src/glpluf.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
alpar@1
     1
/* glpluf.h (LU-factorization) */
alpar@1
     2
alpar@1
     3
/***********************************************************************
alpar@1
     4
*  This code is part of GLPK (GNU Linear Programming Kit).
alpar@1
     5
*
alpar@1
     6
*  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
alpar@1
     7
*  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
alpar@1
     8
*  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
alpar@1
     9
*  E-mail: <mao@gnu.org>.
alpar@1
    10
*
alpar@1
    11
*  GLPK is free software: you can redistribute it and/or modify it
alpar@1
    12
*  under the terms of the GNU General Public License as published by
alpar@1
    13
*  the Free Software Foundation, either version 3 of the License, or
alpar@1
    14
*  (at your option) any later version.
alpar@1
    15
*
alpar@1
    16
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
alpar@1
    17
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
alpar@1
    18
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
alpar@1
    19
*  License for more details.
alpar@1
    20
*
alpar@1
    21
*  You should have received a copy of the GNU General Public License
alpar@1
    22
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
alpar@1
    23
***********************************************************************/
alpar@1
    24
alpar@1
    25
#ifndef GLPLUF_H
alpar@1
    26
#define GLPLUF_H
alpar@1
    27
alpar@1
    28
/***********************************************************************
alpar@1
    29
*  The structure LUF defines LU-factorization of a square matrix A and
alpar@1
    30
*  is the following quartet:
alpar@1
    31
*
alpar@1
    32
*     [A] = (F, V, P, Q),                                            (1)
alpar@1
    33
*
alpar@1
    34
*  where F and V are such matrices that
alpar@1
    35
*
alpar@1
    36
*     A = F * V,                                                     (2)
alpar@1
    37
*
alpar@1
    38
*  and P and Q are such permutation matrices that the matrix
alpar@1
    39
*
alpar@1
    40
*     L = P * F * inv(P)                                             (3)
alpar@1
    41
*
alpar@1
    42
*  is lower triangular with unity diagonal, and the matrix
alpar@1
    43
*
alpar@1
    44
*     U = P * V * Q                                                  (4)
alpar@1
    45
*
alpar@1
    46
*  is upper triangular. All the matrices have the order n.
alpar@1
    47
*
alpar@1
    48
*  Matrices F and V are stored in row- and column-wise sparse format
alpar@1
    49
*  as row and column linked lists of non-zero elements. Unity elements
alpar@1
    50
*  on the main diagonal of matrix F are not stored. Pivot elements of
alpar@1
    51
*  matrix V (which correspond to diagonal elements of matrix U) are
alpar@1
    52
*  stored separately in an ordinary array.
alpar@1
    53
*
alpar@1
    54
*  Permutation matrices P and Q are stored in ordinary arrays in both
alpar@1
    55
*  row- and column-like formats.
alpar@1
    56
*
alpar@1
    57
*  Matrices L and U are completely defined by matrices F, V, P, and Q
alpar@1
    58
*  and therefore not stored explicitly.
alpar@1
    59
*
alpar@1
    60
*  The factorization (1)-(4) is a version of LU-factorization. Indeed,
alpar@1
    61
*  from (3) and (4) it follows that:
alpar@1
    62
*
alpar@1
    63
*     F = inv(P) * L * P,
alpar@1
    64
*
alpar@1
    65
*     U = inv(P) * U * inv(Q),
alpar@1
    66
*
alpar@1
    67
*  and substitution into (2) leads to:
alpar@1
    68
*
alpar@1
    69
*     A = F * V = inv(P) * L * U * inv(Q).
