alpar@1
|
1 |
/* glpios06.c (MIR cut generator) */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpios.h"
|
alpar@1
|
26 |
|
alpar@1
|
27 |
#define _MIR_DEBUG 0
|
alpar@1
|
28 |
|
alpar@1
|
29 |
#define MAXAGGR 5
|
alpar@1
|
30 |
/* maximal number of rows which can be aggregated */
|
alpar@1
|
31 |
|
alpar@1
|
32 |
struct MIR
|
alpar@1
|
33 |
{ /* MIR cut generator working area */
|
alpar@1
|
34 |
/*--------------------------------------------------------------*/
|
alpar@1
|
35 |
/* global information valid for the root subproblem */
|
alpar@1
|
36 |
int m;
|
alpar@1
|
37 |
/* number of rows (in the root subproblem) */
|
alpar@1
|
38 |
int n;
|
alpar@1
|
39 |
/* number of columns */
|
alpar@1
|
40 |
char *skip; /* char skip[1+m]; */
|
alpar@1
|
41 |
/* skip[i], 1 <= i <= m, is a flag that means that row i should
|
alpar@1
|
42 |
not be used because (1) it is not suitable, or (2) because it
|
alpar@1
|
43 |
has been used in the aggregated constraint */
|
alpar@1
|
44 |
char *isint; /* char isint[1+m+n]; */
|
alpar@1
|
45 |
/* isint[k], 1 <= k <= m+n, is a flag that means that variable
|
alpar@1
|
46 |
x[k] is integer (otherwise, continuous) */
|
alpar@1
|
47 |
double *lb; /* double lb[1+m+n]; */
|
alpar@1
|
48 |
/* lb[k], 1 <= k <= m+n, is lower bound of x[k]; -DBL_MAX means
|
alpar@1
|
49 |
that x[k] has no lower bound */
|
alpar@1
|
50 |
int *vlb; /* int vlb[1+m+n]; */
|
alpar@1
|
51 |
/* vlb[k] = k', 1 <= k <= m+n, is the number of integer variable,
|
alpar@1
|
52 |
which defines variable lower bound x[k] >= lb[k] * x[k']; zero
|
alpar@1
|
53 |
means that x[k] has simple lower bound */
|
alpar@1
|
54 |
double *ub; /* double ub[1+m+n]; */
|
alpar@1
|
55 |
/* ub[k], 1 <= k <= m+n, is upper bound of x[k]; +DBL_MAX means
|
alpar@1
|
56 |
that x[k] has no upper bound */
|
alpar@1
|
57 |
int *vub; /* int vub[1+m+n]; */
|
alpar@1
|
58 |
/* vub[k] = k', 1 <= k <= m+n, is the number of integer variable,
|
alpar@1
|
59 |
which defines variable upper bound x[k] <= ub[k] * x[k']; zero
|
alpar@1
|
60 |
means that x[k] has simple upper bound */
|
alpar@1
|
61 |
/*--------------------------------------------------------------*/
|
alpar@1
|
62 |
/* current (fractional) point to be separated */
|
alpar@1
|
63 |
double *x; /* double x[1+m+n]; */
|
alpar@1
|
64 |
/* x[k] is current value of auxiliary (1 <= k <= m) or structural
|
alpar@1
|
65 |
(m+1 <= k <= m+n) variable */
|
alpar@1
|
66 |
/*--------------------------------------------------------------*/
|
alpar@1
|
67 |
/* aggregated constraint sum a[k] * x[k] = b, which is a linear
|
alpar@1
|
68 |
combination of original constraints transformed to equalities
|
alpar@1
|
69 |
by introducing auxiliary variables */
|
alpar@1
|
70 |
int agg_cnt;
|
alpar@1
|
71 |
/* number of rows (original constraints) used to build aggregated
|
alpar@1
|
72 |
constraint, 1 <= agg_cnt <= MAXAGGR */
|
alpar@1
|
73 |
int *agg_row; /* int agg_row[1+MAXAGGR]; */
|
alpar@1
|
74 |
/* agg_row[k], 1 <= k <= agg_cnt, is the row number used to build
|
alpar@1
|
75 |
aggregated constraint */
|
alpar@1
|
76 |
IOSVEC *agg_vec; /* IOSVEC agg_vec[1:m+n]; */
|
alpar@1
|
77 |
/* sparse vector of aggregated constraint coefficients, a[k] */
|
alpar@1
|
78 |
double agg_rhs;
|
alpar@1
|
79 |
/* right-hand side of the aggregated constraint, b */
|
alpar@1
|
80 |
/*--------------------------------------------------------------*/
|
alpar@1
|
81 |
/* bound substitution flags for modified constraint */
|
alpar@1
|
82 |
char *subst; /* char subst[1+m+n]; */
|
alpar@1
|
83 |
/* subst[k], 1 <= k <= m+n, is a bound substitution flag used for
|
alpar@1
|
84 |
variable x[k]:
|
alpar@1
|
85 |
'?' - x[k] is missing in modified constraint
|
alpar@1
|
86 |
'L' - x[k] = (lower bound) + x'[k]
|
alpar@1
|
87 |
'U' - x[k] = (upper bound) - x'[k] */
|
alpar@1
|
88 |
/*--------------------------------------------------------------*/
|
alpar@1
|
89 |
/* modified constraint sum a'[k] * x'[k] = b', where x'[k] >= 0,
|
alpar@1
|
90 |
derived from aggregated constraint by substituting bounds;
|
alpar@1
|
91 |
note that due to substitution of variable bounds there may be
|
alpar@1
|
92 |
additional terms in the modified constraint */
|
alpar@1
|
93 |
IOSVEC *mod_vec; /* IOSVEC mod_vec[1:m+n]; */
|
alpar@1
|
94 |
/* sparse vector of modified constraint coefficients, a'[k] */
|
alpar@1
|
95 |
double mod_rhs;
|
alpar@1
|
96 |
/* right-hand side of the modified constraint, b' */
|
alpar@1
|
97 |
/*--------------------------------------------------------------*/
|
alpar@1
|
98 |
/* cutting plane sum alpha[k] * x[k] <= beta */
|
alpar@1
|
99 |
IOSVEC *cut_vec; /* IOSVEC cut_vec[1:m+n]; */
|
alpar@1
|
100 |
/* sparse vector of cutting plane coefficients, alpha[k] */
|
alpar@1
|
101 |
double cut_rhs;
|
alpar@1
|
102 |
/* right-hand size of the cutting plane, beta */
|
alpar@1
|
103 |
};
|
alpar@1
|
104 |
|
alpar@1
|
105 |
/***********************************************************************
|
alpar@1
|
106 |
* NAME
|
alpar@1
|
107 |
*
|
alpar@1
|
108 |
* ios_mir_init - initialize MIR cut generator
|
alpar@1
|
109 |
*
|
alpar@1
|
110 |
* SYNOPSIS
|
alpar@1
|
111 |
*
|
alpar@1
|
112 |
* #include "glpios.h"
|
alpar@1
|
113 |
* void *ios_mir_init(glp_tree *tree);
|
alpar@1
|
114 |
*
|
alpar@1
|
115 |
* DESCRIPTION
|
alpar@1
|
116 |
*
|
alpar@1
|
117 |
* The routine ios_mir_init initializes the MIR cut generator assuming
|
alpar@1
|
118 |
* that the current subproblem is the root subproblem.
|
alpar@1
|
119 |
*
|
alpar@1
|
120 |
* RETURNS
|
alpar@1
|
121 |
*
|
alpar@1
|
122 |
* The routine ios_mir_init returns a pointer to the MIR cut generator
|
alpar@1
|
123 |
* working area. */
|
alpar@1
|
124 |
|
alpar@1
|
125 |
static void set_row_attrib(glp_tree *tree, struct MIR *mir)
|
alpar@1
|
126 |
{ /* set global row attributes */
|
alpar@1
|
127 |
glp_prob *mip = tree->mip;
|
alpar@1
|
128 |
int m = mir->m;
|
alpar@1
|
129 |
int k;
|
alpar@1
|
130 |
for (k = 1; k <= m; k++)
|
alpar@1
|
131 |
{ GLPROW *row = mip->row[k];
|
alpar@1
|
132 |
mir->skip[k] = 0;
|
alpar@1
|
133 |
mir->isint[k] = 0;
|
alpar@1
|
134 |
switch (row->type)
|
alpar@1
|
135 |
{ case GLP_FR:
|
alpar@1
|
136 |
mir->lb[k] = -DBL_MAX, mir->ub[k] = +DBL_MAX; break;
|
alpar@1
|
137 |
case GLP_LO:
|
alpar@1
|
138 |
mir->lb[k] = row->lb, mir->ub[k] = +DBL_MAX; break;
|
alpar@1
|
139 |
case GLP_UP:
|
alpar@1
|
140 |
mir->lb[k] = -DBL_MAX, mir->ub[k] = row->ub; break;
|
alpar@1
|
141 |
case GLP_DB:
|
alpar@1
|
142 |
mir->lb[k] = row->lb, mir->ub[k] = row->ub; break;
|
alpar@1
|
143 |
case GLP_FX:
|
alpar@1
|
144 |
mir->lb[k] = mir->ub[k] = row->lb; break;
|
alpar@1
|
145 |
default:
|
alpar@1
|
146 |
xassert(row != row);
|
alpar@1
|
147 |
}
|
alpar@1
|
148 |
mir->vlb[k] = mir->vub[k] = 0;
|
alpar@1
|
149 |
}
|
alpar@1
|
150 |
return;
|
alpar@1
|
151 |
}
|
alpar@1
|
152 |
|
alpar@1
|
153 |
static void set_col_attrib(glp_tree *tree, struct MIR *mir)
|
alpar@1
|
154 |
{ /* set global column attributes */
|
alpar@1
|
155 |
glp_prob *mip = tree->mip;
|
alpar@1
|
156 |
int m = mir->m;
|
alpar@1
|
157 |
int n = mir->n;
|
alpar@1
|
158 |
int k;
|
alpar@1
|
159 |
for (k = m+1; k <= m+n; k++)
|
alpar@1
|
160 |
{ GLPCOL *col = mip->col[k-m];
|
alpar@1
|
161 |
switch (col->kind)
|
alpar@1
|
162 |
{ case GLP_CV:
|
alpar@1
|
163 |
mir->isint[k] = 0; break;
|
alpar@1
|
164 |
case GLP_IV:
|
alpar@1
|
165 |
mir->isint[k] = 1; break;
|
alpar@1
|
166 |
default:
|
alpar@1
|
167 |
xassert(col != col);
|
alpar@1
|
168 |
}
|
alpar@1
|
169 |
switch (col->type)
|
alpar@1
|
170 |
{ case GLP_FR:
|
alpar@1
|
171 |
mir->lb[k] = -DBL_MAX, mir->ub[k] = +DBL_MAX; break;
|
alpar@1
|
172 |
case GLP_LO:
|
alpar@1
|
173 |
mir->lb[k] = col->lb, mir->ub[k] = +DBL_MAX; break;
|
alpar@1
|
174 |
case GLP_UP:
