alpar@1
|
1 |
/* glpscl.c */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpapi.h"
|
alpar@1
|
26 |
|
alpar@1
|
27 |
/***********************************************************************
|
alpar@1
|
28 |
* min_row_aij - determine minimal |a[i,j]| in i-th row
|
alpar@1
|
29 |
*
|
alpar@1
|
30 |
* This routine returns minimal magnitude of (non-zero) constraint
|
alpar@1
|
31 |
* coefficients in i-th row of the constraint matrix.
|
alpar@1
|
32 |
*
|
alpar@1
|
33 |
* If the parameter scaled is zero, the original constraint matrix A is
|
alpar@1
|
34 |
* assumed. Otherwise, the scaled constraint matrix R*A*S is assumed.
|
alpar@1
|
35 |
*
|
alpar@1
|
36 |
* If i-th row of the matrix is empty, the routine returns 1. */
|
alpar@1
|
37 |
|
alpar@1
|
38 |
static double min_row_aij(glp_prob *lp, int i, int scaled)
|
alpar@1
|
39 |
{ GLPAIJ *aij;
|
alpar@1
|
40 |
double min_aij, temp;
|
alpar@1
|
41 |
xassert(1 <= i && i <= lp->m);
|
alpar@1
|
42 |
min_aij = 1.0;
|
alpar@1
|
43 |
for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)
|
alpar@1
|
44 |
{ temp = fabs(aij->val);
|
alpar@1
|
45 |
if (scaled) temp *= (aij->row->rii * aij->col->sjj);
|
alpar@1
|
46 |
if (aij->r_prev == NULL || min_aij > temp)
|
alpar@1
|
47 |
min_aij = temp;
|
alpar@1
|
48 |
}
|
alpar@1
|
49 |
return min_aij;
|
alpar@1
|
50 |
}
|
alpar@1
|
51 |
|
alpar@1
|
52 |
/***********************************************************************
|
alpar@1
|
53 |
* max_row_aij - determine maximal |a[i,j]| in i-th row
|
alpar@1
|
54 |
*
|
alpar@1
|
55 |
* This routine returns maximal magnitude of (non-zero) constraint
|
alpar@1
|
56 |
* coefficients in i-th row of the constraint matrix.
|
alpar@1
|
57 |
*
|
alpar@1
|
58 |
* If the parameter scaled is zero, the original constraint matrix A is
|
alpar@1
|
59 |
* assumed. Otherwise, the scaled constraint matrix R*A*S is assumed.
|
alpar@1
|
60 |
*
|
alpar@1
|
61 |
* If i-th row of the matrix is empty, the routine returns 1. */
|
alpar@1
|
62 |
|
alpar@1
|
63 |
static double max_row_aij(glp_prob *lp, int i, int scaled)
|
alpar@1
|
64 |
{ GLPAIJ *aij;
|
alpar@1
|
65 |
double max_aij, temp;
|
alpar@1
|
66 |
xassert(1 <= i && i <= lp->m);
|
alpar@1
|
67 |
max_aij = 1.0;
|
alpar@1
|
68 |
for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)
|
alpar@1
|
69 |
{ temp = fabs(aij->val);
|
alpar@1
|
70 |
if (scaled) temp *= (aij->row->rii * aij->col->sjj);
|
alpar@1
|
71 |
if (aij->r_prev == NULL || max_aij < temp)
|
alpar@1
|
72 |
max_aij = temp;
|
alpar@1
|
73 |
}
|
alpar@1
|
74 |
return max_aij;
|
alpar@1
|
75 |
}
|
alpar@1
|
76 |
|
alpar@1
|
77 |
/***********************************************************************
|
alpar@1
|
78 |
* min_col_aij - determine minimal |a[i,j]| in j-th column
|
alpar@1
|
79 |
*
|
alpar@1
|
80 |
* This routine returns minimal magnitude of (non-zero) constraint
|
alpar@1
|
81 |
* coefficients in j-th column of the constraint matrix.