alpar@1
    70
*
alpar@1
    71
*  For more details see the program documentation. */
alpar@1
    72
alpar@1
    73
typedef struct LUF LUF;
alpar@1
    74
alpar@1
    75
struct LUF
alpar@1
    76
{     /* LU-factorization of a square matrix */
alpar@1
    77
      int n_max;
alpar@1
    78
      /* maximal value of n (increased automatically, if necessary) */
alpar@1
    79
      int n;
alpar@1
    80
      /* the order of matrices A, F, V, P, Q */
alpar@1
    81
      int valid;
alpar@1
    82
      /* the factorization is valid only if this flag is set */
alpar@1
    83
      /*--------------------------------------------------------------*/
alpar@1
    84
      /* matrix F in row-wise format */
alpar@1
    85
      int *fr_ptr; /* int fr_ptr[1+n_max]; */
alpar@1
    86
      /* fr_ptr[i], i = 1,...,n, is a pointer to the first element of
alpar@1
    87
         i-th row in SVA */
alpar@1
    88
      int *fr_len; /* int fr_len[1+n_max]; */
alpar@1
    89
      /* fr_len[i], i = 1,...,n, is the number of elements in i-th row
alpar@1
    90
         (except unity diagonal element) */
alpar@1
    91
      /*--------------------------------------------------------------*/
alpar@1
    92
      /* matrix F in column-wise format */
alpar@1
    93
      int *fc_ptr; /* int fc_ptr[1+n_max]; */
alpar@1
    94
      /* fc_ptr[j], j = 1,...,n, is a pointer to the first element of
alpar@1
    95
         j-th column in SVA */
alpar@1
    96
      int *fc_len; /* int fc_len[1+n_max]; */
alpar@1
    97
      /* fc_len[j], j = 1,...,n, is the number of elements in j-th
alpar@1
    98
         column (except unity diagonal element) */
alpar@1
    99
      /*--------------------------------------------------------------*/
alpar@1
   100
      /* matrix V in row-wise format */
alpar@1
   101
      int *vr_ptr; /* int vr_ptr[1+n_max]; */
alpar@1
   102
      /* vr_ptr[i], i = 1,...,n, is a pointer to the first element of
alpar@1
   103
         i-th row in SVA */
alpar@1
   104
      int *vr_len; /* int vr_len[1+n_max]; */
alpar@1
   105
      /* vr_len[i], i = 1,...,n, is the number of elements in i-th row
alpar@1
   106
         (except pivot element) */
alpar@1
   107
      int *vr_cap; /* int vr_cap[1+n_max]; */
alpar@1
   108
      /* vr_cap[i], i = 1,...,n, is the capacity of i-th row, i.e.
alpar@1
   109
         maximal number of elements which can be stored in the row
alpar@1
   110
         without relocating it, vr_cap[i] >= vr_len[i] */
alpar@1
   111
      double *vr_piv; /* double vr_piv[1+n_max]; */
alpar@1
   112
      /* vr_piv[p], p = 1,...,n, is the pivot element v[p,q] which
alpar@1
   113
         corresponds to a diagonal element of matrix U = P*V*Q */
alpar@1
   114
      /*--------------------------------------------------------------*/
alpar@1
   115
      /* matrix V in column-wise format */
alpar@1
   116
      int *vc_ptr; /* int vc_ptr[1+n_max]; */
alpar@1
   117
      /* vc_ptr[j], j = 1,...,n, is a pointer to the first element of
alpar@1
   118
         j-th column in SVA */
alpar@1
   119
      int *vc_len; /* int vc_len[1+n_max]; */
alpar@1
   120
      /* vc_len[j], j = 1,...,n, is the number of elements in j-th
alpar@1
   121
         column (except pivot element) */
alpar@1
   122
      int *vc_cap; /* int vc_cap[1+n_max]; */
alpar@1
   123
      /* vc_cap[j], j = 1,...,n, is the capacity of j-th column, i.e.
