alpar@1
|
1 |
/* glpios12.c (node selection heuristics) */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpios.h"
|
alpar@1
|
26 |
|
alpar@1
|
27 |
/***********************************************************************
|
alpar@1
|
28 |
* NAME
|
alpar@1
|
29 |
*
|
alpar@1
|
30 |
* ios_choose_node - select subproblem to continue the search
|
alpar@1
|
31 |
*
|
alpar@1
|
32 |
* SYNOPSIS
|
alpar@1
|
33 |
*
|
alpar@1
|
34 |
* #include "glpios.h"
|
alpar@1
|
35 |
* int ios_choose_node(glp_tree *T);
|
alpar@1
|
36 |
*
|
alpar@1
|
37 |
* DESCRIPTION
|
alpar@1
|
38 |
*
|
alpar@1
|
39 |
* The routine ios_choose_node selects a subproblem from the active
|
alpar@1
|
40 |
* list to continue the search. The choice depends on the backtracking
|
alpar@1
|
41 |
* technique option.
|
alpar@1
|
42 |
*
|
alpar@1
|
43 |
* RETURNS
|
alpar@1
|
44 |
*
|
alpar@1
|
45 |
* The routine ios_choose_node return the reference number of the
|
alpar@1
|
46 |
* subproblem selected. */
|
alpar@1
|
47 |
|
alpar@1
|
48 |
static int most_feas(glp_tree *T);
|
alpar@1
|
49 |
static int best_proj(glp_tree *T);
|
alpar@1
|
50 |
static int best_node(glp_tree *T);
|
alpar@1
|
51 |
|
alpar@1
|
52 |
int ios_choose_node(glp_tree *T)
|
alpar@1
|
53 |
{ int p;
|
alpar@1
|
54 |
if (T->parm->bt_tech == GLP_BT_DFS)
|
alpar@1
|
55 |
{ /* depth first search */
|
alpar@1
|
56 |
xassert(T->tail != NULL);
|
alpar@1
|
57 |
p = T->tail->p;
|
alpar@1
|
58 |
}
|
alpar@1
|
59 |
else if (T->parm->bt_tech == GLP_BT_BFS)
|
alpar@1
|
60 |
{ /* breadth first search */
|
alpar@1
|
61 |
xassert(T->head != NULL);
|
alpar@1
|
62 |
p = T->head->p;
|
alpar@1
|
63 |
}
|
alpar@1
|
64 |
else if (T->parm->bt_tech == GLP_BT_BLB)
|
alpar@1
|
65 |
{ /* select node with best local bound */
|
alpar@1
|
66 |
p = best_node(T);
|
alpar@1
|
67 |
}
|
alpar@1
|
68 |
else if (T->parm->bt_tech == GLP_BT_BPH)
|
alpar@1
|
69 |
{ if (T->mip->mip_stat == GLP_UNDEF)
|
alpar@1
|
70 |
{ /* "most integer feasible" subproblem */
|
alpar@1
|
71 |
p = most_feas(T);
|
alpar@1
|
72 |
}
|
alpar@1
|
73 |
else
|
alpar@1
|
74 |
{ /* best projection heuristic */
|
alpar@1
|
75 |
p = best_proj(T);
|
alpar@1
|
76 |
}
|
alpar@1
|
77 |
}
|
alpar@1
|
78 |
else
|
alpar@1
|
79 |
xassert(T != T);
|
alpar@1
|
80 |
return p;
|
alpar@1
|
81 |
}
|
alpar@1
|
82 |
|
alpar@1
|
83 |
static int most_feas(glp_tree *T)
|
alpar@1
|
84 |
{ /* select subproblem whose parent has minimal sum of integer
|
alpar@1
|
85 |
infeasibilities */
|
alpar@1
|
86 |
IOSNPD *node;
|
alpar@1
|
87 |
int p;
|
alpar@1
|
88 |
double best;
|
alpar@1
|
89 |
p = 0, best = DBL_MAX;
|
alpar@1
|
90 |
for (node = T->head; node != NULL; node = node->next)
|
alpar@1
|
91 |
{ xassert(node->up != NULL);
|
alpar@1
|
92 |
if (best > node->up->ii_sum)
|
alpar@1
|
93 |
p = node->p, best = node->up->ii_sum;
|
alpar@1
|
94 |
}
|
alpar@1
|
95 |
return p;
|
alpar@1
|
96 |
}
|
alpar@1
|
97 |
|
alpar@1
|
98 |
static int best_proj(glp_tree *T)
|
alpar@1
|
99 |
{ /* select subproblem using the best projection heuristic */
|
alpar@1
|
100 |
IOSNPD *root, *node;
|
alpar@1
|
101 |
int p;
|
alpar@1
|
102 |
double best, deg, obj;
|
alpar@1
|
103 |
/* the global bound must exist */
|
alpar@1
|
104 |
xassert(T->mip->mip_stat == GLP_FEAS);
|