|
alpar@1
|
82 |
*
|
alpar@1
|
83 |
* If the parameter scaled is zero, the original constraint matrix A is
|
alpar@1
|
84 |
* assumed. Otherwise, the scaled constraint matrix R*A*S is assumed.
|
alpar@1
|
85 |
*
|
alpar@1
|
86 |
* If j-th column of the matrix is empty, the routine returns 1. */
|
alpar@1
|
87 |
|
alpar@1
|
88 |
static double min_col_aij(glp_prob *lp, int j, int scaled)
|
alpar@1
|
89 |
{ GLPAIJ *aij;
|
alpar@1
|
90 |
double min_aij, temp;
|
alpar@1
|
91 |
xassert(1 <= j && j <= lp->n);
|
alpar@1
|
92 |
min_aij = 1.0;
|
alpar@1
|
93 |
for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
|
alpar@1
|
94 |
{ temp = fabs(aij->val);
|
alpar@1
|
95 |
if (scaled) temp *= (aij->row->rii * aij->col->sjj);
|
alpar@1
|
96 |
if (aij->c_prev == NULL || min_aij > temp)
|
alpar@1
|
97 |
min_aij = temp;
|
alpar@1
|
98 |
}
|
alpar@1
|
99 |
return min_aij;
|
alpar@1
|
100 |
}
|
alpar@1
|
101 |
|
alpar@1
|
102 |
/***********************************************************************
|
alpar@1
|
103 |
* max_col_aij - determine maximal |a[i,j]| in j-th column
|
alpar@1
|
104 |
*
|
alpar@1
|
105 |
* This routine returns maximal magnitude of (non-zero) constraint
|
alpar@1
|
106 |
* coefficients in j-th column of the constraint matrix.
|
alpar@1
|
107 |
*
|
alpar@1
|
108 |
* If the parameter scaled is zero, the original constraint matrix A is
|
alpar@1
|
109 |
* assumed. Otherwise, the scaled constraint matrix R*A*S is assumed.
|
alpar@1
|
110 |
*
|
alpar@1
|
111 |
* If j-th column of the matrix is empty, the routine returns 1. */
|
alpar@1
|
112 |
|
alpar@1
|
113 |
static double max_col_aij(glp_prob *lp, int j, int scaled)
|
alpar@1
|
114 |
{ GLPAIJ *aij;
|
alpar@1
|
115 |
double max_aij, temp;
|
alpar@1
|
116 |
xassert(1 <= j && j <= lp->n);
|
alpar@1
|
117 |
max_aij = 1.0;
|
alpar@1
|
118 |
for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
|
alpar@1
|
119 |
{ temp = fabs(aij->val);
|
alpar@1
|
120 |
if (scaled) temp *= (aij->row->rii * aij->col->sjj);
|
alpar@1
|
121 |
if (aij->c_prev == NULL || max_aij < temp)
|
alpar@1
|
122 |
max_aij = temp;
|
alpar@1
|
123 |
}
|
alpar@1
|
124 |
return max_aij;
|
alpar@1
|
125 |
}
|
alpar@1
|
126 |
|
alpar@1
|
127 |
/***********************************************************************
|
alpar@1
|
128 |
* min_mat_aij - determine minimal |a[i,j]| in constraint matrix
|
alpar@1
|
129 |
*
|
alpar@1
|
130 |
* This routine returns minimal magnitude of (non-zero) constraint
|
alpar@1
|
131 |
* coefficients in the constraint matrix.
|
alpar@1
|
132 |
*
|
alpar@1
|
133 |
* If the parameter scaled is zero, the original constraint matrix A is
|
alpar@1
|
134 |
* assumed. Otherwise, the scaled constraint matrix R*A*S is assumed.
