src/glpini01.c
changeset 2 4c8956a7bdf4
equal deleted inserted replaced
-1:000000000000 0:70595e99fe42
       
     1 /* glpini01.c */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
       
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
       
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
       
     9 *  E-mail: <mao@gnu.org>.
       
    10 *
       
    11 *  GLPK is free software: you can redistribute it and/or modify it
       
    12 *  under the terms of the GNU General Public License as published by
       
    13 *  the Free Software Foundation, either version 3 of the License, or
       
    14 *  (at your option) any later version.
       
    15 *
       
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    19 *  License for more details.
       
    20 *
       
    21 *  You should have received a copy of the GNU General Public License
       
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    23 ***********************************************************************/
       
    24 
       
    25 #include "glpapi.h"
       
    26 
       
    27 /*----------------------------------------------------------------------
       
    28 -- triang - find maximal triangular part of a rectangular matrix.
       
    29 --
       
    30 -- *Synopsis*
       
    31 --
       
    32 -- int triang(int m, int n,
       
    33 --    void *info, int (*mat)(void *info, int k, int ndx[]),
       
    34 --    int rn[], int cn[]);
       
    35 --
       
    36 -- *Description*
       
    37 --
       
    38 -- For a given rectangular (sparse) matrix A with m rows and n columns
       
    39 -- the routine triang tries to find such permutation matrices P and Q
       
    40 -- that the first rows and columns of the matrix B = P*A*Q form a lower
       
    41 -- triangular submatrix of as greatest size as possible:
       
    42 --
       
    43 --                   1                       n
       
    44 --                1  * . . . . . . x x x x x x
       
    45 --                   * * . . . . . x x x x x x
       
    46 --                   * * * . . . . x x x x x x
       
    47 --                   * * * * . . . x x x x x x
       
    48 --    B = P*A*Q =    * * * * * . . x x x x x x
       
    49 --                   * * * * * * . x x x x x x
       
    50 --                   * * * * * * * x x x x x x
       
    51 --                   x x x x x x x x x x x x x
       
    52 --                   x x x x x x x x x x x x x
       
    53 --                m  x x x x x x x x x x x x x
       
    54 --
       
    55 -- where: '*' - elements of the lower triangular part, '.' - structural
       
    56 -- zeros, 'x' - other (either non-zero or zero) elements.
       
    57 --
       
    58 -- The parameter info is a transit pointer passed to the formal routine
       
    59 -- mat (see below).
       
    60 --
       
    61 -- The formal routine mat specifies the given matrix A in both row- and
       
    62 -- column-wise formats. In order to obtain an i-th row of the matrix A
       
    63 -- the routine triang calls the routine mat with the parameter k = +i,
       
    64 -- 1 <= i <= m. In response the routine mat should store column indices
       
    65 -- of (non-zero) elements of the i-th row to the locations ndx[1], ...,
       
    66 -- ndx[len], where len is number of non-zeros in the i-th row returned
       
    67 -- on exit. Analogously, in order to obtain a j-th column of the matrix
       
    68 -- A, the routine mat is called with the parameter k = -j, 1 <= j <= n,
       
    69 -- and should return pattern of the j-th column in the same way as for
       
    70 -- row patterns. Note that the routine mat may be called more than once
       
    71 -- for the same rows and columns.
       
    72 --
       
    73 -- On exit the routine computes two resultant arrays rn and cn, which
       
    74 -- define the permutation matrices P and Q, respectively. The array rn
       
    75 -- should have at least 1+m locations, where rn[i] = i' (1 <= i <= m)
       
    76 -- means that i-th row of the original matrix A corresponds to i'-th row
       
    77 -- of the matrix B = P*A*Q. Similarly, the array cn should have at least
       
    78 -- 1+n locations, where cn[j] = j' (1 <= j <= n) means that j-th column
       
    79 -- of the matrix A corresponds to j'-th column of the matrix B.
       
    80 --
       
    81 -- *Returns*
       
    82 --
       
    83 -- The routine triang returns the size of the lower tringular part of
       
    84 -- the matrix B = P*A*Q (see the figure above).
       