alpar@1
   124
         maximal number of elements which can be stored in the column
alpar@1
   125
         without relocating it, vc_cap[j] >= vc_len[j] */
alpar@1
   126
      /*--------------------------------------------------------------*/
alpar@1
   127
      /* matrix P */
alpar@1
   128
      int *pp_row; /* int pp_row[1+n_max]; */
alpar@1
   129
      /* pp_row[i] = j means that P[i,j] = 1 */
alpar@1
   130
      int *pp_col; /* int pp_col[1+n_max]; */
alpar@1
   131
      /* pp_col[j] = i means that P[i,j] = 1 */
alpar@1
   132
      /* if i-th row or column of matrix F is i'-th row or column of
alpar@1
   133
         matrix L, or if i-th row of matrix V is i'-th row of matrix U,
alpar@1
   134
         then pp_row[i'] = i and pp_col[i] = i' */
alpar@1
   135
      /*--------------------------------------------------------------*/
alpar@1
   136
      /* matrix Q */
alpar@1
   137
      int *qq_row; /* int qq_row[1+n_max]; */
alpar@1
   138
      /* qq_row[i] = j means that Q[i,j] = 1 */
alpar@1
   139
      int *qq_col; /* int qq_col[1+n_max]; */
alpar@1
   140
      /* qq_col[j] = i means that Q[i,j] = 1 */
alpar@1
   141
      /* if j-th column of matrix V is j'-th column of matrix U, then
alpar@1
   142
         qq_row[j] = j' and qq_col[j'] = j */
alpar@1
   143
      /*--------------------------------------------------------------*/
alpar@1
   144
      /* the Sparse Vector Area (SVA) is a set of locations used to
alpar@1
   145
         store sparse vectors representing rows and columns of matrices
alpar@1
   146
         F and V; each location is a doublet (ind, val), where ind is
alpar@1
   147
         an index, and val is a numerical value of a sparse vector
alpar@1
   148
         element; in the whole each sparse vector is a set of adjacent
alpar@1
   149
         locations defined by a pointer to the first element and the
alpar@1
   150
         number of elements; these pointer and number are stored in the
alpar@1
   151
         corresponding matrix data structure (see above); the left part
alpar@1
   152
         of SVA is used to store rows and columns of matrix V, and its
alpar@1
   153
         right part is used to store rows and columns of matrix F; the
alpar@1
   154
         middle part of SVA contains free (unused) locations */
alpar@1
   155
      int sv_size;
alpar@1
   156
      /* the size of SVA, in locations; all locations are numbered by
alpar@1
   157
         integers 1, ..., n, and location 0 is not used; if necessary,
alpar@1
   158
         the SVA size is automatically increased */
alpar@1
   159
      int sv_beg, sv_end;
alpar@1
   160
      /* SVA partitioning pointers:
alpar@1
   161
         locations from 1 to sv_beg-1 belong to the left part
alpar@1
   162
         locations from sv_beg to sv_end-1 belong to the middle part
alpar@1
   163
         locations from sv_end to sv_size belong to the right part
alpar@1
   164
         the size of the middle part is (sv_end - sv_beg) */
alpar@1
   165
      int *sv_ind; /* sv_ind[1+sv_size]; */
alpar@1
   166
      /* sv_ind[k], 1 <= k <= sv_size, is the index field of k-th
alpar@1
   167
         location */
alpar@1
   168
      double *sv_val; /* sv_val[1+sv_size]; */
alpar@1
   169
      /* sv_val[k], 1 <= k <= sv_size, is the value field of k-th
alpar@1
   170
         location */
alpar@1
   171
      /*--------------------------------------------------------------*/
alpar@1
   172
      /* in order to efficiently defragment the left part of SVA there
alpar@1
   173
         is a doubly linked list of rows and columns of matrix V, where
alpar@1
   174
         rows are numbered by 1, ..., n, while columns are numbered by
alpar@1
   175
         n+1, ..., n+n, that allows uniquely identifying each row and
alpar@1
   176
         column of V by only one integer; in this list rows and columns
alpar@1
   177
         are ordered by ascending their pointers vr_ptr and vc_ptr */
alpar@1
   178
      int sv_head;
alpar@1
   179
      /* the number of leftmost row/column */
alpar@1
   180
      int sv_tail;
alpar@1
   181
      /* the number of rightmost row/column */
alpar@1
   182
      int *sv_prev; /* int sv_prev[1+n_max+n_max]; */
alpar@1
   183
      /* sv_prev[k], k = 1,...,n+n, is the number of a row/column which
alpar@1
   184