|
alpar@1
|
135 |
*
|
alpar@1
|
136 |
* If the matrix is empty, the routine returns 1. */
|
alpar@1
|
137 |
|
alpar@1
|
138 |
static double min_mat_aij(glp_prob *lp, int scaled)
|
alpar@1
|
139 |
{ int i;
|
alpar@1
|
140 |
double min_aij, temp;
|
alpar@1
|
141 |
min_aij = 1.0;
|
alpar@1
|
142 |
for (i = 1; i <= lp->m; i++)
|
alpar@1
|
143 |
{ temp = min_row_aij(lp, i, scaled);
|
alpar@1
|
144 |
if (i == 1 || min_aij > temp)
|
alpar@1
|
145 |
min_aij = temp;
|
alpar@1
|
146 |
}
|
alpar@1
|
147 |
return min_aij;
|
alpar@1
|
148 |
}
|
alpar@1
|
149 |
|
alpar@1
|
150 |
/***********************************************************************
|
alpar@1
|
151 |
* max_mat_aij - determine maximal |a[i,j]| in constraint matrix
|
alpar@1
|
152 |
*
|
alpar@1
|
153 |
* This routine returns maximal magnitude of (non-zero) constraint
|
alpar@1
|
154 |
* coefficients in the constraint matrix.
|
alpar@1
|
155 |
*
|
alpar@1
|
156 |
* If the parameter scaled is zero, the original constraint matrix A is
|
alpar@1
|
157 |
* assumed. Otherwise, the scaled constraint matrix R*A*S is assumed.
|
alpar@1
|
158 |
*
|
alpar@1
|
159 |
* If the matrix is empty, the routine returns 1. */
|
alpar@1
|
160 |
|
alpar@1
|
161 |
static double max_mat_aij(glp_prob *lp, int scaled)
|
alpar@1
|
162 |
{ int i;
|
alpar@1
|
163 |
double max_aij, temp;
|
alpar@1
|
164 |
max_aij = 1.0;
|
alpar@1
|
165 |
for (i = 1; i <= lp->m; i++)
|
alpar@1
|
166 |
{ temp = max_row_aij(lp, i, scaled);
|
alpar@1
|
167 |
if (i == 1 || max_aij < temp)
|
alpar@1
|
168 |
max_aij = temp;
|
alpar@1
|
169 |
}
|
alpar@1
|
170 |
return max_aij;
|
alpar@1
|
171 |
}
|
alpar@1
|
172 |
|
alpar@1
|
173 |
/***********************************************************************
|
alpar@1
|
174 |
* eq_scaling - perform equilibration scaling
|
alpar@1
|
175 |
*
|
alpar@1
|
176 |
* This routine performs equilibration scaling of rows and columns of
|
alpar@1
|
177 |
* the constraint matrix.
|
alpar@1
|
178 |
*
|
alpar@1
|
179 |
* If the parameter flag is zero, the routine scales rows at first and
|
alpar@1
|
180 |
* then columns. Otherwise, the routine scales columns and then rows.
|
alpar@1
|
181 |
*
|
alpar@1
|
182 |
* Rows are scaled as follows:
|
alpar@1
|
183 |
*
|
alpar@1
|
184 |
* n
|
alpar@1
|
185 |
* a'[i,j] = a[i,j] / max |a[i,j]|, i = 1,...,m.
|
alpar@1
|
186 |
* j=1
|
alpar@1
|
187 |
*
|
alpar@1
|
188 |
* This makes the infinity (maximum) norm of each row of the matrix
|
alpar@1
|
189 |
* equal to 1.
|
alpar@1
|
190 |
*
|
alpar@1
|
191 |
* Columns are scaled as follows:
|
alpar@1
|
192 |
*
|
alpar@1
|
193 |
* n
|
alpar@1
|
194 |
* a'[i,j] = a[i,j] / max |a[i,j]|, j = 1,...,n.