|
alpar@1
|
175 |
mir->lb[k] = -DBL_MAX, mir->ub[k] = col->ub; break;
|
alpar@1
|
176 |
case GLP_DB:
|
alpar@1
|
177 |
mir->lb[k] = col->lb, mir->ub[k] = col->ub; break;
|
alpar@1
|
178 |
case GLP_FX:
|
alpar@1
|
179 |
mir->lb[k] = mir->ub[k] = col->lb; break;
|
alpar@1
|
180 |
default:
|
alpar@1
|
181 |
xassert(col != col);
|
alpar@1
|
182 |
}
|
alpar@1
|
183 |
mir->vlb[k] = mir->vub[k] = 0;
|
alpar@1
|
184 |
}
|
alpar@1
|
185 |
return;
|
alpar@1
|
186 |
}
|
alpar@1
|
187 |
|
alpar@1
|
188 |
static void set_var_bounds(glp_tree *tree, struct MIR *mir)
|
alpar@1
|
189 |
{ /* set variable bounds */
|
alpar@1
|
190 |
glp_prob *mip = tree->mip;
|
alpar@1
|
191 |
int m = mir->m;
|
alpar@1
|
192 |
GLPAIJ *aij;
|
alpar@1
|
193 |
int i, k1, k2;
|
alpar@1
|
194 |
double a1, a2;
|
alpar@1
|
195 |
for (i = 1; i <= m; i++)
|
alpar@1
|
196 |
{ /* we need the row to be '>= 0' or '<= 0' */
|
alpar@1
|
197 |
if (!(mir->lb[i] == 0.0 && mir->ub[i] == +DBL_MAX ||
|
alpar@1
|
198 |
mir->lb[i] == -DBL_MAX && mir->ub[i] == 0.0)) continue;
|
alpar@1
|
199 |
/* take first term */
|
alpar@1
|
200 |
aij = mip->row[i]->ptr;
|
alpar@1
|
201 |
if (aij == NULL) continue;
|
alpar@1
|
202 |
k1 = m + aij->col->j, a1 = aij->val;
|
alpar@1
|
203 |
/* take second term */
|
alpar@1
|
204 |
aij = aij->r_next;
|
alpar@1
|
205 |
if (aij == NULL) continue;
|
alpar@1
|
206 |
k2 = m + aij->col->j, a2 = aij->val;
|
alpar@1
|
207 |
/* there must be only two terms */
|
alpar@1
|
208 |
if (aij->r_next != NULL) continue;
|
alpar@1
|
209 |
/* interchange terms, if needed */
|
alpar@1
|
210 |
if (!mir->isint[k1] && mir->isint[k2])
|
alpar@1
|
211 |
;
|
alpar@1
|
212 |
else if (mir->isint[k1] && !mir->isint[k2])
|
alpar@1
|
213 |
{ k2 = k1, a2 = a1;
|
alpar@1
|
214 |
k1 = m + aij->col->j, a1 = aij->val;
|
alpar@1
|
215 |
}
|
alpar@1
|
216 |
else
|
alpar@1
|
217 |
{ /* both terms are either continuous or integer */
|
alpar@1
|
218 |
continue;
|
alpar@1
|
219 |
}
|
alpar@1
|
220 |
/* x[k2] should be double-bounded */
|
alpar@1
|
221 |
if (mir->lb[k2] == -DBL_MAX || mir->ub[k2] == +DBL_MAX ||
|
alpar@1
|
222 |
mir->lb[k2] == mir->ub[k2]) continue;
|
alpar@1
|
223 |
/* change signs, if necessary */
|
alpar@1
|
224 |
if (mir->ub[i] == 0.0) a1 = - a1, a2 = - a2;
|
alpar@1
|
225 |
/* now the row has the form a1 * x1 + a2 * x2 >= 0, where x1
|
alpar@1
|
226 |
is continuous, x2 is integer */
|
alpar@1
|
227 |
if (a1 > 0.0)
|
alpar@1
|
228 |
{ /* x1 >= - (a2 / a1) * x2 */
|
alpar@1
|
229 |
if (mir->vlb[k1] == 0)
|
alpar@1
|
230 |
{ /* set variable lower bound for x1 */
|
alpar@1
|
231 |
mir->lb[k1] = - a2 / a1;
|
alpar@1
|
232 |
mir->vlb[k1] = k2;
|
alpar@1
|
233 |
/* the row should not be used */
|
alpar@1
|
234 |
mir->skip[i] = 1;
|
alpar@1
|
235 |
}
|
alpar@1
|
236 |
}
|
alpar@1
|
237 |
else /* a1 < 0.0 */
|
alpar@1
|
238 |
{ /* x1 <= - (a2 / a1) * x2 */
|
alpar@1
|
239 |
if (mir->vub[k1] == 0)
|
alpar@1
|
240 |
{ /* set variable upper bound for x1 */
|
alpar@1
|
241 |
mir->ub[k1] = - a2 / a1;
|
alpar@1
|
242 |
mir->vub[k1] = k2;
|
alpar@1
|
243 |
/* the row should not be used */
|
alpar@1
|
244 |
mir->skip[i] = 1;
|
alpar@1
|
245 |
}
|
alpar@1
|
246 |
}
|
alpar@1
|
247 |
}
|
alpar@1
|
248 |
return;
|
alpar@1
|
249 |
}
|
alpar@1
|
250 |
|
alpar@1
|
251 |
static void mark_useless_rows(glp_tree *tree, struct MIR *mir)
|
alpar@1
|
252 |
{ /* mark rows which should not be used */
|
alpar@1
|
253 |
glp_prob *mip = tree->mip;
|
alpar@1
|
254 |
int m = mir->m;
|
alpar@1
|
255 |
GLPAIJ *aij;
|
alpar@1
|
256 |
int i, k, nv;
|
alpar@1
|
257 |
for (i = 1; i <= m; i++)
|
alpar@1
|
258 |
{ /* free rows should not be used */
|
alpar@1
|
259 |
if (mir->lb[i] == -DBL_MAX && mir->ub[i] == +DBL_MAX)
|
alpar@1
|
260 |
{ mir->skip[i] = 1;
|
alpar@1
|
261 |
continue;
|
alpar@1
|
262 |
}
|
alpar@1
|
263 |
nv = 0;
|
alpar@1
|
264 |
for (aij = mip->row[i]->ptr; aij != NULL; aij = aij->r_next)
|
alpar@1
|
265 |
{ k = m + aij->col->j;
|
alpar@1
|
266 |
/* rows with free variables should not be used */
|
alpar@1
|
267 |
if (mir->lb[k] == -DBL_MAX && mir->ub[k] == +DBL_MAX)
|
alpar@1
|
268 |
{ mir->skip[i] = 1;
|
alpar@1
|
269 |
break;
|
alpar@1
|
270 |
}
|
alpar@1
|
271 |
/* rows with integer variables having infinite (lower or
|
alpar@1
|
272 |
upper) bound should not be used */
|
alpar@1
|
273 |
if (mir->isint[k] && mir->lb[k] == -DBL_MAX ||
|
alpar@1
|
274 |
mir->isint[k] && mir->ub[k] == +DBL_MAX)
|
alpar@1
|
275 |
{ mir->skip[i] = 1;
|
alpar@1
|
276 |
break;
|
alpar@1
|
277 |
}
|
alpar@1
|
278 |
/* count non-fixed variables */
|
alpar@1
|
279 |
if (!(mir->vlb[k] == 0 && mir->vub[k] == 0 &&
|
alpar@1
|
280 |
mir->lb[k] == mir->ub[k])) nv++;
|
alpar@1
|
281 |
}
|
alpar@1
|
282 |
/* rows with all variables fixed should not be used */
|
alpar@1
|
283 |
if (nv == 0)
|
alpar@1
|
284 |
{ mir->skip[i] = 1;
|
alpar@1
|
285 |
continue;
|
alpar@1
|
286 |
}
|
alpar@1
|
287 |
}
|
alpar@1
|
288 |
return;
|
alpar@1
|
289 |
}
|
alpar@1
|
290 |
|
alpar@1
|
291 |
void *ios_mir_init(glp_tree *tree)
|
alpar@1
|
292 |
{ /* initialize MIR cut generator */
|
alpar@1
|
293 |
glp_prob *mip = tree->mip;
|
alpar@1
|
294 |
int m = mip->m;
|
alpar@1
|
295 |
int n = mip->n;
|
alpar@1
|
296 |
struct MIR *mir;
|
alpar@1
|
297 |
#if _MIR_DEBUG
|
alpar@1
|
298 |
xprintf("ios_mir_init: warning: debug mode enabled\n");
|
alpar@1
|
299 |
#endif
|
alpar@1
|
300 |
/* allocate working area */
|
alpar@1
|
301 |
mir = xmalloc(sizeof(struct MIR));
|
alpar@1
|
302 |
mir->m = m;
|
alpar@1
|
303 |
mir->n = n;
|
alpar@1
|
304 |
mir->skip = xcalloc(1+m, sizeof(char));
|
alpar@1
|
305 |
mir->isint = xcalloc(1+m+n, sizeof(char));
|
alpar@1
|
306 |
mir->lb = xcalloc(1+m+n, sizeof(double));
|
alpar@1
|
307 |
mir->vlb = xcalloc(1+m+n, sizeof(int));
|
alpar@1
|
308 |
mir->ub = xcalloc(1+m+n, sizeof(double));
|
alpar@1
|
309 |
mir->vub = xcalloc(1+m+n, sizeof(int));
|
alpar@1
|
310 |
mir->x = xcalloc(1+m+n, sizeof(double));
|
alpar@1
|
311 |
mir->agg_row = xcalloc(1+MAXAGGR, sizeof(int));
|
alpar@1
|
312 |
mir->agg_vec = ios_create_vec(m+n);
|
alpar@1
|
313 |
mir->subst = xcalloc(1+m+n, sizeof(char));
|
alpar@1
|
314 |
mir->mod_vec = ios_create_vec(m+n);
|
alpar@1
|
315 |
mir->cut_vec = ios_create_vec(m+n);
|
alpar@1
|
316 |
/* set global row attributes */
|
alpar@1
|
317 |
set_row_attrib(tree, mir);
|
alpar@1
|
318 |
/* set global column attributes */
|
alpar@1
|
319 |
set_col_attrib(tree, mir);
|
alpar@1
|
320 |
/* set variable bounds */
|
alpar@1
|
321 |
set_var_bounds(tree, mir);
|
alpar@1
|
322 |
/* mark rows which should not be used */
|
alpar@1
|
323 |
mark_useless_rows(tree, mir);
|
alpar@1
|
324 |
return mir;
|
alpar@1
|
325 |
}
|
alpar@1
|
326 |
|
alpar@1
|
327 |
/***********************************************************************
|
alpar@1
|
328 |
* NAME
|
alpar@1
|
329 |
*
|
alpar@1
|
330 |
* ios_mir_gen - generate MIR cuts
|
alpar@1
|
331 |
*
|
alpar@1
|
332 |
* SYNOPSIS
|
alpar@1
|
333 |
*
|
alpar@1
|
334 |
* #include "glpios.h"
|
alpar@1
|
335 |
* void ios_mir_gen(glp_tree *tree, void *gen, IOSPOOL *pool);
|
alpar@1
|
336 |
*
|
alpar@1
|
337 |
* DESCRIPTION
|
alpar@1
|
338 |
*
|
alpar@1
|
339 |
* The routine ios_mir_gen generates MIR cuts for the current point and
|
alpar@1
|
340 |
* adds them to the cut pool. */
|
alpar@1
|
341 |
|
alpar@1
|
342 |
static void get_current_point(glp_tree *tree, struct MIR *mir)
|
alpar@1
|
343 |
{ /* obtain current point */
|
alpar@1
|
344 |
glp_prob *mip = tree->mip;
|
alpar@1
|
345 |
int m = mir->m;
|
alpar@1
|
346 |
int n = mir->n;
|
alpar@1
|
347 |
int k;
|
alpar@1
|
348 |
for (k = 1; k <= m; k++)
|
alpar@1
|
349 |
mir->x[k] = mip->row[k]->prim;
|
alpar@1
|
350 |
for (k = m+1; k <= m+n; k++)
|
alpar@1
|
351 |
mir->x[k] = mip->col[k-m]->prim;
|
alpar@1
|
352 |