    85 --
       
    86 -- *Complexity*
       
    87 --
       
    88 -- The time complexity of the routine triang is O(nnz), where nnz is
       
    89 -- number of non-zeros in the given matrix A.
       
    90 --
       
    91 -- *Algorithm*
       
    92 --
       
    93 -- The routine triang starts from the matrix B = P*Q*A, where P and Q
       
    94 -- are unity matrices, so initially B = A.
       
    95 --
       
    96 -- Before the next iteration B = (B1 | B2 | B3), where B1 is partially
       
    97 -- built a lower triangular submatrix, B2 is the active submatrix, and
       
    98 -- B3 is a submatrix that contains rejected columns. Thus, the current
       
    99 -- matrix B looks like follows (initially k1 = 1 and k2 = n):
       
   100 --
       
   101 --       1         k1         k2         n
       
   102 --    1  x . . . . . . . . . . . . . # # #
       
   103 --       x x . . . . . . . . . . . . # # #
       
   104 --       x x x . . . . . . . . . . # # # #
       
   105 --       x x x x . . . . . . . . . # # # #
       
   106 --       x x x x x . . . . . . . # # # # #
       
   107 --    k1 x x x x x * * * * * * * # # # # #
       
   108 --       x x x x x * * * * * * * # # # # #
       
   109 --       x x x x x * * * * * * * # # # # #
       
   110 --       x x x x x * * * * * * * # # # # #
       
   111 --    m  x x x x x * * * * * * * # # # # #
       
   112 --       <--B1---> <----B2-----> <---B3-->
       
   113 --
       
   114 -- On each iteartion the routine looks for a singleton row, i.e. some
       
   115 -- row that has the only non-zero in the active submatrix B2. If such
       
   116 -- row exists and the corresponding non-zero is b[i,j], where (by the
       
   117 -- definition) k1 <= i <= m and k1 <= j <= k2, the routine permutes
       
   118 -- k1-th and i-th rows and k1-th and j-th columns of the matrix B (in
       
   119 -- order to place the element in the position b[k1,k1]), removes the
       
   120 -- k1-th column from the active submatrix B2, and adds this column to
       
   121 -- the submatrix B1. If no row singletons exist, but B2 is not empty
       
   122 -- yet, the routine chooses a j-th column, which has maximal number of
       
   123 -- non-zeros among other columns of B2, removes this column from B2 and
       
   124 -- adds it to the submatrix B3 in the hope that new row singletons will
       
   125 -- appear in the active submatrix. */
       
   126 
       
   127 static int triang(int m, int n,
       
   128       void *info, int (*mat)(void *info, int k, int ndx[]),
       
   129       int rn[], int cn[])
       
   130 {     int *ndx; /* int ndx[1+max(m,n)]; */
       
   131       /* this array is used for querying row and column patterns of the
       
   132          given matrix A (the third parameter to the routine mat) */
       
   133       int *rs_len; /* int rs_len[1+m]; */
       
   134       /* rs_len[0] is not used;
       
   135          rs_len[i], 1 <= i <= m, is number of non-zeros in the i-th row
       
   136          of the matrix A, which (non-zeros) belong to the current active
       
   137          submatrix */
       
   138       int *rs_head; /* int rs_head[1+n]; */
       
   139       /* rs_head[len], 0 <= len <= n, is the number i of the first row
       
   140          of the matrix A, for which rs_len[i] = len */
       
   141       int *rs_prev; /* int rs_prev[1+m]; */
       
   142       /* rs_prev[0] is not used;
       
   143          rs_prev[i], 1 <= i <= m, is a number i' of the previous row of
       
   144          the matrix A, for which rs_len[i] = rs_len[i'] (zero marks the
       
   145          end of this linked list) */
       
   146       int *rs_next; /* int rs_next[1+m]; */
       
   147       /* rs_next[0] is not used;
       
   148          rs_next[i], 1 <= i <= m, is a number i' of the next row of the
       
   149          matrix A, for which rs_len[i] = rs_len[i'] (zero marks the end
       
   150          this linked list) */
       
   151       int cs_head;
       