|
alpar@1
|
195 |
* i=1
|
alpar@1
|
196 |
*
|
alpar@1
|
197 |
* This makes the infinity (maximum) norm of each column of the matrix
|
alpar@1
|
198 |
* equal to 1. */
|
alpar@1
|
199 |
|
alpar@1
|
200 |
static void eq_scaling(glp_prob *lp, int flag)
|
alpar@1
|
201 |
{ int i, j, pass;
|
alpar@1
|
202 |
double temp;
|
alpar@1
|
203 |
xassert(flag == 0 || flag == 1);
|
alpar@1
|
204 |
for (pass = 0; pass <= 1; pass++)
|
alpar@1
|
205 |
{ if (pass == flag)
|
alpar@1
|
206 |
{ /* scale rows */
|
alpar@1
|
207 |
for (i = 1; i <= lp->m; i++)
|
alpar@1
|
208 |
{ temp = max_row_aij(lp, i, 1);
|
alpar@1
|
209 |
glp_set_rii(lp, i, glp_get_rii(lp, i) / temp);
|
alpar@1
|
210 |
}
|
alpar@1
|
211 |
}
|
alpar@1
|
212 |
else
|
alpar@1
|
213 |
{ /* scale columns */
|
alpar@1
|
214 |
for (j = 1; j <= lp->n; j++)
|
alpar@1
|
215 |
{ temp = max_col_aij(lp, j, 1);
|
alpar@1
|
216 |
glp_set_sjj(lp, j, glp_get_sjj(lp, j) / temp);
|
alpar@1
|
217 |
}
|
alpar@1
|
218 |
}
|
alpar@1
|
219 |
}
|
alpar@1
|
220 |
return;
|
alpar@1
|
221 |
}
|
alpar@1
|
222 |
|
alpar@1
|
223 |
/***********************************************************************
|
alpar@1
|
224 |
* gm_scaling - perform geometric mean scaling
|
alpar@1
|
225 |
*
|
alpar@1
|
226 |
* This routine performs geometric mean scaling of rows and columns of
|
alpar@1
|
227 |
* the constraint matrix.
|
alpar@1
|
228 |
*
|
alpar@1
|
229 |
* If the parameter flag is zero, the routine scales rows at first and
|
alpar@1
|
230 |
* then columns. Otherwise, the routine scales columns and then rows.
|
alpar@1
|
231 |
*
|
alpar@1
|
232 |
* Rows are scaled as follows:
|
alpar@1
|
233 |
*
|
alpar@1
|
234 |
* a'[i,j] = a[i,j] / sqrt(alfa[i] * beta[i]), i = 1,...,m,
|
alpar@1
|
235 |
*
|
alpar@1
|
236 |
* where:
|
alpar@1
|
237 |
* n n
|
alpar@1
|
238 |
* alfa[i] = min |a[i,j]|, beta[i] = max |a[i,j]|.
|
alpar@1
|
239 |
* j=1 j=1
|
alpar@1
|
240 |
*
|
alpar@1
|
241 |
* This allows decreasing the ratio beta[i] / alfa[i] for each row of
|
alpar@1
|
242 |
* the matrix.
|
alpar@1
|
243 |
*
|
alpar@1
|
244 |
* Columns are scaled as follows:
|
alpar@1
|
245 |
*
|
alpar@1
|
246 |
* a'[i,j] = a[i,j] / sqrt(alfa[j] * beta[j]), j = 1,...,n,
|
alpar@1
|
247 |
*
|
alpar@1
|
248 |
* where:
|
alpar@1
|
249 |
* m m
|
alpar@1
|
250 |
* alfa[j] = min |a[i,j]|, beta[j] = max |a[i,j]|.