return;
|
alpar@1
|
353 |
}
|
alpar@1
|
354 |
|
alpar@1
|
355 |
#if _MIR_DEBUG
|
alpar@1
|
356 |
static void check_current_point(struct MIR *mir)
|
alpar@1
|
357 |
{ /* check current point */
|
alpar@1
|
358 |
int m = mir->m;
|
alpar@1
|
359 |
int n = mir->n;
|
alpar@1
|
360 |
int k, kk;
|
alpar@1
|
361 |
double lb, ub, eps;
|
alpar@1
|
362 |
for (k = 1; k <= m+n; k++)
|
alpar@1
|
363 |
{ /* determine lower bound */
|
alpar@1
|
364 |
lb = mir->lb[k];
|
alpar@1
|
365 |
kk = mir->vlb[k];
|
alpar@1
|
366 |
if (kk != 0)
|
alpar@1
|
367 |
{ xassert(lb != -DBL_MAX);
|
alpar@1
|
368 |
xassert(!mir->isint[k]);
|
alpar@1
|
369 |
xassert(mir->isint[kk]);
|
alpar@1
|
370 |
lb *= mir->x[kk];
|
alpar@1
|
371 |
}
|
alpar@1
|
372 |
/* check lower bound */
|
alpar@1
|
373 |
if (lb != -DBL_MAX)
|
alpar@1
|
374 |
{ eps = 1e-6 * (1.0 + fabs(lb));
|
alpar@1
|
375 |
xassert(mir->x[k] >= lb - eps);
|
alpar@1
|
376 |
}
|
alpar@1
|
377 |
/* determine upper bound */
|
alpar@1
|
378 |
ub = mir->ub[k];
|
alpar@1
|
379 |
kk = mir->vub[k];
|
alpar@1
|
380 |
if (kk != 0)
|
alpar@1
|
381 |
{ xassert(ub != +DBL_MAX);
|
alpar@1
|
382 |
xassert(!mir->isint[k]);
|
alpar@1
|
383 |
xassert(mir->isint[kk]);
|
alpar@1
|
384 |
ub *= mir->x[kk];
|
alpar@1
|
385 |
}
|
alpar@1
|
386 |
/* check upper bound */
|
alpar@1
|
387 |
if (ub != +DBL_MAX)
|
alpar@1
|
388 |
{ eps = 1e-6 * (1.0 + fabs(ub));
|
alpar@1
|
389 |
xassert(mir->x[k] <= ub + eps);
|
alpar@1
|
390 |
}
|
alpar@1
|
391 |
}
|
alpar@1
|
392 |
return;
|
alpar@1
|
393 |
}
|
alpar@1
|
394 |
#endif
|
alpar@1
|
395 |
|
alpar@1
|
396 |
static void initial_agg_row(glp_tree *tree, struct MIR *mir, int i)
|
alpar@1
|
397 |
{ /* use original i-th row as initial aggregated constraint */
|
alpar@1
|
398 |
glp_prob *mip = tree->mip;
|
alpar@1
|
399 |
int m = mir->m;
|
alpar@1
|
400 |
GLPAIJ *aij;
|
alpar@1
|
401 |
xassert(1 <= i && i <= m);
|
alpar@1
|
402 |
xassert(!mir->skip[i]);
|
alpar@1
|
403 |
/* mark i-th row in order not to use it in the same aggregated
|
alpar@1
|
404 |
constraint */
|
alpar@1
|
405 |
mir->skip[i] = 2;
|
alpar@1
|
406 |
mir->agg_cnt = 1;
|
alpar@1
|
407 |
mir->agg_row[1] = i;
|
alpar@1
|
408 |
/* use x[i] - sum a[i,j] * x[m+j] = 0, where x[i] is auxiliary
|
alpar@1
|
409 |
variable of row i, x[m+j] are structural variables */
|
alpar@1
|
410 |
ios_clear_vec(mir->agg_vec);
|
alpar@1
|
411 |
ios_set_vj(mir->agg_vec, i, 1.0);
|
alpar@1
|
412 |
for (aij = mip->row[i]->ptr; aij != NULL; aij = aij->r_next)
|
alpar@1
|
413 |
ios_set_vj(mir->agg_vec, m + aij->col->j, - aij->val);
|
alpar@1
|
414 |
mir->agg_rhs = 0.0;
|
alpar@1
|
415 |
#if _MIR_DEBUG
|
alpar@1
|
416 |
ios_check_vec(mir->agg_vec);
|
alpar@1
|
417 |
#endif
|
alpar@1
|
418 |
return;
|
alpar@1
|
419 |
}
|
alpar@1
|
420 |
|
alpar@1
|
421 |
#if _MIR_DEBUG
|
alpar@1
|
422 |
static void check_agg_row(struct MIR *mir)
|
alpar@1
|
423 |
{ /* check aggregated constraint */
|
alpar@1
|
424 |
int m = mir->m;
|
alpar@1
|
425 |
int n = mir->n;
|
alpar@1
|
426 |
int j, k;
|
alpar@1
|
427 |
double r, big;
|
alpar@1
|
428 |
/* compute the residual r = sum a[k] * x[k] - b and determine
|
alpar@1
|
429 |
big = max(1, |a[k]|, |b|) */
|
alpar@1
|
430 |
r = 0.0, big = 1.0;
|
alpar@1
|
431 |
for (j = 1; j <= mir->agg_vec->nnz; j++)
|
alpar@1
|
432 |
{ k = mir->agg_vec->ind[j];
|
alpar@1
|
433 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
434 |
r += mir->agg_vec->val[j] * mir->x[k];
|
alpar@1
|
435 |
if (big < fabs(mir->agg_vec->val[j]))
|
alpar@1
|
436 |
big = fabs(mir->agg_vec->val[j]);
|
alpar@1
|
437 |
}
|
alpar@1
|
438 |
r -= mir->agg_rhs;
|
alpar@1
|
439 |
if (big < fabs(mir->agg_rhs))
|
alpar@1
|
440 |
big = fabs(mir->agg_rhs);
|
alpar@1
|
441 |
/* the residual must be close to zero */
|
alpar@1
|
442 |
xassert(fabs(r) <= 1e-6 * big);
|
alpar@1
|
443 |
return;
|
alpar@1
|
444 |
}
|
alpar@1
|
445 |
#endif
|
alpar@1
|
446 |
|
alpar@1
|
447 |
static void subst_fixed_vars(struct MIR *mir)
|
alpar@1
|
448 |
{ /* substitute fixed variables into aggregated constraint */
|
alpar@1
|
449 |
int m = mir->m;
|
alpar@1
|
450 |
int n = mir->n;
|
alpar@1
|
451 |
int j, k;
|
alpar@1
|
452 |
for (j = 1; j <= mir->agg_vec->nnz; j++)
|
alpar@1
|
453 |
{ k = mir->agg_vec->ind[j];
|
alpar@1
|
454 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
455 |
if (mir->vlb[k] == 0 && mir->vub[k] == 0 &&
|
alpar@1
|
456 |
mir->lb[k] == mir->ub[k])
|
alpar@1
|
457 |
{ /* x[k] is fixed */
|
alpar@1
|
458 |
mir->agg_rhs -= mir->agg_vec->val[j] * mir->lb[k];
|
alpar@1
|
459 |
mir->agg_vec->val[j] = 0.0;
|
alpar@1
|
460 |
}
|
alpar@1
|
461 |
}
|
alpar@1
|
462 |
/* remove terms corresponding to fixed variables */
|
alpar@1
|
463 |
ios_clean_vec(mir->agg_vec, DBL_EPSILON);
|
alpar@1
|
464 |
#if _MIR_DEBUG
|
alpar@1
|
465 |
ios_check_vec(mir->agg_vec);
|
alpar@1
|
466 |
#endif
|
alpar@1
|
467 |
return;
|
alpar@1
|
468 |
}
|
alpar@1
|
469 |
|
alpar@1
|
470 |
static void bound_subst_heur(struct MIR *mir)
|
alpar@1
|
471 |
{ /* bound substitution heuristic */
|
alpar@1
|
472 |
int m = mir->m;
|
alpar@1
|
473 |
int n = mir->n;
|
alpar@1
|
474 |
int j, k, kk;
|
alpar@1
|
475 |
double d1, d2;
|
alpar@1
|
476 |
for (j = 1; j <= mir->agg_vec->nnz; j++)
|
alpar@1
|
477 |
{ k = mir->agg_vec->ind[j];
|
alpar@1
|
478 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
479 |
if (mir->isint[k]) continue; /* skip integer variable */
|
alpar@1
|
480 |
/* compute distance from x[k] to its lower bound */
|
alpar@1
|
481 |
kk = mir->vlb[k];
|
alpar@1
|
482 |
if (kk == 0)
|
alpar@1
|
483 |
{ if (mir->lb[k] == -DBL_MAX)
|
alpar@1
|
484 |
d1 = DBL_MAX;
|
alpar@1
|
485 |
else
|
alpar@1
|
486 |
d1 = mir->x[k] - mir->lb[k];
|
alpar@1
|
487 |
}
|
alpar@1
|
488 |
else
|
alpar@1
|
489 |
{ xassert(1 <= kk && kk <= m+n);
|
alpar@1
|
490 |
xassert(mir->isint[kk]);
|
alpar@1
|
491 |
xassert(mir->lb[k] != -DBL_MAX);
|
alpar@1
|
492 |
d1 = mir->x[k] - mir->lb[k] * mir->x[kk];
|
alpar@1
|
493 |
}
|
alpar@1
|
494 |
/* compute distance from x[k] to its upper bound */
|
alpar@1
|
495 |
kk = mir->vub[k];
|
alpar@1
|
496 |
if (kk == 0)
|
alpar@1
|
497 |
{ if (mir->vub[k] == +DBL_MAX)
|
alpar@1
|
498 |
d2 = DBL_MAX;
|
alpar@1
|
499 |
else
|
alpar@1
|
500 |
d2 = mir->ub[k] - mir->x[k];
|
alpar@1
|
501 |
}
|
alpar@1
|
502 |
else
|
alpar@1
|
503 |
{ xassert(1 <= kk && kk <= m+n);
|
alpar@1
|
504 |
xassert(mir->isint[kk]);
|
alpar@1
|
505 |
xassert(mir->ub[k] != +DBL_MAX);
|
alpar@1
|
506 |
d2 = mir->ub[k] * mir->x[kk] - mir->x[k];
|
alpar@1
|
507 |
}
|
alpar@1
|
508 |
/* x[k] cannot be free */
|
alpar@1
|
509 |
xassert(d1 != DBL_MAX || d2 != DBL_MAX);
|
alpar@1
|
510 |
/* choose the bound which is closer to x[k] */
|
alpar@1
|
511 |
xassert(mir->subst[k] == '?');
|
alpar@1
|
512 |
if (d1 <= d2)
|
alpar@1
|
513 |
mir->subst[k] = 'L';
|
alpar@1
|
514 |
else
|
alpar@1
|
515 |
mir->subst[k] = 'U';
|
alpar@1
|
516 |
}
|
alpar@1
|
517 |
return;
|
alpar@1
|
518 |
}
|
alpar@1
|
519 |
|
alpar@1
|
520 |
static void build_mod_row(struct MIR *mir)
|
alpar@1
|
521 |
{ /* substitute bounds and build modified constraint */
|
alpar@1
|
522 |
int m = mir->m;
|
alpar@1
|
523 |
int n = mir->n;
|
alpar@1
|
524 |
int j, jj, k, kk;
|
alpar@1
|
525 |
/* initially modified constraint is aggregated constraint */
|
alpar@1
|
526 |
ios_copy_vec(mir->mod_vec, mir->agg_vec);
|
alpar@1
|
527 |
mir->mod_rhs = mir->agg_rhs;
|
alpar@1
|
528 |
#if _MIR_DEBUG
|
alpar@1
|
529 |
ios_check_vec(mir->mod_vec);
|
alpar@1
|
530 |
#endif
|
alpar@1
|
531 |
/* substitute bounds for continuous variables; note that due to
|
alpar@1
|
532 |
substitution of variable bounds additional terms may appear in
|
alpar@1
|
533 |
modified constraint */
|
alpar@1
|
534 |
for (j = mir->mod_vec->nnz; j >= 1; j--)
|
alpar@1
|
535 |
{ k = mir->mod_vec->ind[j];