   152       /* is a number j of the first column of the matrix A, which has
       
   153          maximal number of non-zeros among other columns */
       
   154       int *cs_prev; /* cs_prev[1+n]; */
       
   155       /* cs_prev[0] is not used;
       
   156          cs_prev[j], 1 <= j <= n, is a number of the previous column of
       
   157          the matrix A with the same or greater number of non-zeros than
       
   158          in the j-th column (zero marks the end of this linked list) */
       
   159       int *cs_next; /* cs_next[1+n]; */
       
   160       /* cs_next[0] is not used;
       
   161          cs_next[j], 1 <= j <= n, is a number of the next column of
       
   162          the matrix A with the same or lesser number of non-zeros than
       
   163          in the j-th column (zero marks the end of this linked list) */
       
   164       int i, j, ii, jj, k1, k2, len, t, size = 0;
       
   165       int *head, *rn_inv, *cn_inv;
       
   166       if (!(m > 0 && n > 0))
       
   167          xerror("triang: m = %d; n = %d; invalid dimension\n", m, n);
       
   168       /* allocate working arrays */
       
   169       ndx = xcalloc(1+(m >= n ? m : n), sizeof(int));
       
   170       rs_len = xcalloc(1+m, sizeof(int));
       
   171       rs_head = xcalloc(1+n, sizeof(int));
       
   172       rs_prev = xcalloc(1+m, sizeof(int));
       
   173       rs_next = xcalloc(1+m, sizeof(int));
       
   174       cs_prev = xcalloc(1+n, sizeof(int));
       
   175       cs_next = xcalloc(1+n, sizeof(int));
       
   176       /* build linked lists of columns of the matrix A with the same
       
   177          number of non-zeros */
       
   178       head = rs_len; /* currently rs_len is used as working array */
       
   179       for (len = 0; len <= m; len ++) head[len] = 0;
       
   180       for (j = 1; j <= n; j++)
       
   181       {  /* obtain length of the j-th column */
       
   182          len = mat(info, -j, ndx);
       
   183          xassert(0 <= len && len <= m);
       
   184          /* include the j-th column in the corresponding linked list */
       
   185          cs_prev[j] = head[len];
       
   186          head[len] = j;
       
   187       }
       
   188       /* merge all linked lists of columns in one linked list, where
       
   189          columns are ordered by descending of their lengths */
       
   190       cs_head = 0;
       
   191       for (len = 0; len <= m; len++)
       
   192       {  for (j = head[len]; j != 0; j = cs_prev[j])
       
   193          {  cs_next[j] = cs_head;
       
   194             cs_head = j;
       
   195          }
       
   196       }
       
   197       jj = 0;
       
   198       for (j = cs_head; j != 0; j = cs_next[j])
       
   199       {  cs_prev[j] = jj;
       
   200          jj = j;
       
   201       }
       
   202       /* build initial doubly linked lists of rows of the matrix A with
       
   203          the same number of non-zeros */
       
   204       for (len = 0; len <= n; len++) rs_head[len] = 0;
       
   205       for (i = 1; i <= m; i++)
       
   206       {  /* obtain length of the i-th row */
       
   207          rs_len[i] = len = mat(info, +i, ndx);
       
   208          xassert(0 <= len && len <= n);
       
   209          /* include the i-th row in the correspondng linked list */
       
   210          rs_prev[i] = 0;
       
   211          rs_next[i] = rs_head[len];
       
   212          if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
       
   213          rs_head[len] = i;
       
   214       }
       
   215       /* initially all rows and columns of the matrix A are active */
       
   216       for (i = 1; i <= m; i++) rn[i] = 0;
       
   217       for (j = 1; j <= n; j++) cn[j] = 0;
       
   218       /* set initial bounds of the active submatrix */
       
   219       k1 = 1, k2 = n;
       
   220       /* main loop starts here */
       
   221       while (k1 <= k2)
       
   222       {  i = rs_head[1];
       
   223          if (i != 0)
       
   224          {  /* the i-th row of the matrix A is a row singleton, since
       
   225                it has the only non-zero in the active submatrix */
       
   226             xassert(rs_len[i] == 1);
       