|
alpar@1
|
251 |
* i=1 i=1
|
alpar@1
|
252 |
*
|
alpar@1
|
253 |
* This allows decreasing the ratio beta[j] / alfa[j] for each column
|
alpar@1
|
254 |
* of the matrix. */
|
alpar@1
|
255 |
|
alpar@1
|
256 |
static void gm_scaling(glp_prob *lp, int flag)
|
alpar@1
|
257 |
{ int i, j, pass;
|
alpar@1
|
258 |
double temp;
|
alpar@1
|
259 |
xassert(flag == 0 || flag == 1);
|
alpar@1
|
260 |
for (pass = 0; pass <= 1; pass++)
|
alpar@1
|
261 |
{ if (pass == flag)
|
alpar@1
|
262 |
{ /* scale rows */
|
alpar@1
|
263 |
for (i = 1; i <= lp->m; i++)
|
alpar@1
|
264 |
{ temp = min_row_aij(lp, i, 1) * max_row_aij(lp, i, 1);
|
alpar@1
|
265 |
glp_set_rii(lp, i, glp_get_rii(lp, i) / sqrt(temp));
|
alpar@1
|
266 |
}
|
alpar@1
|
267 |
}
|
alpar@1
|
268 |
else
|
alpar@1
|
269 |
{ /* scale columns */
|
alpar@1
|
270 |
for (j = 1; j <= lp->n; j++)
|
alpar@1
|
271 |
{ temp = min_col_aij(lp, j, 1) * max_col_aij(lp, j, 1);
|
alpar@1
|
272 |
glp_set_sjj(lp, j, glp_get_sjj(lp, j) / sqrt(temp));
|
alpar@1
|
273 |
}
|
alpar@1
|
274 |
}
|
alpar@1
|
275 |
}
|
alpar@1
|
276 |
return;
|
alpar@1
|
277 |
}
|
alpar@1
|
278 |
|
alpar@1
|
279 |
/***********************************************************************
|
alpar@1
|
280 |
* max_row_ratio - determine worst scaling "quality" for rows
|
alpar@1
|
281 |
*
|
alpar@1
|
282 |
* This routine returns the worst scaling "quality" for rows of the
|
alpar@1
|
283 |
* currently scaled constraint matrix:
|
alpar@1
|
284 |
*
|
alpar@1
|
285 |
* m
|
alpar@1
|
286 |
* ratio = max ratio[i],
|
alpar@1
|
287 |
* i=1
|
alpar@1
|
288 |
* where:
|
alpar@1
|
289 |
* n n
|
alpar@1
|
290 |
* ratio[i] = max |a[i,j]| / min |a[i,j]|, 1 <= i <= m,
|
alpar@1
|
291 |
* j=1 j=1
|
alpar@1
|
292 |
*
|
alpar@1
|
293 |
* is the scaling "quality" of i-th row. */
|
alpar@1
|
294 |
|
alpar@1
|
295 |
static double max_row_ratio(glp_prob *lp)
|
alpar@1
|
296 |
{ int i;
|
alpar@1
|
297 |
double ratio, temp;
|
alpar@1
|
298 |
ratio = 1.0;
|
alpar@1
|
299 |
for (i = 1; i <= lp->m; i++)
|
alpar@1
|
300 |
{ temp = max_row_aij(lp, i, 1) / min_row_aij(lp, i, 1);
|
alpar@1
|
301 |
if (i == 1 || ratio < temp) ratio = temp;
|
alpar@1
|
302 |
}
|
alpar@1
|
303 |
return ratio;
|
alpar@1
|
304 |
}
|
alpar@1
|
305 |
|
alpar@1
|
306 |
/***********************************************************************
|
alpar@1
|
307 |
* max_col_ratio - determine worst scaling "quality" for columns
|
alpar@1
|
308 |
*
|
alpar@1
|
309 |
* This routine returns the worst scaling "quality" for columns of the
|
alpar@1
|
310 |
* currently scaled constraint matrix:
|
alpar@1
|
311 |
*
|
alpar@1
