|
1 /* glpini01.c */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpapi.h" |
|
26 |
|
27 /*---------------------------------------------------------------------- |
|
28 -- triang - find maximal triangular part of a rectangular matrix. |
|
29 -- |
|
30 -- *Synopsis* |
|
31 -- |
|
32 -- int triang(int m, int n, |
|
33 -- void *info, int (*mat)(void *info, int k, int ndx[]), |
|
34 -- int rn[], int cn[]); |
|
35 -- |
|
36 -- *Description* |
|
37 -- |
|
38 -- For a given rectangular (sparse) matrix A with m rows and n columns |
|
39 -- the routine triang tries to find such permutation matrices P and Q |
|
40 -- that the first rows and columns of the matrix B = P*A*Q form a lower |
|
41 -- triangular submatrix of as greatest size as possible: |
|
42 -- |
|
43 -- 1 n |
|
44 -- 1 * . . . . . . x x x x x x |
|
45 -- * * . . . . . x x x x x x |
|
46 -- * * * . . . . x x x x x x |
|
47 -- * * * * . . . x x x x x x |
|
48 -- B = P*A*Q = * * * * * . . x x x x x x |
|
49 -- * * * * * * . x x x x x x |
|
50 -- * * * * * * * x x x x x x |
|
51 -- x x x x x x x x x x x x x |
|
52 -- x x x x x x x x x x x x x |
|
53 -- m x x x x x x x x x x x x x |
|
54 -- |
|
55 -- where: '*' - elements of the lower triangular part, '.' - structural |
|
56 -- zeros, 'x' - other (either non-zero or zero) elements. |
|
57 -- |
|
58 -- The parameter info is a transit pointer passed to the formal routine |
|
59 -- mat (see below). |
|
60 -- |
|
61 -- The formal routine mat specifies the given matrix A in both row- and |
|
62 -- column-wise formats. In order to obtain an i-th row of the matrix A |
|
63 -- the routine triang calls the routine mat with the parameter k = +i, |
|
64 -- 1 <= i <= m. In response the routine mat should store column indices |
|
65 -- of (non-zero) elements of the i-th row to the locations ndx[1], ..., |
|
66 -- ndx[len], where len is number of non-zeros in the i-th row returned |
|
67 -- on exit. Analogously, in order to obtain a j-th column of the matrix |
|
68 -- A, the routine mat is called with the parameter k = -j, 1 <= j <= n, |
|
69 -- and should return pattern of the j-th column in the same way as for |
|
70 -- row patterns. Note that the routine mat may be called more than once |
|
71 -- for the same rows and columns. |
|
72 -- |
|
73 -- On exit the routine computes two resultant arrays rn and cn, which |
|
74 -- define the permutation matrices P and Q, respectively. The array rn |
|
75 -- should have at least 1+m locations, where rn[i] = i' (1 <= i <= m) |
|
76 -- means that i-th row of the original matrix A corresponds to i'-th row |
|
77 -- of the matrix B = P*A*Q. Similarly, the array cn should have at least |
|
78 -- 1+n locations, where cn[j] = j' (1 <= j <= n) means that j-th column |
|
79 -- of the matrix A corresponds to j'-th column of the matrix B. |
|
80 -- |
|
81 -- *Returns* |
|
82 -- |
|
83 -- The routine triang returns the size of the lower tringular part of |
|
84 -- the matrix B = P*A*Q (see the figure above). |
|
85 -- |
|
86 -- *Complexity* |
|
87 -- |
|
88 -- The time complexity of the routine triang is O(nnz), where nnz is |
|
89 -- number of non-zeros in the given matrix A. |
|
90 -- |
|
91 -- *Algorithm* |
|
92 -- |
|