|
alpar@1
|
536 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
537 |
if (mir->isint[k]) continue; /* skip integer variable */
|
alpar@1
|
538 |
if (mir->subst[k] == 'L')
|
alpar@1
|
539 |
{ /* x[k] = (lower bound) + x'[k] */
|
alpar@1
|
540 |
xassert(mir->lb[k] != -DBL_MAX);
|
alpar@1
|
541 |
kk = mir->vlb[k];
|
alpar@1
|
542 |
if (kk == 0)
|
alpar@1
|
543 |
{ /* x[k] = lb[k] + x'[k] */
|
alpar@1
|
544 |
mir->mod_rhs -= mir->mod_vec->val[j] * mir->lb[k];
|
alpar@1
|
545 |
}
|
alpar@1
|
546 |
else
|
alpar@1
|
547 |
{ /* x[k] = lb[k] * x[kk] + x'[k] */
|
alpar@1
|
548 |
xassert(mir->isint[kk]);
|
alpar@1
|
549 |
jj = mir->mod_vec->pos[kk];
|
alpar@1
|
550 |
if (jj == 0)
|
alpar@1
|
551 |
{ ios_set_vj(mir->mod_vec, kk, 1.0);
|
alpar@1
|
552 |
jj = mir->mod_vec->pos[kk];
|
alpar@1
|
553 |
mir->mod_vec->val[jj] = 0.0;
|
alpar@1
|
554 |
}
|
alpar@1
|
555 |
mir->mod_vec->val[jj] +=
|
alpar@1
|
556 |
mir->mod_vec->val[j] * mir->lb[k];
|
alpar@1
|
557 |
}
|
alpar@1
|
558 |
}
|
alpar@1
|
559 |
else if (mir->subst[k] == 'U')
|
alpar@1
|
560 |
{ /* x[k] = (upper bound) - x'[k] */
|
alpar@1
|
561 |
xassert(mir->ub[k] != +DBL_MAX);
|
alpar@1
|
562 |
kk = mir->vub[k];
|
alpar@1
|
563 |
if (kk == 0)
|
alpar@1
|
564 |
{ /* x[k] = ub[k] - x'[k] */
|
alpar@1
|
565 |
mir->mod_rhs -= mir->mod_vec->val[j] * mir->ub[k];
|
alpar@1
|
566 |
}
|
alpar@1
|
567 |
else
|
alpar@1
|
568 |
{ /* x[k] = ub[k] * x[kk] - x'[k] */
|
alpar@1
|
569 |
xassert(mir->isint[kk]);
|
alpar@1
|
570 |
jj = mir->mod_vec->pos[kk];
|
alpar@1
|
571 |
if (jj == 0)
|
alpar@1
|
572 |
{ ios_set_vj(mir->mod_vec, kk, 1.0);
|
alpar@1
|
573 |
jj = mir->mod_vec->pos[kk];
|
alpar@1
|
574 |
mir->mod_vec->val[jj] = 0.0;
|
alpar@1
|
575 |
}
|
alpar@1
|
576 |
mir->mod_vec->val[jj] +=
|
alpar@1
|
577 |
mir->mod_vec->val[j] * mir->ub[k];
|
alpar@1
|
578 |
}
|
alpar@1
|
579 |
mir->mod_vec->val[j] = - mir->mod_vec->val[j];
|
alpar@1
|
580 |
}
|
alpar@1
|
581 |
else
|
alpar@1
|
582 |
xassert(k != k);
|
alpar@1
|
583 |
}
|
alpar@1
|
584 |
#if _MIR_DEBUG
|
alpar@1
|
585 |
ios_check_vec(mir->mod_vec);
|
alpar@1
|
586 |
#endif
|
alpar@1
|
587 |
/* substitute bounds for integer variables */
|
alpar@1
|
588 |
for (j = 1; j <= mir->mod_vec->nnz; j++)
|
alpar@1
|
589 |
{ k = mir->mod_vec->ind[j];
|
alpar@1
|
590 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
591 |
if (!mir->isint[k]) continue; /* skip continuous variable */
|
alpar@1
|
592 |
xassert(mir->subst[k] == '?');
|
alpar@1
|
593 |
xassert(mir->vlb[k] == 0 && mir->vub[k] == 0);
|
alpar@1
|
594 |
xassert(mir->lb[k] != -DBL_MAX && mir->ub[k] != +DBL_MAX);
|
alpar@1
|
595 |
if (fabs(mir->lb[k]) <= fabs(mir->ub[k]))
|
alpar@1
|
596 |
{ /* x[k] = lb[k] + x'[k] */
|
alpar@1
|
597 |
mir->subst[k] = 'L';
|
alpar@1
|
598 |
mir->mod_rhs -= mir->mod_vec->val[j] * mir->lb[k];
|
alpar@1
|
599 |
}
|
alpar@1
|
600 |
else
|
alpar@1
|
601 |
{ /* x[k] = ub[k] - x'[k] */
|
alpar@1
|
602 |
mir->subst[k] = 'U';
|
alpar@1
|
603 |
mir->mod_rhs -= mir->mod_vec->val[j] * mir->ub[k];
|
alpar@1
|
604 |
mir->mod_vec->val[j] = - mir->mod_vec->val[j];
|
alpar@1
|
605 |
}
|
alpar@1
|
606 |
}
|
alpar@1
|
607 |
#if _MIR_DEBUG
|
alpar@1
|
608 |
ios_check_vec(mir->mod_vec);
|
alpar@1
|
609 |
#endif
|
alpar@1
|
610 |
return;
|
alpar@1
|
611 |
}
|
alpar@1
|
612 |
|
alpar@1
|
613 |
#if _MIR_DEBUG
|
alpar@1
|
614 |
static void check_mod_row(struct MIR *mir)
|
alpar@1
|
615 |
{ /* check modified constraint */
|
alpar@1
|
616 |
int m = mir->m;
|
alpar@1
|
617 |
int n = mir->n;
|
alpar@1
|
618 |
int j, k, kk;
|
alpar@1
|
619 |
double r, big, x;
|
alpar@1
|
620 |
/* compute the residual r = sum a'[k] * x'[k] - b' and determine
|
alpar@1
|
621 |
big = max(1, |a[k]|, |b|) */
|
alpar@1
|
622 |
r = 0.0, big = 1.0;
|
alpar@1
|
623 |
for (j = 1; j <= mir->mod_vec->nnz; j++)
|
alpar@1
|
624 |
{ k = mir->mod_vec->ind[j];
|
alpar@1
|
625 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
626 |
if (mir->subst[k] == 'L')
|
alpar@1
|
627 |
{ /* x'[k] = x[k] - (lower bound) */
|
alpar@1
|
628 |
xassert(mir->lb[k] != -DBL_MAX);
|
alpar@1
|
629 |
kk = mir->vlb[k];
|
alpar@1
|
630 |
if (kk == 0)
|
alpar@1
|
631 |
x = mir->x[k] - mir->lb[k];
|
alpar@1
|
632 |
else
|
alpar@1
|
633 |
x = mir->x[k] - mir->lb[k] * mir->x[kk];
|
alpar@1
|
634 |
}
|
alpar@1
|
635 |
else if (mir->subst[k] == 'U')
|
alpar@1
|
636 |
{ /* x'[k] = (upper bound) - x[k] */
|
alpar@1
|
637 |
xassert(mir->ub[k] != +DBL_MAX);
|
alpar@1
|
638 |
kk = mir->vub[k];
|
alpar@1
|
639 |
if (kk == 0)
|
alpar@1
|
640 |
x = mir->ub[k] - mir->x[k];
|
alpar@1
|
641 |
else
|
alpar@1
|
642 |
x = mir->ub[k] * mir->x[kk] - mir->x[k];
|
alpar@1
|
643 |
}
|
alpar@1
|
644 |
else
|
alpar@1
|
645 |
xassert(k != k);
|
alpar@1
|
646 |
r += mir->mod_vec->val[j] * x;
|
alpar@1
|
647 |
if (big < fabs(mir->mod_vec->val[j]))
|
alpar@1
|
648 |
big = fabs(mir->mod_vec->val[j]);
|
alpar@1
|
649 |
}
|
alpar@1
|
650 |
r -= mir->mod_rhs;
|
alpar@1
|
651 |
if (big < fabs(mir->mod_rhs))
|
alpar@1
|
652 |
big = fabs(mir->mod_rhs);
|
alpar@1
|
653 |
/* the residual must be close to zero */
|
alpar@1
|
654 |
xassert(fabs(r) <= 1e-6 * big);
|
alpar@1
|
655 |
return;
|
alpar@1
|
656 |
}
|
alpar@1
|
657 |
#endif
|
alpar@1
|
658 |
|
alpar@1
|
659 |
/***********************************************************************
|
alpar@1
|
660 |
* mir_ineq - construct MIR inequality
|
alpar@1
|
661 |
*
|
alpar@1
|
662 |
* Given the single constraint mixed integer set
|
alpar@1
|
663 |
*
|
alpar@1
|
664 |
* |N|
|
alpar@1
|
665 |
* X = {(x,s) in Z x R : sum a[j] * x[j] <= b + s},
|
alpar@1
|
666 |
* + + j in N
|
alpar@1
|
667 |
*
|
alpar@1
|
668 |
* this routine constructs the mixed integer rounding (MIR) inequality
|
alpar@1
|
669 |
*
|
alpar@1
|
670 |
* sum alpha[j] * x[j] <= beta + gamma * s,
|
alpar@1
|
671 |
* j in N
|
alpar@1
|
672 |
*
|
alpar@1
|
673 |
* which is valid for X.
|
alpar@1
|
674 |
*
|
alpar@1
|
675 |
* If the MIR inequality has been successfully constructed, the routine
|
alpar@1
|
676 |
* returns zero. Otherwise, if b is close to nearest integer, there may
|
alpar@1
|
677 |
* be numeric difficulties due to big coefficients; so in this case the
|
alpar@1
|
678 |
* routine returns non-zero. */
|
alpar@1
|
679 |
|
alpar@1
|
680 |
static int mir_ineq(const int n, const double a[], const double b,
|
alpar@1
|
681 |
double alpha[], double *beta, double *gamma)
|
alpar@1
|
682 |
{ int j;
|
alpar@1
|
683 |
double f, t;
|
alpar@1
|
684 |
if (fabs(b - floor(b + .5)) < 0.01)
|
alpar@1
|
685 |
return 1;
|
alpar@1
|
686 |
f = b - floor(b);
|
alpar@1
|
687 |
for (j = 1; j <= n; j++)
|
alpar@1
|
688 |
{ t = (a[j] - floor(a[j])) - f;
|
alpar@1
|
689 |
if (t <= 0.0)
|
alpar@1
|
690 |
alpha[j] = floor(a[j]);
|
alpar@1
|
691 |
else
|
alpar@1
|
692 |
alpha[j] = floor(a[j]) + t / (1.0 - f);
|
alpar@1
|
693 |
}
|
alpar@1
|
694 |
*beta = floor(b);
|
alpar@1
|
695 |
*gamma = 1.0 / (1.0 - f);
|
alpar@1
|
696 |
return 0;
|
alpar@1
|
697 |
}
|
alpar@1
|
698 |
|
alpar@1
|
699 |
/***********************************************************************
|
alpar@1
|
700 |
* cmir_ineq - construct c-MIR inequality
|
alpar@1
|
701 |
*
|
alpar@1
|
702 |
* Given the mixed knapsack set
|
alpar@1
|
703 |
*
|
alpar@1
|
704 |
* MK |N|
|
alpar@1
|
705 |
* X = {(x,s) in Z x R : sum a[j] * x[j] <= b + s,
|
alpar@1
|
706 |
* + + j in N
|
alpar@1
|
707 |
*
|
alpar@1
|
708 |
* x[j] <= u[j]},
|
alpar@1
|
709 |
*
|
alpar@1
|
710 |
* a subset C of variables to be complemented, and a divisor delta > 0,
|
alpar@1
|
711 |
* this routine constructs the complemented MIR (c-MIR) inequality
|
alpar@1
|
712 |
*
|
alpar@1
|
713 |
* sum alpha[j] * x[j] <= beta + gamma * s,
|
alpar@1
|
714 |
* j in N
|
alpar@1
|
715 |
* MK
|
alpar@1
|
716 |
* which is valid for X .