   227             /* determine the number j of an active column of the matrix
       
   228                A, in which this non-zero is placed */
       
   229             j = 0;
       
   230             t = mat(info, +i, ndx);
       
   231             xassert(0 <= t && t <= n);
       
   232             for (t = t; t >= 1; t--)
       
   233             {  jj = ndx[t];
       
   234                xassert(1 <= jj && jj <= n);
       
   235                if (cn[jj] == 0)
       
   236                {  xassert(j == 0);
       
   237                   j = jj;
       
   238                }
       
   239             }
       
   240             xassert(j != 0);
       
   241             /* the singleton is a[i,j]; move a[i,j] to the position
       
   242                b[k1,k1] of the matrix B */
       
   243             rn[i] = cn[j] = k1;
       
   244             /* shift the left bound of the active submatrix */
       
   245             k1++;
       
   246             /* increase the size of the lower triangular part */
       
   247             size++;
       
   248          }
       
   249          else
       
   250          {  /* the current active submatrix has no row singletons */
       
   251             /* remove an active column with maximal number of non-zeros
       
   252                from the active submatrix */
       
   253             j = cs_head;
       
   254             xassert(j != 0);
       
   255             cn[j] = k2;
       
   256             /* shift the right bound of the active submatrix */
       
   257             k2--;
       
   258          }
       
   259          /* the j-th column of the matrix A has been removed from the
       
   260             active submatrix */
       
   261          /* remove the j-th column from the linked list */
       
   262          if (cs_prev[j] == 0)
       
   263             cs_head = cs_next[j];
       
   264          else
       
   265             cs_next[cs_prev[j]] = cs_next[j];
       
   266          if (cs_next[j] == 0)
       
   267             /* nop */;
       
   268          else
       
   269             cs_prev[cs_next[j]] = cs_prev[j];
       
   270          /* go through non-zeros of the j-th columns and update active
       
   271             lengths of the corresponding rows */
       
   272          t = mat(info, -j, ndx);
       
   273          xassert(0 <= t && t <= m);
       
   274          for (t = t; t >= 1; t--)
       
   275          {  i = ndx[t];
       
   276             xassert(1 <= i && i <= m);
       
   277             /* the non-zero a[i,j] has left the active submatrix */
       
   278             len = rs_len[i];
       
   279             xassert(len >= 1);
       
   280             /* remove the i-th row from the linked list of rows with
       
   281                active length len */
       
   282             if (rs_prev[i] == 0)
       
   283                rs_head[len] = rs_next[i];
       
   284             else
       
   285                rs_next[rs_prev[i]] = rs_next[i];
       
   286             if (rs_next[i] == 0)
       
   287                /* nop */;
       
   288             else
       
   289                rs_prev[rs_next[i]] = rs_prev[i];
       
   290             /* decrease the active length of the i-th row */
       
   291             rs_len[i] = --len;
       
   292             /* return the i-th row to the corresponding linked list */
       
   293             rs_prev[i] = 0;
       
   294             rs_next[i] = rs_head[len];
       
   295             if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
       
   296             rs_head[len] = i;
       
   297          }
       
   298       }
       
   299       /* other rows of the matrix A, which are still active, correspond
       
   300          to rows k1, ..., m of the matrix B (in arbitrary order) */
       
   301       for (i = 1; i <= m; i++) if (rn[i] == 0) rn[i] = k1++;
       
   302       /* but for columns this is not needed, because now the submatrix
       
   303          B2 has no columns */
       
   304       for (j = 1; j <= n; j++) xassert(cn[j] != 0);
       
   305       /* perform some optional checks */
       
   306       /* make sure that rn is a permutation of {1, ..., m} and cn is a
       
   307          permutation of {1, ..., n} */
       
   308       rn_inv = rs_len; /* used as working array */
       
   309       for (ii = 1; ii <= m; ii++) rn_inv[ii] = 0;
       
   310       for (i = 1; i <= m; i++)
       
   311       {  ii = rn[i];
       
   312          xassert(1 <= ii && ii <= m);
       