alpar@1
|
105 |
/* obtain pointer to the root node, which must exist */
|
alpar@1
|
106 |
root = T->slot[1].node;
|
alpar@1
|
107 |
xassert(root != NULL);
|
alpar@1
|
108 |
/* deg estimates degradation of the objective function per unit
|
alpar@1
|
109 |
of the sum of integer infeasibilities */
|
alpar@1
|
110 |
xassert(root->ii_sum > 0.0);
|
alpar@1
|
111 |
deg = (T->mip->mip_obj - root->bound) / root->ii_sum;
|
alpar@1
|
112 |
/* nothing has been selected so far */
|
alpar@1
|
113 |
p = 0, best = DBL_MAX;
|
alpar@1
|
114 |
/* walk through the list of active subproblems */
|
alpar@1
|
115 |
for (node = T->head; node != NULL; node = node->next)
|
alpar@1
|
116 |
{ xassert(node->up != NULL);
|
alpar@1
|
117 |
/* obj estimates optimal objective value if the sum of integer
|
alpar@1
|
118 |
infeasibilities were zero */
|
alpar@1
|
119 |
obj = node->up->bound + deg * node->up->ii_sum;
|
alpar@1
|
120 |
if (T->mip->dir == GLP_MAX) obj = - obj;
|
alpar@1
|
121 |
/* select the subproblem which has the best estimated optimal
|
alpar@1
|
122 |
objective value */
|
alpar@1
|
123 |
if (best > obj) p = node->p, best = obj;
|
alpar@1
|
124 |
}
|
alpar@1
|
125 |
return p;
|
alpar@1
|
126 |
}
|
alpar@1
|
127 |
|
alpar@1
|
128 |
static int best_node(glp_tree *T)
|
alpar@1
|
129 |
{ /* select subproblem with best local bound */
|
alpar@1
|
130 |
IOSNPD *node, *best = NULL;
|
alpar@1
|
131 |
double bound, eps;
|
alpar@1
|
132 |
switch (T->mip->dir)
|
alpar@1
|
133 |
{ case GLP_MIN:
|
alpar@1
|
134 |
bound = +DBL_MAX;
|
alpar@1
|
135 |
for (node = T->head; node != NULL; node = node->next)
|
alpar@1
|
136 |
if (bound > node->bound) bound = node->bound;
|
alpar@1
|
137 |
xassert(bound != +DBL_MAX);
|
alpar@1
|
138 |
eps = 0.001 * (1.0 + fabs(bound));
|
alpar@1
|
139 |
for (node = T->head; node != NULL; node = node->next)
|
alpar@1
|
140 |
{ if (node->bound <= bound + eps)
|
alpar@1
|
141 |
{ xassert(node->up != NULL);
|
alpar@1
|
142 |
if (best == NULL ||
|
alpar@1
|
143 |
#if 1
|
alpar@1
|
144 |
best->up->ii_sum > node->up->ii_sum) best = node;
|
alpar@1
|
145 |
#else
|
alpar@1
|
146 |
best->lp_obj > node->lp_obj) best = node;
|
alpar@1
|
147 |
#endif
|
alpar@1
|
148 |
}
|
alpar@1
|
149 |
}
|
alpar@1
|
150 |
break;
|
alpar@1
|
151 |
case GLP_MAX:
|
alpar@1
|
152 |
bound = -DBL_MAX;
|
alpar@1
|
153 |
for (node = T->head; node != NULL; node = node->next)
|
alpar@1
|
154 |
if (bound < node->bound) bound = node->bound;
|
alpar@1
|
155 |
xassert(bound != -DBL_MAX);
|
alpar@1
|
156 |
eps = 0.001 * (1.0 + fabs(bound));
|
alpar@1
|
157 |
for (node = T->head; node != NULL; node = node->next)
|
alpar@1
|
158 |
{ if (node->bound >= bound - eps)
|
alpar@1
|
159 |
{ xassert(node->up != NULL);
|
alpar@1
|
160 |
if (best == NULL ||
|
alpar@1
|
161 |
#if 1
|
alpar@1
|
162 |
best->up->ii_sum > node->up->ii_sum) best = node;
|
alpar@1
|
163 |
#else
|
alpar@1
|
164 |
best->lp_obj < node->lp_obj) best = node;
|
alpar@1
|
165 |
#endif
|
alpar@1
|
166 |
}
|
alpar@1
|
167 |
}
|
alpar@1
|
168 |
break;
|
alpar@1
|
169 |
default:
|
alpar@1
|
170 |
xassert(T != T);
|
alpar@1
|
171 |
}
|
alpar@1
|
172 |
xassert(best != NULL);
|
alpar@1
|
173 |
return best->p;
|
alpar@1
|
174 |
}
|
alpar@1
|
175 |
|
alpar@1
|
176 |
/* eof */
|