|
alpar@1
|
717 |
*
|
alpar@1
|
718 |
* If the c-MIR inequality has been successfully constructed, the
|
alpar@1
|
719 |
* routine returns zero. Otherwise, if there is a risk of numerical
|
alpar@1
|
720 |
* difficulties due to big coefficients (see comments to the routine
|
alpar@1
|
721 |
* mir_ineq), the routine cmir_ineq returns non-zero. */
|
alpar@1
|
722 |
|
alpar@1
|
723 |
static int cmir_ineq(const int n, const double a[], const double b,
|
alpar@1
|
724 |
const double u[], const char cset[], const double delta,
|
alpar@1
|
725 |
double alpha[], double *beta, double *gamma)
|
alpar@1
|
726 |
{ int j;
|
alpar@1
|
727 |
double *aa, bb;
|
alpar@1
|
728 |
aa = alpha, bb = b;
|
alpar@1
|
729 |
for (j = 1; j <= n; j++)
|
alpar@1
|
730 |
{ aa[j] = a[j] / delta;
|
alpar@1
|
731 |
if (cset[j])
|
alpar@1
|
732 |
aa[j] = - aa[j], bb -= a[j] * u[j];
|
alpar@1
|
733 |
}
|
alpar@1
|
734 |
bb /= delta;
|
alpar@1
|
735 |
if (mir_ineq(n, aa, bb, alpha, beta, gamma)) return 1;
|
alpar@1
|
736 |
for (j = 1; j <= n; j++)
|
alpar@1
|
737 |
{ if (cset[j])
|
alpar@1
|
738 |
alpha[j] = - alpha[j], *beta += alpha[j] * u[j];
|
alpar@1
|
739 |
}
|
alpar@1
|
740 |
*gamma /= delta;
|
alpar@1
|
741 |
return 0;
|
alpar@1
|
742 |
}
|
alpar@1
|
743 |
|
alpar@1
|
744 |
/***********************************************************************
|
alpar@1
|
745 |
* cmir_sep - c-MIR separation heuristic
|
alpar@1
|
746 |
*
|
alpar@1
|
747 |
* Given the mixed knapsack set
|
alpar@1
|
748 |
*
|
alpar@1
|
749 |
* MK |N|
|
alpar@1
|
750 |
* X = {(x,s) in Z x R : sum a[j] * x[j] <= b + s,
|
alpar@1
|
751 |
* + + j in N
|
alpar@1
|
752 |
*
|
alpar@1
|
753 |
* x[j] <= u[j]}
|
alpar@1
|
754 |
*
|
alpar@1
|
755 |
* * *
|
alpar@1
|
756 |
* and a fractional point (x , s ), this routine tries to construct
|
alpar@1
|
757 |
* c-MIR inequality
|
alpar@1
|
758 |
*
|
alpar@1
|
759 |
* sum alpha[j] * x[j] <= beta + gamma * s,
|
alpar@1
|
760 |
* j in N
|
alpar@1
|
761 |
* MK
|
alpar@1
|
762 |
* which is valid for X and has (desirably maximal) violation at the
|
alpar@1
|
763 |
* fractional point given. This is attained by choosing an appropriate
|
alpar@1
|
764 |
* set C of variables to be complemented and a divisor delta > 0, which
|
alpar@1
|
765 |
* together define corresponding c-MIR inequality.
|
alpar@1
|
766 |
*
|
alpar@1
|
767 |
* If a violated c-MIR inequality has been successfully constructed,
|
alpar@1
|
768 |
* the routine returns its violation:
|
alpar@1
|
769 |
*
|
alpar@1
|
770 |
* * *
|
alpar@1
|
771 |
* sum alpha[j] * x [j] - beta - gamma * s ,
|
alpar@1
|
772 |
* j in N
|
alpar@1
|
773 |
*
|
alpar@1
|
774 |
* which is positive. In case of failure the routine returns zero. */
|
alpar@1
|
775 |
|
alpar@1
|
776 |
struct vset { int j; double v; };
|
alpar@1
|
777 |
|
alpar@1
|
778 |
static int cmir_cmp(const void *p1, const void *p2)
|
alpar@1
|
779 |
{ const struct vset *v1 = p1, *v2 = p2;
|
alpar@1
|
780 |
if (v1->v < v2->v) return -1;
|
alpar@1
|
781 |
if (v1->v > v2->v) return +1;
|
alpar@1
|
782 |
return 0;
|
alpar@1
|
783 |
}
|
alpar@1
|
784 |
|
alpar@1
|
785 |
static double cmir_sep(const int n, const double a[], const double b,
|
alpar@1
|
786 |
const double u[], const double x[], const double s,
|
alpar@1
|
787 |
double alpha[], double *beta, double *gamma)
|
alpar@1
|
788 |
{ int fail, j, k, nv, v;
|
alpar@1
|
789 |
double delta, eps, d_try[1+3], r, r_best;
|
alpar@1
|
790 |
char *cset;
|
alpar@1
|
791 |
struct vset *vset;
|
alpar@1
|
792 |
/* allocate working arrays */
|
alpar@1
|
793 |
cset = xcalloc(1+n, sizeof(char));
|
alpar@1
|
794 |
vset = xcalloc(1+n, sizeof(struct vset));
|
alpar@1
|
795 |
/* choose initial C */
|
alpar@1
|
796 |
for (j = 1; j <= n; j++)
|
alpar@1
|
797 |
cset[j] = (char)(x[j] >= 0.5 * u[j]);
|
alpar@1
|
798 |
/* choose initial delta */
|
alpar@1
|
799 |
r_best = delta = 0.0;
|
alpar@1
|
800 |
for (j = 1; j <= n; j++)
|
alpar@1
|
801 |
{ xassert(a[j] != 0.0);
|
alpar@1
|
802 |
/* if x[j] is close to its bounds, skip it */
|
alpar@1
|
803 |
eps = 1e-9 * (1.0 + fabs(u[j]));
|
alpar@1
|
804 |
if (x[j] < eps || x[j] > u[j] - eps) continue;
|
alpar@1
|
805 |
/* try delta = |a[j]| to construct c-MIR inequality */
|
alpar@1
|
806 |
fail = cmir_ineq(n, a, b, u, cset, fabs(a[j]), alpha, beta,
|
alpar@1
|
807 |
gamma);
|
alpar@1
|
808 |
if (fail) continue;
|
alpar@1
|
809 |
/* compute violation */
|
alpar@1
|
810 |
r = - (*beta) - (*gamma) * s;
|
alpar@1
|
811 |
for (k = 1; k <= n; k++) r += alpha[k] * x[k];
|
alpar@1
|
812 |
if (r_best < r) r_best = r, delta = fabs(a[j]);
|
alpar@1
|
813 |
}
|
alpar@1
|
814 |
if (r_best < 0.001) r_best = 0.0;
|
alpar@1
|
815 |
if (r_best == 0.0) goto done;
|
alpar@1
|
816 |
xassert(delta > 0.0);
|
alpar@1
|
817 |
/* try to increase violation by dividing delta by 2, 4, and 8,
|
alpar@1
|
818 |
respectively */
|
alpar@1
|
819 |
d_try[1] = delta / 2.0;
|
alpar@1
|
820 |
d_try[2] = delta / 4.0;
|
alpar@1
|
821 |
d_try[3] = delta / 8.0;
|
alpar@1
|
822 |
for (j = 1; j <= 3; j++)
|
alpar@1
|
823 |
{ /* construct c-MIR inequality */
|
alpar@1
|
824 |
fail = cmir_ineq(n, a, b, u, cset, d_try[j], alpha, beta,
|
alpar@1
|
825 |
gamma);
|
alpar@1
|
826 |
if (fail) continue;
|
alpar@1
|
827 |
/* compute violation */
|
alpar@1
|
828 |
r = - (*beta) - (*gamma) * s;
|
alpar@1
|
829 |
for (k = 1; k <= n; k++) r += alpha[k] * x[k];
|
alpar@1
|
830 |
if (r_best < r) r_best = r, delta = d_try[j];
|
alpar@1
|
831 |
}
|
alpar@1
|
832 |
/* build subset of variables lying strictly between their bounds
|
alpar@1
|
833 |
and order it by nondecreasing values of |x[j] - u[j]/2| */
|
alpar@1
|
834 |
nv = 0;
|
alpar@1
|
835 |
for (j = 1; j <= n; j++)
|
alpar@1
|
836 |
{ /* if x[j] is close to its bounds, skip it */
|
alpar@1
|
837 |
eps = 1e-9 * (1.0 + fabs(u[j]));
|
alpar@1
|
838 |
if (x[j] < eps || x[j] > u[j] - eps) continue;
|
alpar@1
|
839 |
/* add x[j] to the subset */
|
alpar@1
|
840 |
nv++;
|
alpar@1
|
841 |
vset[nv].j = j;
|
alpar@1
|
842 |
vset[nv].v = fabs(x[j] - 0.5 * u[j]);
|
alpar@1
|
843 |
}
|
alpar@1
|
844 |
qsort(&vset[1], nv, sizeof(struct vset), cmir_cmp);
|
alpar@1
|
845 |
/* try to increase violation by successively complementing each
|
alpar@1
|
846 |
variable in the subset */
|
alpar@1
|
847 |
for (v = 1; v <= nv; v++)
|
alpar@1
|
848 |
{ j = vset[v].j;
|
alpar@1
|
849 |
/* replace x[j] by its complement or vice versa */
|
alpar@1
|
850 |
cset[j] = (char)!cset[j];
|
alpar@1
|
851 |
/* construct c-MIR inequality */
|
alpar@1
|
852 |
fail = cmir_ineq(n, a, b, u, cset, delta, alpha, beta, gamma);
|
alpar@1
|
853 |
/* restore the variable */
|
alpar@1
|
854 |
cset[j] = (char)!cset[j];
|
alpar@1
|
855 |
/* do not replace the variable in case of failure */
|
alpar@1
|
856 |
if (fail) continue;
|
alpar@1
|
857 |
/* compute violation */
|
alpar@1
|
858 |
r = - (*beta) - (*gamma) * s;
|
alpar@1
|
859 |
for (k = 1; k <= n; k++) r += alpha[k] * x[k];
|
alpar@1
|
860 |
if (r_best < r) r_best = r, cset[j] = (char)!cset[j];
|
alpar@1
|
861 |
}
|
alpar@1
|
862 |
/* construct the best c-MIR inequality chosen */
|
alpar@1
|
863 |
fail = cmir_ineq(n, a, b, u, cset, delta, alpha, beta, gamma);
|
alpar@1
|
864 |
xassert(!fail);
|
alpar@1
|
865 |
done: /* free working arrays */
|
alpar@1
|
866 |
xfree(cset);
|
alpar@1
|
867 |
xfree(vset);
|
alpar@1
|
868 |
/* return to the calling routine */
|
alpar@1
|
869 |
return r_best;
|
alpar@1
|
870 |
}
|
alpar@1
|
871 |
|
alpar@1
|
872 |
static double generate(struct MIR *mir)
|
alpar@1
|
873 |
{ /* try to generate violated c-MIR cut for modified constraint */
|
alpar@1
|
874 |
int m = mir->m;
|
alpar@1
|
875 |
int n = mir->n;
|
alpar@1
|
876 |
int j, k, kk, nint;
|
alpar@1
|
877 |
double s, *u, *x, *alpha, r_best = 0.0, b, beta, gamma;
|
alpar@1
|
878 |
ios_copy_vec(mir->cut_vec, mir->mod_vec);
|
alpar@1
|
879 |
mir->cut_rhs = mir->mod_rhs;
|
alpar@1
|
880 |
/* remove small terms, which can appear due to substitution of
|
alpar@1
|
881 |
variable bounds */
|
alpar@1
|
882 |
ios_clean_vec(mir->cut_vec, DBL_EPSILON);
|
alpar@1
|
883 |
#if _MIR_DEBUG
|
alpar@1
|
884 |
ios_check_vec(mir->cut_vec);
|
alpar@1
|
885 |
#endif
|
alpar@1
|
886 |
/* remove positive continuous terms to obtain MK relaxation */