|
312 |
* n
|
alpar@1
|
313 |
* ratio = max ratio[j],
|
alpar@1
|
314 |
* j=1
|
alpar@1
|
315 |
* where:
|
alpar@1
|
316 |
* m m
|
alpar@1
|
317 |
* ratio[j] = max |a[i,j]| / min |a[i,j]|, 1 <= j <= n,
|
alpar@1
|
318 |
* i=1 i=1
|
alpar@1
|
319 |
*
|
alpar@1
|
320 |
* is the scaling "quality" of j-th column. */
|
alpar@1
|
321 |
|
alpar@1
|
322 |
static double max_col_ratio(glp_prob *lp)
|
alpar@1
|
323 |
{ int j;
|
alpar@1
|
324 |
double ratio, temp;
|
alpar@1
|
325 |
ratio = 1.0;
|
alpar@1
|
326 |
for (j = 1; j <= lp->n; j++)
|
alpar@1
|
327 |
{ temp = max_col_aij(lp, j, 1) / min_col_aij(lp, j, 1);
|
alpar@1
|
328 |
if (j == 1 || ratio < temp) ratio = temp;
|
alpar@1
|
329 |
}
|
alpar@1
|
330 |
return ratio;
|
alpar@1
|
331 |
}
|
alpar@1
|
332 |
|
alpar@1
|
333 |
/***********************************************************************
|
alpar@1
|
334 |
* gm_iterate - perform iterative geometric mean scaling
|
alpar@1
|
335 |
*
|
alpar@1
|
336 |
* This routine performs iterative geometric mean scaling of rows and
|
alpar@1
|
337 |
* columns of the constraint matrix.
|
alpar@1
|
338 |
*
|
alpar@1
|
339 |
* The parameter it_max specifies the maximal number of iterations.
|
alpar@1
|
340 |
* Recommended value of it_max is 15.
|
alpar@1
|
341 |
*
|
alpar@1
|
342 |
* The parameter tau specifies a minimal improvement of the scaling
|
alpar@1
|
343 |
* "quality" on each iteration, 0 < tau < 1. It means than the scaling
|
alpar@1
|
344 |
* process continues while the following condition is satisfied:
|
alpar@1
|
345 |
*
|
alpar@1
|
346 |
* ratio[k] <= tau * ratio[k-1],
|
alpar@1
|
347 |
*
|
alpar@1
|
348 |
* where ratio = max |a[i,j]| / min |a[i,j]| is the scaling "quality"
|
alpar@1
|
349 |
* to be minimized, k is the iteration number. Recommended value of tau
|
alpar@1
|
350 |
* is 0.90. */
|
alpar@1
|
351 |
|
alpar@1
|
352 |
static void gm_iterate(glp_prob *lp, int it_max, double tau)
|
alpar@1
|
353 |
{ int k, flag;
|
alpar@1
|
354 |
double ratio = 0.0, r_old;
|
alpar@1
|
355 |
/* if the scaling "quality" for rows is better than for columns,
|
alpar@1
|
356 |
the rows are scaled first; otherwise, the columns are scaled
|
alpar@1
|
357 |
first */
|
alpar@1
|
358 |
flag = (max_row_ratio(lp) > max_col_ratio(lp));
|
alpar@1
|
359 |
for (k = 1; k <= it_max; k++)
|
alpar@1
|
360 |
{ /* save the scaling "quality" from previous iteration */
|
alpar@1
|
361 |
r_old = ratio;
|
alpar@1
|
362 |
/* determine the current scaling "quality" */
|
alpar@1
|
363 |
ratio = max_mat_aij(lp, 1) / min_mat_aij(lp, 1);
|
alpar@1
|
364 |
#if 0
|
alpar@1
|
365 |