   313          xassert(rn_inv[ii] == 0);
       
   314          rn_inv[ii] = i;
       
   315       }
       
   316       cn_inv = rs_head; /* used as working array */
       
   317       for (jj = 1; jj <= n; jj++) cn_inv[jj] = 0;
       
   318       for (j = 1; j <= n; j++)
       
   319       {  jj = cn[j];
       
   320          xassert(1 <= jj && jj <= n);
       
   321          xassert(cn_inv[jj] == 0);
       
   322          cn_inv[jj] = j;
       
   323       }
       
   324       /* make sure that the matrix B = P*A*Q really has the form, which
       
   325          was declared */
       
   326       for (ii = 1; ii <= size; ii++)
       
   327       {  int diag = 0;
       
   328          i = rn_inv[ii];
       
   329          t = mat(info, +i, ndx);
       
   330          xassert(0 <= t && t <= n);
       
   331          for (t = t; t >= 1; t--)
       
   332          {  j = ndx[t];
       
   333             xassert(1 <= j && j <= n);
       
   334             jj = cn[j];
       
   335             if (jj <= size) xassert(jj <= ii);
       
   336             if (jj == ii)
       
   337             {  xassert(!diag);
       
   338                diag = 1;
       
   339             }
       
   340          }
       
   341          xassert(diag);
       
   342       }
       
   343       /* free working arrays */
       
   344       xfree(ndx);
       
   345       xfree(rs_len);
       
   346       xfree(rs_head);
       
   347       xfree(rs_prev);
       
   348       xfree(rs_next);
       
   349       xfree(cs_prev);
       
   350       xfree(cs_next);
       
   351       /* return to the calling program */
       
   352       return size;
       
   353 }
       
   354 
       
   355 /*----------------------------------------------------------------------
       
   356 -- adv_basis - construct advanced initial LP basis.
       
   357 --
       
   358 -- *Synopsis*
       
   359 --
       
   360 -- #include "glpini.h"
       
   361 -- void adv_basis(glp_prob *lp);
       
   362 --
       
   363 -- *Description*
       
   364 --
       
   365 -- The routine adv_basis constructs an advanced initial basis for an LP
       
   366 -- problem object, which the parameter lp points to.
       
   367 --
       
   368 -- In order to build the initial basis the routine does the following:
       
   369 --
       
   370 -- 1) includes in the basis all non-fixed auxiliary variables;
       
   371 --
       
   372 -- 2) includes in the basis as many as possible non-fixed structural
       
   373 --    variables preserving triangular form of the basis matrix;
       
   374 --
       
   375 -- 3) includes in the basis appropriate (fixed) auxiliary variables
       
   376 --    in order to complete the basis.
       
   377 --
       
   378 -- As a result the initial basis has minimum of fixed variables and the
       
   379 -- corresponding basis matrix is triangular. */
       
   380 
       
   381 static int mat(void *info, int k, int ndx[])
       
   382 {     /* this auxiliary routine returns the pattern of a given row or
       
   383          a given column of the augmented constraint matrix A~ = (I|-A),
       
   384          in which columns of fixed variables are implicitly cleared */
       
   385       LPX *lp = info;
       
   386       int m = lpx_get_num_rows(lp);
       
   387       int n = lpx_get_num_cols(lp);
       
   388       int typx, i, j, lll, len = 0;
       
   389       if (k > 0)
       
   390       {  /* the pattern of the i-th row is required */
       
   391          i = +k;
       
   392          xassert(1 <= i && i <= m);
       
   393 #if 0 /* 22/XII-2003 */
       
   394          /* if the auxiliary variable x[i] is non-fixed, include its
       
   395             element (placed in the i-th column) in the pattern */
       
   396          lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
       
   397          if (typx != LPX_FX) ndx[++len] = i;
       
   398          /* include in the pattern elements placed in columns, which
       
   399             correspond to non-fixed structural varables */
       
   400          i_beg = aa_ptr[i];
       
   401          i_end = i_beg + aa_len[i] - 1;
       
   402          for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
       
   403          {  j = m + sv_ndx[i_ptr];
       
