv, j, size;
alpar@1
   243
      struct worka _worka, *worka = &_worka;
alpar@1
   244
      /* allocate working arrays */
alpar@1
   245
      var = xcalloc(1+n, sizeof(struct var));
alpar@1
   246
      worka->ind = xcalloc(1+n, sizeof(int));
alpar@1
   247
      worka->val = xcalloc(1+n, sizeof(double));
alpar@1
   248
      worka->phi = xcalloc(1+m+n, sizeof(double));
alpar@1
   249
      /* build the list of integer structural variables, which are
alpar@1
   250
         basic and have fractional value in optimal solution to current
alpar@1
   251
         LP relaxation */
alpar@1
   252
      nv = 0;
alpar@1
   253
      for (j = 1; j <= n; j++)
alpar@1
   254
      {  GLPCOL *col = mip->col[j];
alpar@1
   255
         double frac;
alpar@1
   256
         if (col->kind != GLP_IV) continue;
alpar@1
   257
         if (col->type == GLP_FX) continue;
alpar@1
   258
         if (col->stat != GLP_BS) continue;
alpar@1
   259
         frac = f(col->prim);
alpar@1
   260
         if (!(0.05 <= frac && frac <= 0.95)) continue;
alpar@1
   261
         /* add variable to the list */
alpar@1
   262
         nv++, var[nv].j = j, var[nv].f = frac;
alpar@1
   263
      }
alpar@1
   264
      /* order the list by descending fractionality */
alpar@1
   265
      qsort(&var[1], nv, sizeof(struct var), fcmp);
alpar@1
   266
      /* try to generate cuts by one for each variable in the list, but
alpar@1
   267
         not more than MAXCUTS cuts */
alpar@1
   268
      size = glp_ios_pool_size(tree);
alpar@1
   269
      for (k = 1; k <= nv; k++)
alpar@1
   270
      {  if (glp_ios_pool_size(tree) - size >= MAXCUTS) break;
alpar@1
   271
         gen_cut(tree, worka, var[k].j);
alpar@1
   272
      }
alpar@1
   273
      /* free working arrays */
alpar@1
   274
      xfree(var);
alpar@1
   275
      xfree(worka->ind);
alpar@1
   276
      xfree(worka->val);
alpar@1
   277
      xfree(worka->phi);
alpar@1
   278
      return;
alpar@1
   279
}
alpar@1
   280
alpar@1
   281
/* eof */