|
alpar@1
|
887 |
for (j = 1; j <= mir->cut_vec->nnz; j++)
|
alpar@1
|
888 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
889 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
890 |
if (!mir->isint[k] && mir->cut_vec->val[j] > 0.0)
|
alpar@1
|
891 |
mir->cut_vec->val[j] = 0.0;
|
alpar@1
|
892 |
}
|
alpar@1
|
893 |
ios_clean_vec(mir->cut_vec, 0.0);
|
alpar@1
|
894 |
#if _MIR_DEBUG
|
alpar@1
|
895 |
ios_check_vec(mir->cut_vec);
|
alpar@1
|
896 |
#endif
|
alpar@1
|
897 |
/* move integer terms to the beginning of the sparse vector and
|
alpar@1
|
898 |
determine the number of integer variables */
|
alpar@1
|
899 |
nint = 0;
|
alpar@1
|
900 |
for (j = 1; j <= mir->cut_vec->nnz; j++)
|
alpar@1
|
901 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
902 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
903 |
if (mir->isint[k])
|
alpar@1
|
904 |
{ double temp;
|
alpar@1
|
905 |
nint++;
|
alpar@1
|
906 |
/* interchange elements [nint] and [j] */
|
alpar@1
|
907 |
kk = mir->cut_vec->ind[nint];
|
alpar@1
|
908 |
mir->cut_vec->pos[k] = nint;
|
alpar@1
|
909 |
mir->cut_vec->pos[kk] = j;
|
alpar@1
|
910 |
mir->cut_vec->ind[nint] = k;
|
alpar@1
|
911 |
mir->cut_vec->ind[j] = kk;
|
alpar@1
|
912 |
temp = mir->cut_vec->val[nint];
|
alpar@1
|
913 |
mir->cut_vec->val[nint] = mir->cut_vec->val[j];
|
alpar@1
|
914 |
mir->cut_vec->val[j] = temp;
|
alpar@1
|
915 |
}
|
alpar@1
|
916 |
}
|
alpar@1
|
917 |
#if _MIR_DEBUG
|
alpar@1
|
918 |
ios_check_vec(mir->cut_vec);
|
alpar@1
|
919 |
#endif
|
alpar@1
|
920 |
/* if there is no integer variable, nothing to generate */
|
alpar@1
|
921 |
if (nint == 0) goto done;
|
alpar@1
|
922 |
/* allocate working arrays */
|
alpar@1
|
923 |
u = xcalloc(1+nint, sizeof(double));
|
alpar@1
|
924 |
x = xcalloc(1+nint, sizeof(double));
|
alpar@1
|
925 |
alpha = xcalloc(1+nint, sizeof(double));
|
alpar@1
|
926 |
/* determine u and x */
|
alpar@1
|
927 |
for (j = 1; j <= nint; j++)
|
alpar@1
|
928 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
929 |
xassert(m+1 <= k && k <= m+n);
|
alpar@1
|
930 |
xassert(mir->isint[k]);
|
alpar@1
|
931 |
u[j] = mir->ub[k] - mir->lb[k];
|
alpar@1
|
932 |
xassert(u[j] >= 1.0);
|
alpar@1
|
933 |
if (mir->subst[k] == 'L')
|
alpar@1
|
934 |
x[j] = mir->x[k] - mir->lb[k];
|
alpar@1
|
935 |
else if (mir->subst[k] == 'U')
|
alpar@1
|
936 |
x[j] = mir->ub[k] - mir->x[k];
|
alpar@1
|
937 |
else
|
alpar@1
|
938 |
xassert(k != k);
|
alpar@1
|
939 |
xassert(x[j] >= -0.001);
|
alpar@1
|
940 |
if (x[j] < 0.0) x[j] = 0.0;
|
alpar@1
|
941 |
}
|
alpar@1
|
942 |
/* compute s = - sum of continuous terms */
|
alpar@1
|
943 |
s = 0.0;
|
alpar@1
|
944 |
for (j = nint+1; j <= mir->cut_vec->nnz; j++)
|
alpar@1
|
945 |
{ double x;
|
alpar@1
|
946 |
k = mir->cut_vec->ind[j];
|
alpar@1
|
947 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
948 |
/* must be continuous */
|
alpar@1
|
949 |
xassert(!mir->isint[k]);
|
alpar@1
|
950 |
if (mir->subst[k] == 'L')
|
alpar@1
|
951 |
{ xassert(mir->lb[k] != -DBL_MAX);
|
alpar@1
|
952 |
kk = mir->vlb[k];
|
alpar@1
|
953 |
if (kk == 0)
|
alpar@1
|
954 |
x = mir->x[k] - mir->lb[k];
|
alpar@1
|
955 |
else
|
alpar@1
|
956 |
x = mir->x[k] - mir->lb[k] * mir->x[kk];
|
alpar@1
|
957 |
}
|
alpar@1
|
958 |
else if (mir->subst[k] == 'U')
|
alpar@1
|
959 |
{ xassert(mir->ub[k] != +DBL_MAX);
|
alpar@1
|
960 |
kk = mir->vub[k];
|
alpar@1
|
961 |
if (kk == 0)
|
alpar@1
|
962 |
x = mir->ub[k] - mir->x[k];
|
alpar@1
|
963 |
else
|
alpar@1
|
964 |
x = mir->ub[k] * mir->x[kk] - mir->x[k];
|
alpar@1
|
965 |
}
|
alpar@1
|
966 |
else
|
alpar@1
|
967 |
xassert(k != k);
|
alpar@1
|
968 |
xassert(x >= -0.001);
|
alpar@1
|
969 |
if (x < 0.0) x = 0.0;
|
alpar@1
|
970 |
s -= mir->cut_vec->val[j] * x;
|
alpar@1
|
971 |
}
|
alpar@1
|
972 |
xassert(s >= 0.0);
|
alpar@1
|
973 |
/* apply heuristic to obtain most violated c-MIR inequality */
|
alpar@1
|
974 |
b = mir->cut_rhs;
|
alpar@1
|
975 |
r_best = cmir_sep(nint, mir->cut_vec->val, b, u, x, s, alpha,
|
alpar@1
|
976 |
&beta, &gamma);
|
alpar@1
|
977 |
if (r_best == 0.0) goto skip;
|
alpar@1
|
978 |
xassert(r_best > 0.0);
|
alpar@1
|
979 |
/* convert to raw cut */
|
alpar@1
|
980 |
/* sum alpha[j] * x[j] <= beta + gamma * s */
|
alpar@1
|
981 |
for (j = 1; j <= nint; j++)
|
alpar@1
|
982 |
mir->cut_vec->val[j] = alpha[j];
|
alpar@1
|
983 |
for (j = nint+1; j <= mir->cut_vec->nnz; j++)
|
alpar@1
|
984 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
985 |
if (k <= m+n) mir->cut_vec->val[j] *= gamma;
|
alpar@1
|
986 |
}
|
alpar@1
|
987 |
mir->cut_rhs = beta;
|
alpar@1
|
988 |
#if _MIR_DEBUG
|
alpar@1
|
989 |
ios_check_vec(mir->cut_vec);
|
alpar@1
|
990 |
#endif
|
alpar@1
|
991 |
skip: /* free working arrays */
|
alpar@1
|
992 |
xfree(u);
|
alpar@1
|
993 |
xfree(x);
|
alpar@1
|
994 |
xfree(alpha);
|
alpar@1
|
995 |
done: return r_best;
|
alpar@1
|
996 |
}
|
alpar@1
|
997 |
|
alpar@1
|
998 |
#if _MIR_DEBUG
|
alpar@1
|
999 |
static void check_raw_cut(struct MIR *mir, double r_best)
|
alpar@1
|
1000 |
{ /* check raw cut before back bound substitution */
|
alpar@1
|
1001 |
int m = mir->m;
|
alpar@1
|
1002 |
int n = mir->n;
|
alpar@1
|
1003 |
int j, k, kk;
|
alpar@1
|
1004 |
double r, big, x;
|
alpar@1
|
1005 |
/* compute the residual r = sum a[k] * x[k] - b and determine
|
alpar@1
|
1006 |
big = max(1, |a[k]|, |b|) */
|
alpar@1
|
1007 |
r = 0.0, big = 1.0;
|
alpar@1
|
1008 |
for (j = 1; j <= mir->cut_vec->nnz; j++)
|
alpar@1
|
1009 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
1010 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
1011 |
if (mir->subst[k] == 'L')
|
alpar@1
|
1012 |
{ xassert(mir->lb[k] != -DBL_MAX);
|
alpar@1
|
1013 |
kk = mir->vlb[k];
|
alpar@1
|
1014 |
if (kk == 0)
|
alpar@1
|
1015 |
x = mir->x[k] - mir->lb[k];
|
alpar@1
|
1016 |
else
|
alpar@1
|
1017 |
x = mir->x[k] - mir->lb[k] * mir->x[kk];
|
alpar@1
|
1018 |
}
|
alpar@1
|
1019 |
else if (mir->subst[k] == 'U')
|
alpar@1
|
1020 |
{ xassert(mir->ub[k] != +DBL_MAX);
|
alpar@1
|
1021 |
kk = mir->vub[k];
|
alpar@1
|
1022 |
if (kk == 0)
|
alpar@1
|
1023 |
x = mir->ub[k] - mir->x[k];
|
alpar@1
|
1024 |
else
|
alpar@1
|
1025 |
x = mir->ub[k] * mir->x[kk] - mir->x[k];
|
alpar@1
|
1026 |
}
|
alpar@1
|
1027 |
else
|
alpar@1
|
1028 |
xassert(k != k);
|
alpar@1
|
1029 |
r += mir->cut_vec->val[j] * x;
|
alpar@1
|
1030 |
if (big < fabs(mir->cut_vec->val[j]))
|
alpar@1
|
1031 |
big = fabs(mir->cut_vec->val[j]);
|
alpar@1
|
1032 |
}
|
alpar@1
|
1033 |
r -= mir->cut_rhs;
|
alpar@1
|
1034 |
if (big < fabs(mir->cut_rhs))
|
alpar@1
|
1035 |
big = fabs(mir->cut_rhs);
|
alpar@1
|
1036 |
/* the residual must be close to r_best */
|
alpar@1
|
1037 |
xassert(fabs(r - r_best) <= 1e-6 * big);
|
alpar@1
|
1038 |
return;
|
alpar@1
|
1039 |
}
|
alpar@1
|
1040 |
#endif
|
alpar@1
|
1041 |
|
alpar@1
|
1042 |
static void back_subst(struct MIR *mir)
|
alpar@1
|
1043 |
{ /* back substitution of original bounds */
|
alpar@1
|
1044 |
int m = mir->m;
|
alpar@1
|
1045 |
int n = mir->n;
|
alpar@1
|
1046 |
int j, jj, k, kk;
|
alpar@1
|
1047 |
/* at first, restore bounds of integer variables (because on
|
alpar@1
|
1048 |
restoring variable bounds of continuous variables we need
|
alpar@1
|
1049 |
original, not shifted, bounds of integer variables) */
|
alpar@1
|
1050 |
for (j = 1; j <= mir->cut_vec->nnz; j++)
|
alpar@1
|
1051 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
1052 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
1053 |
if (!mir->isint[k]) continue; /* skip continuous */
|
alpar@1
|
1054 |
if (mir->subst[k] == 'L')
|
alpar@1
|
1055 |
{ /* x'[k] = x[k] - lb[k] */
|
alpar@1
|
1056 |
xassert(mir->lb[k] != -DBL_MAX);
|
alpar@1
|
1057 |
xassert(mir->vlb[k] == 0);
|
alpar@1
|
1058 |
mir->cut_rhs += mir->cut_vec->val[j] * mir->lb[k];
|
alpar@1
|
1059 |
}
|
alpar@1
|
1060 |
else if (mir->subst[k] == 'U')
|
alpar@1
|
1061 |
{ /* x'[k] = ub[k] - x[k] */
|
alpar@1
|
1062 |
xassert(mir->ub[k] != +DBL_MAX);
|
alpar@1
|
1063 |
xassert(mir->vub[k] == 0);
|
alpar@1
|
1064 |
mir->cut_rhs -= mir->cut_vec->val[j] * mir->ub[k];
|
alpar@1
|
1065 |
mir->cut_vec->val[j] = - mir->cut_vec->val[j];
|
alpar@1
|
1066 |
}
|
alpar@1
|
1067 |
else
|
alpar@1
|
1068 |
xassert(k != k);
|
alpar@1
|
1069 |
}