         precedes k-th row/column */
alpar@1
   185
      int *sv_next; /* int sv_next[1+n_max+n_max]; */
alpar@1
   186
      /* sv_next[k], k = 1,...,n+n, is the number of a row/column which
alpar@1
   187
         succedes k-th row/column */
alpar@1
   188
      /*--------------------------------------------------------------*/
alpar@1
   189
      /* working segment (used only during factorization) */
alpar@1
   190
      double *vr_max; /* int vr_max[1+n_max]; */
alpar@1
   191
      /* vr_max[i], 1 <= i <= n, is used only if i-th row of matrix V
alpar@1
   192
         is active (i.e. belongs to the active submatrix), and is the
alpar@1
   193
         largest magnitude of elements in i-th row; if vr_max[i] < 0,
alpar@1
   194
         the largest magnitude is not known yet and should be computed
alpar@1
   195
         by the pivoting routine */
alpar@1
   196
      /*--------------------------------------------------------------*/
alpar@1
   197
      /* in order to efficiently implement Markowitz strategy and Duff
alpar@1
   198
         search technique there are two families {R[0], R[1], ..., R[n]}
alpar@1
   199
         and {C[0], C[1], ..., C[n]}; member R[k] is the set of active
alpar@1
   200
         rows of matrix V, which have k non-zeros, and member C[k] is
alpar@1
   201
         the set of active columns of V, which have k non-zeros in the
alpar@1
   202
         active submatrix (i.e. in the active rows); each set R[k] and
alpar@1
   203
         C[k] is implemented as a separate doubly linked list */
alpar@1
   204
      int *rs_head; /* int rs_head[1+n_max]; */
alpar@1
   205
      /* rs_head[k], 0 <= k <= n, is the number of first active row,
alpar@1
   206
         which has k non-zeros */
alpar@1
   207
      int *rs_prev; /* int rs_prev[1+n_max]; */
alpar@1
   208
      /* rs_prev[i], 1 <= i <= n, is the number of previous row, which
alpar@1
   209
         has the same number of non-zeros as i-th row */
alpar@1
   210
      int *rs_next; /* int rs_next[1+n_max]; */
alpar@1
   211
      /* rs_next[i], 1 <= i <= n, is the number of next row, which has
alpar@1
   212
         the same number of non-zeros as i-th row */
alpar@1
   213
      int *cs_head; /* int cs_head[1+n_max]; */
alpar@1
   214
      /* cs_head[k], 0 <= k <= n, is the number of first active column,
alpar@1
   215
         which has k non-zeros (in the active rows) */
alpar@1
   216
      int *cs_prev; /* int cs_prev[1+n_max]; */
alpar@1
   217
      /* cs_prev[j], 1 <= j <= n, is the number of previous column,
alpar@1
   218
         which has the same number of non-zeros (in the active rows) as
alpar@1
   219
         j-th column */
alpar@1
   220
      int *cs_next; /* int cs_next[1+n_max]; */
alpar@1
   221
      /* cs_next[j], 1 <= j <= n, is the number of next column, which
alpar@1
   222
         has the same number of non-zeros (in the active rows) as j-th
alpar@1
   223
         column */
alpar@1
   224
      /* (end of working segment) */
alpar@1
   225
      /*--------------------------------------------------------------*/
alpar@1
   226
      /* working arrays */
alpar@1
   227
      int *flag; /* int flag[1+n_max]; */
alpar@1
   228
      /* integer working array */
alpar@1
   229
      double *work; /* double work[1+n_max]; */
alpar@1
   230
      /* floating-point working array */
alpar@1
   231
      /*--------------------------------------------------------------*/
alpar@1
   232
      /* control parameters */
alpar@1
   233
      int new_sva;
alpar@1
   234
      /* new required size of the sparse vector area, in locations; set
alpar@1
   235
         automatically by the factorizing routine */
alpar@1
   236
      double piv_tol;
alpar@1
   237
      /* threshold pivoting tolerance, 0 < piv_tol < 1; element v[i,j]
alpar@1
   238
         of the active submatrix fits to be pivot if it satisfies to the
alpar@1
   239
         stability criterion |v[i,j]| >= piv_tol * max |v[i,*]|, i.e. if
alpar@1
   240
         it is not very small in the magnitude among other elements in
alpar@1
   241
         the same row; decreasing this parameter gives better sparsity
alpar@1
   242
         at the expense of numerical accuracy and vice versa */
alpar@1
   243
      int piv_lim;
alpar@1
   244
      /* maximal allowable number of pivot candidates to be considered;