xprintf("k = %d; ratio = %g\n", k, ratio);
|
alpar@1
|
366 |
#endif
|
alpar@1
|
367 |
/* if improvement is not enough, terminate scaling */
|
alpar@1
|
368 |
if (k > 1 && ratio > tau * r_old) break;
|
alpar@1
|
369 |
/* otherwise, perform another iteration */
|
alpar@1
|
370 |
gm_scaling(lp, flag);
|
alpar@1
|
371 |
}
|
alpar@1
|
372 |
return;
|
alpar@1
|
373 |
}
|
alpar@1
|
374 |
|
alpar@1
|
375 |
/***********************************************************************
|
alpar@1
|
376 |
* NAME
|
alpar@1
|
377 |
*
|
alpar@1
|
378 |
* scale_prob - scale problem data
|
alpar@1
|
379 |
*
|
alpar@1
|
380 |
* SYNOPSIS
|
alpar@1
|
381 |
*
|
alpar@1
|
382 |
* #include "glpscl.h"
|
alpar@1
|
383 |
* void scale_prob(glp_prob *lp, int flags);
|
alpar@1
|
384 |
*
|
alpar@1
|
385 |
* DESCRIPTION
|
alpar@1
|
386 |
*
|
alpar@1
|
387 |
* The routine scale_prob performs automatic scaling of problem data
|
alpar@1
|
388 |
* for the specified problem object. */
|
alpar@1
|
389 |
|
alpar@1
|
390 |
static void scale_prob(glp_prob *lp, int flags)
|
alpar@1
|
391 |
{ static const char *fmt =
|
alpar@1
|
392 |
"%s: min|aij| = %10.3e max|aij| = %10.3e ratio = %10.3e\n";
|
alpar@1
|
393 |
double min_aij, max_aij, ratio;
|
alpar@1
|
394 |
xprintf("Scaling...\n");
|
alpar@1
|
395 |
/* cancel the current scaling effect */
|
alpar@1
|
396 |
glp_unscale_prob(lp);
|
alpar@1
|
397 |
/* report original scaling "quality" */
|
alpar@1
|
398 |
min_aij = min_mat_aij(lp, 1);
|
alpar@1
|
399 |
max_aij = max_mat_aij(lp, 1);
|
alpar@1
|
400 |
ratio = max_aij / min_aij;
|
alpar@1
|
401 |
xprintf(fmt, " A", min_aij, max_aij, ratio);
|
alpar@1
|
402 |
/* check if the problem is well scaled */
|
alpar@1
|
403 |
if (min_aij >= 0.10 && max_aij <= 10.0)
|
alpar@1
|
404 |
{ xprintf("Problem data seem to be well scaled\n");
|
alpar@1
|
405 |
/* skip scaling, if required */
|
alpar@1
|
406 |
if (flags & GLP_SF_SKIP) goto done;
|
alpar@1
|
407 |
}
|
alpar@1
|
408 |
/* perform iterative geometric mean scaling, if required */
|
alpar@1
|
409 |
if (flags & GLP_SF_GM)
|
alpar@1
|
410 |
{ gm_iterate(lp, 15, 0.90);
|
alpar@1
|
411 |
min_aij = min_mat_aij(lp, 1);
|
alpar@1
|
412 |
max_aij = max_mat_aij(lp, 1);
|
alpar@1
|
413 |
ratio = max_aij / min_aij;
|
alpar@1
|
414 |
xprintf(fmt, "GM", min_aij, max_aij, ratio);
|
alpar@1
|
415 |
}
|
alpar@1
|
416 |
/* perform equilibration scaling, if required */
|
alpar@1
|
417 |
if (flags & GLP_SF_EQ)
|
alpar@1
|
418 |
{ eq_scaling(lp, max_row_ratio(lp) > max_col_ratio(lp));
|
alpar@1
|
419 |
min_aij = min_mat_aij(lp, 1);
|
alpar@1
|
420 |
max_aij = max_mat_aij(lp, 1);
|
alpar@1