|
alpar@1
|
1070 |
/* now restore bounds of continuous variables */
|
alpar@1
|
1071 |
for (j = 1; j <= mir->cut_vec->nnz; j++)
|
alpar@1
|
1072 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
1073 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
1074 |
if (mir->isint[k]) continue; /* skip integer */
|
alpar@1
|
1075 |
if (mir->subst[k] == 'L')
|
alpar@1
|
1076 |
{ /* x'[k] = x[k] - (lower bound) */
|
alpar@1
|
1077 |
xassert(mir->lb[k] != -DBL_MAX);
|
alpar@1
|
1078 |
kk = mir->vlb[k];
|
alpar@1
|
1079 |
if (kk == 0)
|
alpar@1
|
1080 |
{ /* x'[k] = x[k] - lb[k] */
|
alpar@1
|
1081 |
mir->cut_rhs += mir->cut_vec->val[j] * mir->lb[k];
|
alpar@1
|
1082 |
}
|
alpar@1
|
1083 |
else
|
alpar@1
|
1084 |
{ /* x'[k] = x[k] - lb[k] * x[kk] */
|
alpar@1
|
1085 |
jj = mir->cut_vec->pos[kk];
|
alpar@1
|
1086 |
#if 0
|
alpar@1
|
1087 |
xassert(jj != 0);
|
alpar@1
|
1088 |
#else
|
alpar@1
|
1089 |
if (jj == 0)
|
alpar@1
|
1090 |
{ ios_set_vj(mir->cut_vec, kk, 1.0);
|
alpar@1
|
1091 |
jj = mir->cut_vec->pos[kk];
|
alpar@1
|
1092 |
xassert(jj != 0);
|
alpar@1
|
1093 |
mir->cut_vec->val[jj] = 0.0;
|
alpar@1
|
1094 |
}
|
alpar@1
|
1095 |
#endif
|
alpar@1
|
1096 |
mir->cut_vec->val[jj] -= mir->cut_vec->val[j] *
|
alpar@1
|
1097 |
mir->lb[k];
|
alpar@1
|
1098 |
}
|
alpar@1
|
1099 |
}
|
alpar@1
|
1100 |
else if (mir->subst[k] == 'U')
|
alpar@1
|
1101 |
{ /* x'[k] = (upper bound) - x[k] */
|
alpar@1
|
1102 |
xassert(mir->ub[k] != +DBL_MAX);
|
alpar@1
|
1103 |
kk = mir->vub[k];
|
alpar@1
|
1104 |
if (kk == 0)
|
alpar@1
|
1105 |
{ /* x'[k] = ub[k] - x[k] */
|
alpar@1
|
1106 |
mir->cut_rhs -= mir->cut_vec->val[j] * mir->ub[k];
|
alpar@1
|
1107 |
}
|
alpar@1
|
1108 |
else
|
alpar@1
|
1109 |
{ /* x'[k] = ub[k] * x[kk] - x[k] */
|
alpar@1
|
1110 |
jj = mir->cut_vec->pos[kk];
|
alpar@1
|
1111 |
if (jj == 0)
|
alpar@1
|
1112 |
{ ios_set_vj(mir->cut_vec, kk, 1.0);
|
alpar@1
|
1113 |
jj = mir->cut_vec->pos[kk];
|
alpar@1
|
1114 |
xassert(jj != 0);
|
alpar@1
|
1115 |
mir->cut_vec->val[jj] = 0.0;
|
alpar@1
|
1116 |
}
|
alpar@1
|
1117 |
mir->cut_vec->val[jj] += mir->cut_vec->val[j] *
|
alpar@1
|
1118 |
mir->ub[k];
|
alpar@1
|
1119 |
}
|
alpar@1
|
1120 |
mir->cut_vec->val[j] = - mir->cut_vec->val[j];
|
alpar@1
|
1121 |
}
|
alpar@1
|
1122 |
else
|
alpar@1
|
1123 |
xassert(k != k);
|
alpar@1
|
1124 |
}
|
alpar@1
|
1125 |
#if _MIR_DEBUG
|
alpar@1
|
1126 |
ios_check_vec(mir->cut_vec);
|
alpar@1
|
1127 |
#endif
|
alpar@1
|
1128 |
return;
|
alpar@1
|
1129 |
}
|
alpar@1
|
1130 |
|
alpar@1
|
1131 |
#if _MIR_DEBUG
|
alpar@1
|
1132 |
static void check_cut_row(struct MIR *mir, double r_best)
|
alpar@1
|
1133 |
{ /* check the cut after back bound substitution or elimination of
|
alpar@1
|
1134 |
auxiliary variables */
|
alpar@1
|
1135 |
int m = mir->m;
|
alpar@1
|
1136 |
int n = mir->n;
|
alpar@1
|
1137 |
int j, k;
|
alpar@1
|
1138 |
double r, big;
|
alpar@1
|
1139 |
/* compute the residual r = sum a[k] * x[k] - b and determine
|
alpar@1
|
1140 |
big = max(1, |a[k]|, |b|) */
|
alpar@1
|
1141 |
r = 0.0, big = 1.0;
|
alpar@1
|
1142 |
for (j = 1; j <= mir->cut_vec->nnz; j++)
|
alpar@1
|
1143 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
1144 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
1145 |
r += mir->cut_vec->val[j] * mir->x[k];
|
alpar@1
|
1146 |
if (big < fabs(mir->cut_vec->val[j]))
|
alpar@1
|
1147 |
big = fabs(mir->cut_vec->val[j]);
|
alpar@1
|
1148 |
}
|
alpar@1
|
1149 |
r -= mir->cut_rhs;
|
alpar@1
|
1150 |
if (big < fabs(mir->cut_rhs))
|
alpar@1
|
1151 |
big = fabs(mir->cut_rhs);
|
alpar@1
|
1152 |
/* the residual must be close to r_best */
|
alpar@1
|
1153 |
xassert(fabs(r - r_best) <= 1e-6 * big);
|
alpar@1
|
1154 |
return;
|
alpar@1
|
1155 |
}
|
alpar@1
|
1156 |
#endif
|
alpar@1
|
1157 |
|
alpar@1
|
1158 |
static void subst_aux_vars(glp_tree *tree, struct MIR *mir)
|
alpar@1
|
1159 |
{ /* final substitution to eliminate auxiliary variables */
|
alpar@1
|
1160 |
glp_prob *mip = tree->mip;
|
alpar@1
|
1161 |
int m = mir->m;
|
alpar@1
|
1162 |
int n = mir->n;
|
alpar@1
|
1163 |
GLPAIJ *aij;
|
alpar@1
|
1164 |
int j, k, kk, jj;
|
alpar@1
|
1165 |
for (j = mir->cut_vec->nnz; j >= 1; j--)
|
alpar@1
|
1166 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
1167 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
1168 |
if (k > m) continue; /* skip structurals */
|
alpar@1
|
1169 |
for (aij = mip->row[k]->ptr; aij != NULL; aij = aij->r_next)
|
alpar@1
|
1170 |
{ kk = m + aij->col->j; /* structural */
|
alpar@1
|
1171 |
jj = mir->cut_vec->pos[kk];
|
alpar@1
|
1172 |
if (jj == 0)
|
alpar@1
|
1173 |
{ ios_set_vj(mir->cut_vec, kk, 1.0);
|
alpar@1
|
1174 |
jj = mir->cut_vec->pos[kk];
|
alpar@1
|
1175 |
mir->cut_vec->val[jj] = 0.0;
|
alpar@1
|
1176 |
}
|
alpar@1
|
1177 |
mir->cut_vec->val[jj] += mir->cut_vec->val[j] * aij->val;
|
alpar@1
|
1178 |
}
|
alpar@1
|
1179 |
mir->cut_vec->val[j] = 0.0;
|
alpar@1
|
1180 |
}
|
alpar@1
|
1181 |
ios_clean_vec(mir->cut_vec, 0.0);
|
alpar@1
|
1182 |
return;
|
alpar@1
|
1183 |
}
|
alpar@1
|
1184 |
|
alpar@1
|
1185 |
static void add_cut(glp_tree *tree, struct MIR *mir)
|
alpar@1
|
1186 |
{ /* add constructed cut inequality to the cut pool */
|
alpar@1
|
1187 |
int m = mir->m;
|
alpar@1
|
1188 |
int n = mir->n;
|
alpar@1
|
1189 |
int j, k, len;
|
alpar@1
|
1190 |
int *ind = xcalloc(1+n, sizeof(int));
|
alpar@1
|
1191 |
double *val = xcalloc(1+n, sizeof(double));
|
alpar@1
|
1192 |
len = 0;
|
alpar@1
|
1193 |
for (j = mir->cut_vec->nnz; j >= 1; j--)
|
alpar@1
|
1194 |
{ k = mir->cut_vec->ind[j];
|
alpar@1
|
1195 |
xassert(m+1 <= k && k <= m+n);
|
alpar@1
|
1196 |
len++, ind[len] = k - m, val[len] = mir->cut_vec->val[j];
|
alpar@1
|
1197 |
}
|
alpar@1
|
1198 |
#if 0
|
alpar@1
|
1199 |
ios_add_cut_row(tree, pool, GLP_RF_MIR, len, ind, val, GLP_UP,
|
alpar@1
|
1200 |
mir->cut_rhs);
|
alpar@1
|
1201 |
#else
|
alpar@1
|
1202 |
glp_ios_add_row(tree, NULL, GLP_RF_MIR, 0, len, ind, val, GLP_UP,
|
alpar@1
|
1203 |
mir->cut_rhs);
|
alpar@1
|
1204 |
#endif
|
alpar@1
|
1205 |
xfree(ind);
|
alpar@1
|
1206 |
xfree(val);
|
alpar@1
|
1207 |
return;
|
alpar@1
|
1208 |
}
|
alpar@1
|
1209 |
|
alpar@1
|
1210 |
static int aggregate_row(glp_tree *tree, struct MIR *mir)
|
alpar@1
|
1211 |
{ /* try to aggregate another row */
|
alpar@1
|
1212 |
glp_prob *mip = tree->mip;
|
alpar@1
|
1213 |
int m = mir->m;
|
alpar@1
|
1214 |
int n = mir->n;
|
alpar@1
|
1215 |
GLPAIJ *aij;
|
alpar@1
|
1216 |
IOSVEC *v;
|
alpar@1
|
1217 |
int ii, j, jj, k, kk, kappa = 0, ret = 0;
|
alpar@1
|
1218 |
double d1, d2, d, d_max = 0.0;
|
alpar@1
|
1219 |
/* choose appropriate structural variable in the aggregated row
|
alpar@1
|
1220 |
to be substituted */
|
alpar@1
|
1221 |
for (j = 1; j <= mir->agg_vec->nnz; j++)
|
alpar@1
|
1222 |
{ k = mir->agg_vec->ind[j];
|
alpar@1
|
1223 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
1224 |
if (k <= m) continue; /* skip auxiliary var */
|
alpar@1
|
1225 |
if (mir->isint[k]) continue; /* skip integer var */
|
alpar@1
|
1226 |
if (fabs(mir->agg_vec->val[j]) < 0.001) continue;
|
alpar@1
|
1227 |
/* compute distance from x[k] to its lower bound */
|
alpar@1
|
1228 |
kk = mir->vlb[k];
|
alpar@1
|
1229 |
if (kk == 0)
|
alpar@1
|
1230 |
{ if (mir->lb[k] == -DBL_MAX)
|
alpar@1
|
1231 |
d1 = DBL_MAX;
|
alpar@1
|
1232 |
else
|
alpar@1
|
1233 |
d1 = mir->x[k] - mir->lb[k];
|
alpar@1
|
1234 |
}
|
alpar@1
|
1235 |
else
|
alpar@1
|
1236 |
{ xassert(1 <= kk && kk <= m+n);
|
alpar@1
|
1237 |
xassert(mir->isint[kk]);
|
alpar@1
|
1238 |
xassert(mir->lb[k] != -DBL_MAX);
|
alpar@1
|
1239 |
d1 = mir->x[k] - mir->lb[k] * mir->x[kk];
|
alpar@1
|
1240 |
}
|
alpar@1
|
1241 |
/* compute distance from x[k] to its upper bound */
|
alpar@1
|
1242 |
kk = mir->vub[k];
|
alpar@1
|
1243 |
if (kk == 0)
|
alpar@1
|
1244 |
{ if (mir->vub[k] == +DBL_MAX)
|
alpar@1
|
1245 |
d2 = DBL_MAX;
|
alpar@1
|
1246 |
else
|
alpar@1
|
1247 |
d2 = mir->ub[k] - mir->x[k];
|
alpar@1
|
1248 |
}
|
alpar@1
|
1249 |
else
|
alpar@1
|
1250 |
{ xassert(1 <= kk && kk <= m+n);
|
alpar@1
|
1251 |
xassert(mir->isint[kk]);
|
alpar@1
|
1252 |
xassert(mir->ub[k] != +DBL_MAX);
|
alpar@1
|
1253 |
d2 = mir->ub[k] * mir->x[kk] - mir->x[k];
|
alpar@1
|
1254 |
}
|
alpar@1
|
1255 |
/* x[k] cannot be free */