93 -- The routine triang starts from the matrix B = P*Q*A, where P and Q |
|
94 -- are unity matrices, so initially B = A. |
|
95 -- |
|
96 -- Before the next iteration B = (B1 | B2 | B3), where B1 is partially |
|
97 -- built a lower triangular submatrix, B2 is the active submatrix, and |
|
98 -- B3 is a submatrix that contains rejected columns. Thus, the current |
|
99 -- matrix B looks like follows (initially k1 = 1 and k2 = n): |
|
100 -- |
|
101 -- 1 k1 k2 n |
|
102 -- 1 x . . . . . . . . . . . . . # # # |
|
103 -- x x . . . . . . . . . . . . # # # |
|
104 -- x x x . . . . . . . . . . # # # # |
|
105 -- x x x x . . . . . . . . . # # # # |
|
106 -- x x x x x . . . . . . . # # # # # |
|
107 -- k1 x x x x x * * * * * * * # # # # # |
|
108 -- x x x x x * * * * * * * # # # # # |
|
109 -- x x x x x * * * * * * * # # # # # |
|
110 -- x x x x x * * * * * * * # # # # # |
|
111 -- m x x x x x * * * * * * * # # # # # |
|
112 -- <--B1---> <----B2-----> <---B3--> |
|
113 -- |
|
114 -- On each iteartion the routine looks for a singleton row, i.e. some |
|
115 -- row that has the only non-zero in the active submatrix B2. If such |
|
116 -- row exists and the corresponding non-zero is b[i,j], where (by the |
|
117 -- definition) k1 <= i <= m and k1 <= j <= k2, the routine permutes |
|
118 -- k1-th and i-th rows and k1-th and j-th columns of the matrix B (in |
|
119 -- order to place the element in the position b[k1,k1]), removes the |
|
120 -- k1-th column from the active submatrix B2, and adds this column to |
|
121 -- the submatrix B1. If no row singletons exist, but B2 is not empty |
|
122 -- yet, the routine chooses a j-th column, which has maximal number of |
|
123 -- non-zeros among other columns of B2, removes this column from B2 and |
|
124 -- adds it to the submatrix B3 in the hope that new row singletons will |
|
125 -- appear in the active submatrix. */ |
|
126 |
|
127 static int triang(int m, int n, |
|
128 void *info, int (*mat)(void *info, int k, int ndx[]), |
|
129 int rn[], int cn[]) |
|
130 { int *ndx; /* int ndx[1+max(m,n)]; */ |
|
131 /* this array is used for querying row and column patterns of the |
|
132 given matrix A (the third parameter to the routine mat) */ |
|
133 int *rs_len; /* int rs_len[1+m]; */ |
|
134 /* rs_len[0] is not used; |
|
135 rs_len[i], 1 <= i <= m, is number of non-zeros in the i-th row |
|
136 of the matrix A, which (non-zeros) belong to the current active |
|
137 submatrix */ |
|
138 int *rs_head; /* int rs_head[1+n]; */ |
|
139 /* rs_head[len], 0 <= len <= n, is the number i of the first row |
|
140 of the matrix A, for which rs_len[i] = len */ |
|
141 int *rs_prev; /* int rs_prev[1+m]; */ |
|
142 /* rs_prev[0] is not used; |
|
143 rs_prev[i], 1 <= i <= m, is a number i' of the previous row of |
|
144 the matrix A, for which rs_len[i] = rs_len[i'] (zero marks the |
|
145 end of this linked list) */ |
|
146 int *rs_next; /* int rs_next[1+m]; */ |
|
147 /* rs_next[0] is not used; |
|
148 rs_next[i], 1 <= i <= m, is a number i' of the next row of the |
|
149 matrix A, for which rs_len[i] = rs_len[i'] (zero marks the end |
|
150 this linked list) */ |
|
151 int cs_head; |
|
152 /* is a number j of the first column of the matrix A, which has |