alpar@1
   245
         if piv_lim pivot candidates have been considered, the pivoting
alpar@1
   246
         routine terminates the search with the best candidate found */
alpar@1
   247
      int suhl;
alpar@1
   248
      /* if this flag is set, the pivoting routine applies a heuristic
alpar@1
   249
         proposed by Uwe Suhl: if a column of the active submatrix has
alpar@1
   250
         no eligible pivot candidates (i.e. all its elements do not
alpar@1
   251
         satisfy to the stability criterion), the routine excludes it
alpar@1
   252
         from futher consideration until it becomes column singleton;
alpar@1
   253
         in many cases this allows reducing the time needed for pivot
alpar@1
   254
         searching */
alpar@1
   255
      double eps_tol;
alpar@1
   256
      /* epsilon tolerance; each element of the active submatrix, whose
alpar@1
   257
         magnitude is less than eps_tol, is replaced by exact zero */
alpar@1
   258
      double max_gro;
alpar@1
   259
      /* maximal allowable growth of elements of matrix V during all
alpar@1
   260
         the factorization process; if on some eliminaion step the ratio
alpar@1
   261
         big_v / max_a (see below) becomes greater than max_gro, matrix
alpar@1
   262
         A is considered as ill-conditioned (assuming that the pivoting
alpar@1
   263
         tolerance piv_tol has an appropriate value) */
alpar@1
   264
      /*--------------------------------------------------------------*/
alpar@1
   265
      /* some statistics */
alpar@1
   266
      int nnz_a;
alpar@1
   267
      /* the number of non-zeros in matrix A */
alpar@1
   268
      int nnz_f;
alpar@1
   269
      /* the number of non-zeros in matrix F (except diagonal elements,
alpar@1
   270
         which are not stored) */
alpar@1
   271
      int nnz_v;
alpar@1
   272
      /* the number of non-zeros in matrix V (except its pivot elements,
alpar@1
   273
         which are stored in a separate array) */
alpar@1
   274
      double max_a;
alpar@1
   275
      /* the largest magnitude of elements of matrix A */
alpar@1
   276
      double big_v;
alpar@1
   277
      /* the largest magnitude of elements of matrix V appeared in the
alpar@1
   278
         active submatrix during all the factorization process */
alpar@1
   279
      int rank;
alpar@1
   280
      /* estimated rank of matrix A */
alpar@1
   281
};
alpar@1
   282
alpar@1
   283
/* return codes: */
alpar@1
   284
#define LUF_ESING    1  /* singular matrix */
alpar@1
   285
#define LUF_ECOND    2  /* ill-conditioned matrix */
alpar@1
   286
alpar@1
   287
#define luf_create_it _glp_luf_create_it
alpar@1
   288
LUF *luf_create_it(void);
alpar@1
   289
/* create LU-factorization */
alpar@1
   290
alpar@1
   291
#define luf_defrag_sva _glp_luf_defrag_sva
alpar@1
   292
void luf_defrag_sva(LUF *luf);
alpar@1
   293
/* defragment the sparse vector area */
alpar@1
   294
alpar@1
   295
#define luf_enlarge_row _glp_luf_enlarge_row
alpar@1
   296
int luf_enlarge_row(LUF *luf, int i, int cap);
alpar@1
   297
/* enlarge row capacity */
alpar@1
   298
alpar@1
   299
#define luf_enlarge_col _glp_luf_enlarge_col
alpar@1
   300
int luf_enlarge_col(LUF *luf, int j, int cap);
alpar@1
   301
/* enlarge column capacity */
alpar@1
   302
alpar@1
   303
#define luf_factorize _glp_luf_factorize
alpar@1
   304
int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j,
alpar@1
   305
      int ind[], double val[]), void *info);
alpar@1
   306
/* compute LU-factorization */
alpar@1
   307
alpar@1
   308
#define luf_f_solve _glp_luf_f_solve
alpar@1
   309
void luf_f_solve(LUF *luf, int tr, double x[]);
alpar@1
   310
/* solve system F*x = b or F'*x = b */
alpar@1
   311
alpar@1
   312
#define luf_v_solve _glp_luf_v_solve
alpar@1
   313
void luf_v_solve(LUF *luf, int tr, double x[]);
alpar@1
   314
/* solve system V*x = b or V'*x = b */
alpar@1
   315
alpar@1
   316
#define luf_a_solve _glp_luf_a_solve
alpar@1
   317
void luf_a_solve(LUF *luf, int tr, double x[]);
alpar@1
   318
/* solve system A*x = b or A'*x = b */
alpar@1
   319
alpar@1
   320
#define luf_delete_it _glp_luf_delete_it
alpar@1
   321
void luf_delete_it(LUF *luf);
alpar@1
   322
/* delete LU-factorization */
alpar@1
   323
alpar@1
   324
#endif
alpar@1
   325
alpar@1
   326
/* eof */