|
421 |
ratio = max_aij / min_aij;
|
alpar@1
|
422 |
xprintf(fmt, "EQ", min_aij, max_aij, ratio);
|
alpar@1
|
423 |
}
|
alpar@1
|
424 |
/* round scale factors to nearest power of two, if required */
|
alpar@1
|
425 |
if (flags & GLP_SF_2N)
|
alpar@1
|
426 |
{ int i, j;
|
alpar@1
|
427 |
for (i = 1; i <= lp->m; i++)
|
alpar@1
|
428 |
glp_set_rii(lp, i, round2n(glp_get_rii(lp, i)));
|
alpar@1
|
429 |
for (j = 1; j <= lp->n; j++)
|
alpar@1
|
430 |
glp_set_sjj(lp, j, round2n(glp_get_sjj(lp, j)));
|
alpar@1
|
431 |
min_aij = min_mat_aij(lp, 1);
|
alpar@1
|
432 |
max_aij = max_mat_aij(lp, 1);
|
alpar@1
|
433 |
ratio = max_aij / min_aij;
|
alpar@1
|
434 |
xprintf(fmt, "2N", min_aij, max_aij, ratio);
|
alpar@1
|
435 |
}
|
alpar@1
|
436 |
done: return;
|
alpar@1
|
437 |
}
|
alpar@1
|
438 |
|
alpar@1
|
439 |
/***********************************************************************
|
alpar@1
|
440 |
* NAME
|
alpar@1
|
441 |
*
|
alpar@1
|
442 |
* glp_scale_prob - scale problem data
|
alpar@1
|
443 |
*
|
alpar@1
|
444 |
* SYNOPSIS
|
alpar@1
|
445 |
*
|
alpar@1
|
446 |
* void glp_scale_prob(glp_prob *lp, int flags);
|
alpar@1
|
447 |
*
|
alpar@1
|
448 |
* DESCRIPTION
|
alpar@1
|
449 |
*
|
alpar@1
|
450 |
* The routine glp_scale_prob performs automatic scaling of problem
|
alpar@1
|
451 |
* data for the specified problem object.
|
alpar@1
|
452 |
*
|
alpar@1
|
453 |
* The parameter flags specifies scaling options used by the routine.
|
alpar@1
|
454 |
* Options can be combined with the bitwise OR operator and may be the
|
alpar@1
|
455 |
* following:
|
alpar@1
|
456 |
*
|
alpar@1
|
457 |
* GLP_SF_GM perform geometric mean scaling;
|
alpar@1
|
458 |
* GLP_SF_EQ perform equilibration scaling;
|
alpar@1
|
459 |
* GLP_SF_2N round scale factors to nearest power of two;
|
alpar@1
|
460 |
* GLP_SF_SKIP skip scaling, if the problem is well scaled.
|
alpar@1
|
461 |
*
|
alpar@1
|
462 |
* The parameter flags may be specified as GLP_SF_AUTO, in which case
|
alpar@1
|
463 |
* the routine chooses scaling options automatically. */
|
alpar@1
|
464 |
|
alpar@1
|
465 |
void glp_scale_prob(glp_prob *lp, int flags)
|
alpar@1
|
466 |
{ if (flags & ~(GLP_SF_GM | GLP_SF_EQ | GLP_SF_2N | GLP_SF_SKIP |
|
alpar@1
|
467 |
GLP_SF_AUTO))
|
alpar@1
|
468 |
xerror("glp_scale_prob: flags = 0x%02X; invalid scaling option"
|
alpar@1
|
469 |
"s\n", flags);
|
alpar@1
|
470 |
if (flags & GLP_SF_AUTO)
|
alpar@1
|
471 |
flags = (GLP_SF_GM | GLP_SF_EQ | GLP_SF_SKIP);
|
alpar@1
|
472 |
scale_prob(lp, flags);
|
alpar@1
|
473 |
return;
|
alpar@1
|
474 |
}
|
alpar@1
|
475 |
|
alpar@1
|
476 |
/* eof */
|