|
alpar@1
|
1256 |
xassert(d1 != DBL_MAX || d2 != DBL_MAX);
|
alpar@1
|
1257 |
/* d = min(d1, d2) */
|
alpar@1
|
1258 |
d = (d1 <= d2 ? d1 : d2);
|
alpar@1
|
1259 |
xassert(d != DBL_MAX);
|
alpar@1
|
1260 |
/* should not be close to corresponding bound */
|
alpar@1
|
1261 |
if (d < 0.001) continue;
|
alpar@1
|
1262 |
if (d_max < d) d_max = d, kappa = k;
|
alpar@1
|
1263 |
}
|
alpar@1
|
1264 |
if (kappa == 0)
|
alpar@1
|
1265 |
{ /* nothing chosen */
|
alpar@1
|
1266 |
ret = 1;
|
alpar@1
|
1267 |
goto done;
|
alpar@1
|
1268 |
}
|
alpar@1
|
1269 |
/* x[kappa] has been chosen */
|
alpar@1
|
1270 |
xassert(m+1 <= kappa && kappa <= m+n);
|
alpar@1
|
1271 |
xassert(!mir->isint[kappa]);
|
alpar@1
|
1272 |
/* find another row, which have not been used yet, to eliminate
|
alpar@1
|
1273 |
x[kappa] from the aggregated row */
|
alpar@1
|
1274 |
for (ii = 1; ii <= m; ii++)
|
alpar@1
|
1275 |
{ if (mir->skip[ii]) continue;
|
alpar@1
|
1276 |
for (aij = mip->row[ii]->ptr; aij != NULL; aij = aij->r_next)
|
alpar@1
|
1277 |
if (aij->col->j == kappa - m) break;
|
alpar@1
|
1278 |
if (aij != NULL && fabs(aij->val) >= 0.001) break;
|
alpar@1
|
1279 |
}
|
alpar@1
|
1280 |
if (ii > m)
|
alpar@1
|
1281 |
{ /* nothing found */
|
alpar@1
|
1282 |
ret = 2;
|
alpar@1
|
1283 |
goto done;
|
alpar@1
|
1284 |
}
|
alpar@1
|
1285 |
/* row ii has been found; include it in the aggregated list */
|
alpar@1
|
1286 |
mir->agg_cnt++;
|
alpar@1
|
1287 |
xassert(mir->agg_cnt <= MAXAGGR);
|
alpar@1
|
1288 |
mir->agg_row[mir->agg_cnt] = ii;
|
alpar@1
|
1289 |
mir->skip[ii] = 2;
|
alpar@1
|
1290 |
/* v := new row */
|
alpar@1
|
1291 |
v = ios_create_vec(m+n);
|
alpar@1
|
1292 |
ios_set_vj(v, ii, 1.0);
|
alpar@1
|
1293 |
for (aij = mip->row[ii]->ptr; aij != NULL; aij = aij->r_next)
|
alpar@1
|
1294 |
ios_set_vj(v, m + aij->col->j, - aij->val);
|
alpar@1
|
1295 |
#if _MIR_DEBUG
|
alpar@1
|
1296 |
ios_check_vec(v);
|
alpar@1
|
1297 |
#endif
|
alpar@1
|
1298 |
/* perform gaussian elimination to remove x[kappa] */
|
alpar@1
|
1299 |
j = mir->agg_vec->pos[kappa];
|
alpar@1
|
1300 |
xassert(j != 0);
|
alpar@1
|
1301 |
jj = v->pos[kappa];
|
alpar@1
|
1302 |
xassert(jj != 0);
|
alpar@1
|
1303 |
ios_linear_comb(mir->agg_vec,
|
alpar@1
|
1304 |
- mir->agg_vec->val[j] / v->val[jj], v);
|
alpar@1
|
1305 |
ios_delete_vec(v);
|
alpar@1
|
1306 |
ios_set_vj(mir->agg_vec, kappa, 0.0);
|
alpar@1
|
1307 |
#if _MIR_DEBUG
|
alpar@1
|
1308 |
ios_check_vec(mir->agg_vec);
|
alpar@1
|
1309 |
#endif
|
alpar@1
|
1310 |
done: return ret;
|
alpar@1
|
1311 |
}
|
alpar@1
|
1312 |
|
alpar@1
|
1313 |
void ios_mir_gen(glp_tree *tree, void *gen)
|
alpar@1
|
1314 |
{ /* main routine to generate MIR cuts */
|
alpar@1
|
1315 |
glp_prob *mip = tree->mip;
|
alpar@1
|
1316 |
struct MIR *mir = gen;
|
alpar@1
|
1317 |
int m = mir->m;
|
alpar@1
|
1318 |
int n = mir->n;
|
alpar@1
|
1319 |
int i;
|
alpar@1
|
1320 |
double r_best;
|
alpar@1
|
1321 |
xassert(mip->m >= m);
|
alpar@1
|
1322 |
xassert(mip->n == n);
|
alpar@1
|
1323 |
/* obtain current point */
|
alpar@1
|
1324 |
get_current_point(tree, mir);
|
alpar@1
|
1325 |
#if _MIR_DEBUG
|
alpar@1
|
1326 |
/* check current point */
|
alpar@1
|
1327 |
check_current_point(mir);
|
alpar@1
|
1328 |
#endif
|
alpar@1
|
1329 |
/* reset bound substitution flags */
|
alpar@1
|
1330 |
memset(&mir->subst[1], '?', m+n);
|
alpar@1
|
1331 |
/* try to generate a set of violated MIR cuts */
|
alpar@1
|
1332 |
for (i = 1; i <= m; i++)
|
alpar@1
|
1333 |
{ if (mir->skip[i]) continue;
|
alpar@1
|
1334 |
/* use original i-th row as initial aggregated constraint */
|
alpar@1
|
1335 |
initial_agg_row(tree, mir, i);
|
alpar@1
|
1336 |
loop: ;
|
alpar@1
|
1337 |
#if _MIR_DEBUG
|
alpar@1
|
1338 |
/* check aggregated row */
|
alpar@1
|
1339 |
check_agg_row(mir);
|
alpar@1
|
1340 |
#endif
|
alpar@1
|
1341 |
/* substitute fixed variables into aggregated constraint */
|
alpar@1
|
1342 |
subst_fixed_vars(mir);
|
alpar@1
|
1343 |
#if _MIR_DEBUG
|
alpar@1
|
1344 |
/* check aggregated row */
|
alpar@1
|
1345 |
check_agg_row(mir);
|
alpar@1
|
1346 |
#endif
|
alpar@1
|
1347 |
#if _MIR_DEBUG
|
alpar@1
|
1348 |
/* check bound substitution flags */
|
alpar@1
|
1349 |
{ int k;
|
alpar@1
|
1350 |
for (k = 1; k <= m+n; k++)
|
alpar@1
|
1351 |
xassert(mir->subst[k] == '?');
|
alpar@1
|
1352 |
}
|
alpar@1
|
1353 |
#endif
|
alpar@1
|
1354 |
/* apply bound substitution heuristic */
|
alpar@1
|
1355 |
bound_subst_heur(mir);
|
alpar@1
|
1356 |
/* substitute bounds and build modified constraint */
|
alpar@1
|
1357 |
build_mod_row(mir);
|
alpar@1
|
1358 |
#if _MIR_DEBUG
|
alpar@1
|
1359 |
/* check modified row */
|
alpar@1
|
1360 |
check_mod_row(mir);
|
alpar@1
|
1361 |
#endif
|
alpar@1
|
1362 |
/* try to generate violated c-MIR cut for modified row */
|
alpar@1
|
1363 |
r_best = generate(mir);
|
alpar@1
|
1364 |
if (r_best > 0.0)
|
alpar@1
|
1365 |
{ /* success */
|
alpar@1
|
1366 |
#if _MIR_DEBUG
|
alpar@1
|
1367 |
/* check raw cut before back bound substitution */
|
alpar@1
|
1368 |
check_raw_cut(mir, r_best);
|
alpar@1
|
1369 |
#endif
|
alpar@1
|
1370 |
/* back substitution of original bounds */
|
alpar@1
|
1371 |
back_subst(mir);
|
alpar@1
|
1372 |
#if _MIR_DEBUG
|
alpar@1
|
1373 |
/* check the cut after back bound substitution */
|
alpar@1
|
1374 |
check_cut_row(mir, r_best);
|
alpar@1
|
1375 |
#endif
|
alpar@1
|
1376 |
/* final substitution to eliminate auxiliary variables */
|
alpar@1
|
1377 |
subst_aux_vars(tree, mir);
|
alpar@1
|
1378 |
#if _MIR_DEBUG
|
alpar@1
|
1379 |
/* check the cut after elimination of auxiliaries */
|
alpar@1
|
1380 |
check_cut_row(mir, r_best);
|
alpar@1
|
1381 |
#endif
|
alpar@1
|
1382 |
/* add constructed cut inequality to the cut pool */
|
alpar@1
|
1383 |
add_cut(tree, mir);
|
alpar@1
|
1384 |
}
|
alpar@1
|
1385 |
/* reset bound substitution flags */
|
alpar@1
|
1386 |
{ int j, k;
|
alpar@1
|
1387 |
for (j = 1; j <= mir->mod_vec->nnz; j++)
|
alpar@1
|
1388 |
{ k = mir->mod_vec->ind[j];
|
alpar@1
|
1389 |
xassert(1 <= k && k <= m+n);
|
alpar@1
|
1390 |
xassert(mir->subst[k] != '?');
|
alpar@1
|
1391 |
mir->subst[k] = '?';
|
alpar@1
|
1392 |
}
|
alpar@1
|
1393 |
}
|
alpar@1
|
1394 |
if (r_best == 0.0)
|
alpar@1
|
1395 |
{ /* failure */
|
alpar@1
|
1396 |
if (mir->agg_cnt < MAXAGGR)
|
alpar@1
|
1397 |
{ /* try to aggregate another row */
|
alpar@1
|
1398 |
if (aggregate_row(tree, mir) == 0) goto loop;
|
alpar@1
|
1399 |
}
|
alpar@1
|
1400 |
}
|
alpar@1
|
1401 |
/* unmark rows used in the aggregated constraint */
|
alpar@1
|
1402 |
{ int k, ii;
|
alpar@1
|
1403 |
for (k = 1; k <= mir->agg_cnt; k++)
|
alpar@1
|
1404 |
{ ii = mir->agg_row[k];
|
alpar@1
|
1405 |
xassert(1 <= ii && ii <= m);
|
alpar@1
|
1406 |
xassert(mir->skip[ii] == 2);
|
alpar@1
|
1407 |
mir->skip[ii] = 0;
|
alpar@1
|
1408 |
}
|
alpar@1
|
1409 |
}
|
alpar@1
|
1410 |
}
|
alpar@1
|
1411 |
return;
|
alpar@1
|
1412 |
}
|
alpar@1
|
1413 |
|
alpar@1
|
1414 |
/***********************************************************************
|
alpar@1
|
1415 |
* NAME
|
alpar@1
|
1416 |
*
|
alpar@1
|
1417 |
* ios_mir_term - terminate MIR cut generator
|
alpar@1
|
1418 |
*
|
alpar@1
|
1419 |
* SYNOPSIS
|
alpar@1
|
1420 |
*
|
alpar@1
|
1421 |
* #include "glpios.h"
|
alpar@1
|
1422 |
* void ios_mir_term(void *gen);
|
alpar@1
|
1423 |
*
|
alpar@1
|
1424 |
* DESCRIPTION
|
alpar@1
|
1425 |
*
|
alpar@1
|
1426 |
* The routine ios_mir_term deletes the MIR cut generator working area
|
alpar@1
|
1427 |
* freeing all the memory allocated to it. */
|
alpar@1
|
1428 |
|
alpar@1
|
1429 |
void ios_mir_term(void *gen)
|
alpar@1
|
1430 |
{ struct MIR *mir = gen;
|
alpar@1
|
1431 |
xfree(mir->skip);
|
alpar@1
|
1432 |
xfree(mir->isint);
|
alpar@1
|
1433 |
xfree(mir->lb);
|
alpar@1
|
1434 |
xfree(mir->vlb);
|
alpar@1
|
1435 |
xfree(mir->ub);
|
alpar@1
|
1436 |
xfree(mir->vub);
|
alpar@1
|
1437 |
xfree(mir->x);
|
alpar@1
|
1438 |
xfree(mir->agg_row);
|
alpar@1
|
1439 |
ios_delete_vec(mir->agg_vec);
|
alpar@1
|
1440 |
xfree(mir->subst);
|
alpar@1
|
1441 |
ios_delete_vec(mir->mod_vec);
|
alpar@1
|
1442 |
ios_delete_vec(mir->cut_vec);
|
alpar@1
|
1443 |
xfree(mir);
|
alpar@1
|
1444 |
return;
|
alpar@1
|
1445 |
}
|
alpar@1
|
1446 |
|
alpar@1
|
1447 |
/* eof */
|