   404             lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
       
   405             if (typx != LPX_FX) ndx[++len] = j;
       
   406          }
       
   407 #else
       
   408          lll = lpx_get_mat_row(lp, i, ndx, NULL);
       
   409          for (k = 1; k <= lll; k++)
       
   410          {  lpx_get_col_bnds(lp, ndx[k], &typx, NULL, NULL);
       
   411             if (typx != LPX_FX) ndx[++len] = m + ndx[k];
       
   412          }
       
   413          lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
       
   414          if (typx != LPX_FX) ndx[++len] = i;
       
   415 #endif
       
   416       }
       
   417       else
       
   418       {  /* the pattern of the j-th column is required */
       
   419          j = -k;
       
   420          xassert(1 <= j && j <= m+n);
       
   421          /* if the (auxiliary or structural) variable x[j] is fixed,
       
   422             the pattern of its column is empty */
       
   423          if (j <= m)
       
   424             lpx_get_row_bnds(lp, j, &typx, NULL, NULL);
       
   425          else
       
   426             lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
       
   427          if (typx != LPX_FX)
       
   428          {  if (j <= m)
       
   429             {  /* x[j] is non-fixed auxiliary variable */
       
   430                ndx[++len] = j;
       
   431             }
       
   432             else
       
   433             {  /* x[j] is non-fixed structural variables */
       
   434 #if 0 /* 22/XII-2003 */
       
   435                j_beg = aa_ptr[j];
       
   436                j_end = j_beg + aa_len[j] - 1;
       
   437                for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++)
       
   438                   ndx[++len] = sv_ndx[j_ptr];
       
   439 #else
       
   440                len = lpx_get_mat_col(lp, j-m, ndx, NULL);
       
   441 #endif
       
   442             }
       
   443          }
       
   444       }
       
   445       /* return the length of the row/column pattern */
       
   446       return len;
       
   447 }
       
   448 
       
   449 static void adv_basis(glp_prob *lp)
       
   450 {     int m = lpx_get_num_rows(lp);
       
   451       int n = lpx_get_num_cols(lp);
       
   452       int i, j, jj, k, size;
       
   453       int *rn, *cn, *rn_inv, *cn_inv;
       
   454       int typx, *tagx = xcalloc(1+m+n, sizeof(int));
       
   455       double lb, ub;
       
   456       xprintf("Constructing initial basis...\n");
       
   457 #if 0 /* 13/V-2009 */
       
   458       if (m == 0)
       
   459          xerror("glp_adv_basis: problem has no rows\n");
       
   460       if (n == 0)
       
   461          xerror("glp_adv_basis: problem has no columns\n");
       
   462 #else
       
   463       if (m == 0 || n == 0)
       
   464       {  glp_std_basis(lp);
       
   465          return;
       
   466       }
       
   467 #endif
       
   468       /* use the routine triang (see above) to find maximal triangular
       
   469          part of the augmented constraint matrix A~ = (I|-A); in order
       
   470          to prevent columns of fixed variables to be included in the
       
   471          triangular part, such columns are implictly removed from the
       
   472          matrix A~ by the routine adv_mat */
       
   473       rn = xcalloc(1+m, sizeof(int));
       
   474       cn = xcalloc(1+m+n, sizeof(int));
       
   475       size = triang(m, m+n, lp, mat, rn, cn);
       
   476       if (lpx_get_int_parm(lp, LPX_K_MSGLEV) >= 3)
       
   477          xprintf("Size of triangular part = %d\n", size);
       
   478       /* the first size rows and columns of the matrix P*A~*Q (where
       
   479          P and Q are permutation matrices defined by the arrays rn and
       
   480          cn) form a lower triangular matrix; build the arrays (rn_inv
       
   481          and cn_inv), which define the matrices inv(P) and inv(Q) */
       
   482       rn_inv = xcalloc(1+m, sizeof(int));
       
   483       cn_inv = xcalloc(1+m+n, sizeof(int));
       
   484       for (i = 1; i <= m; i++) rn_inv[rn[i]] = i;
       
   485       for (j = 1; j <= m+n; j++) cn_inv[cn[j]] = j;
       
   486       /* include the columns of the matrix A~, which correspond to the
       
   487          first size columns of the matrix P*A~*Q, in the basis */
       
   488       for (k = 1; k <= m+n; k++) tagx[k] = -1;
       
   489       for (jj = 1; jj <= size; jj++)
       
   490       {  j = cn_inv[jj];
       
   491          /* the j-th column of A~ is the jj-th column of P*A~*Q */
       
   492          tagx[j] = LPX_BS;
       
   493       }
       
   494       /* if size < m, we need to add appropriate columns of auxiliary
       
   495          variables to the basis */
       
   496       for (jj = size + 1; jj <= m; jj++)
       
   497       {  /* the jj-th column of P*A~*Q should be replaced by the column
       
   498             of the auxiliary variable, for which the only unity element
       
   499             is placed in the position [jj,jj] */
       
   500          i = rn_inv[jj];
       
   501          /* the jj-th row of P*A~*Q is the i-th row of A~, but in the
       
   502             i-th row of A~ the unity element belongs to the i-th column
       
   503             of A~; therefore the disired column corresponds to the i-th
       
   504             auxiliary variable (note that this column doesn't belong to
       
   505             the triangular part found by the routine triang) */
       
   506          xassert(1 <= i && i <= m);
       
   507          xassert(cn[i] > size);
       
   508          tagx[i] = LPX_BS;
       
   509       }
       
   510       /* free working arrays */
       
   511       xfree(rn);
       
   512       xfree(cn);
       
   513       xfree(rn_inv);
       
   514       xfree(cn_inv);
       
   515       /* build tags of non-basic variables */
       
   516       for (k = 1; k <= m+n; k++)
       
   517       {  if (tagx[k] != LPX_BS)
       
   518          {  if (k <= m)
       
   519                lpx_get_row_bnds(lp, k, &typx, &lb, &ub);
       
   520             else
       
   521                lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub);
       
   522             switch (typx)
       
   523             {  case LPX_FR:
       
   524                   tagx[k] = LPX_NF; break;
       
   525                case LPX_LO:
       
   526                   tagx[k] = LPX_NL; break;
       
   527                case LPX_UP:
       
   528                   tagx[k] = LPX_NU; break;
       
   529                case LPX_DB:
       
   530                   tagx[k] =
       
   531                      (fabs(lb) <= fabs(ub) ? LPX_NL : LPX_NU);
       
   532                   break;
       
   533                case LPX_FX:
       
   534                   tagx[k] = LPX_NS; break;
       
   535                default:
       
   536                   xassert(typx != typx);
       
   537             }
       
   538          }
       
   539       }
       
   540       for (k = 1; k <= m+n; k++)
       
   541       {  if (k <= m)
       
   542             lpx_set_row_stat(lp, k, tagx[k]);
       
   543          else
       
   544             lpx_set_col_stat(lp, k-m, tagx[k]);
       
   545       }
       
   546       xfree(tagx);
       
   547       return;
       
   548 }
       
   549 
       
   550 /***********************************************************************
       
   551 *  NAME
       
   552 *
       
   553 *  glp_adv_basis - construct advanced initial LP basis
       
   554 *
       
   555 *  SYNOPSIS
       
   556 *
       
   557 *  void glp_adv_basis(glp_prob *lp, int flags);
       
   558 *
       
   559 *  DESCRIPTION
       
   560 *
       
   561 *  The routine glp_adv_basis constructs an advanced initial basis for
       
   562 *  the specified problem object.
       
   563 *
       
   564 *  The parameter flags is reserved for use in the future and must be
       
   565 *  specified as zero. */
       
   566 
       
   567 void glp_adv_basis(glp_prob *lp, int flags)
       
   568 {     if (flags != 0)
       
   569          xerror("glp_adv_basis: flags = %d; invalid flags\n", flags);
       
   570       if (lp->m == 0 || lp->n == 0)
       
   571          glp_std_basis(lp);
       
   572       else
       
   573          adv_basis(lp);
       
   574       return;
       
   575 }
       
   576 
       
   577 /* eof */