|
153 maximal number of non-zeros among other columns */ |
|
154 int *cs_prev; /* cs_prev[1+n]; */ |
|
155 /* cs_prev[0] is not used; |
|
156 cs_prev[j], 1 <= j <= n, is a number of the previous column of |
|
157 the matrix A with the same or greater number of non-zeros than |
|
158 in the j-th column (zero marks the end of this linked list) */ |
|
159 int *cs_next; /* cs_next[1+n]; */ |
|
160 /* cs_next[0] is not used; |
|
161 cs_next[j], 1 <= j <= n, is a number of the next column of |
|
162 the matrix A with the same or lesser number of non-zeros than |
|
163 in the j-th column (zero marks the end of this linked list) */ |
|
164 int i, j, ii, jj, k1, k2, len, t, size = 0; |
|
165 int *head, *rn_inv, *cn_inv; |
|
166 if (!(m > 0 && n > 0)) |
|
167 xerror("triang: m = %d; n = %d; invalid dimension\n", m, n); |
|
168 /* allocate working arrays */ |
|
169 ndx = xcalloc(1+(m >= n ? m : n), sizeof(int)); |
|
170 rs_len = xcalloc(1+m, sizeof(int)); |
|
171 rs_head = xcalloc(1+n, sizeof(int)); |
|
172 rs_prev = xcalloc(1+m, sizeof(int)); |
|
173 rs_next = xcalloc(1+m, sizeof(int)); |
|
174 cs_prev = xcalloc(1+n, sizeof(int)); |
|
175 cs_next = xcalloc(1+n, sizeof(int)); |
|
176 /* build linked lists of columns of the matrix A with the same |
|
177 number of non-zeros */ |
|
178 head = rs_len; /* currently rs_len is used as working array */ |
|
179 for (len = 0; len <= m; len ++) head[len] = 0; |
|
180 for (j = 1; j <= n; j++) |
|
181 { /* obtain length of the j-th column */ |
|
182 len = mat(info, -j, ndx); |
|
183 xassert(0 <= len && len <= m); |
|
184 /* include the j-th column in the corresponding linked list */ |
|
185 cs_prev[j] = head[len]; |
|
186 head[len] = j; |
|
187 } |
|
188 /* merge all linked lists of columns in one linked list, where |
|
189 columns are ordered by descending of their lengths */ |
|
190 cs_head = 0; |
|
191 for (len = 0; len <= m; len++) |
|
192 { for (j = head[len]; j != 0; j = cs_prev[j]) |
|
193 { cs_next[j] = cs_head; |
|
194 cs_head = j; |
|
195 } |
|
196 } |
|
197 jj = 0; |
|
198 for (j = cs_head; j != 0; j = cs_next[j]) |
|
199 { cs_prev[j] = jj; |
|
200 jj = j; |
|
201 } |
|
202 /* build initial doubly linked lists of rows of the matrix A with |
|
203 the same number of non-zeros */ |
|
204 for (len = 0; len <= n; len++) rs_head[len] = 0; |
|
205 for (i = 1; i <= m; i++) |
|
206 { /* obtain length of the i-th row */ |
|
207 rs_len[i] = len = mat(info, +i, ndx); |
|
208 xassert(0 <= len && len <= n); |
|
209 /* include the i-th row in the correspondng linked list */ |
|
210 rs_prev[i] = 0; |
|
211 rs_next[i] = rs_head[len]; |
|
212 if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; |
|
213 rs_head[len] = i; |
|
214 } |
|
215 /* initially all rows and columns of the matrix A are active */ |
|
216 for (i = 1; i <= m; i++) rn[i] = 0; |
|
217 for (j = 1; j <= n; j++) cn[j] = 0; |
|
218 /* set initial bounds of the active submatrix */ |
|
219 k1 = 1, k2 = n; |
|
220 /* main loop starts here */ |
|
221 while (k1 <= k2) |
|
222 { i = rs_head[1]; |
|
223 if (i != 0) |
|
224 { /* the i-th row of the matrix A is a row singleton, since |
|
225 it has the only non-zero in the active submatrix */ |
|
226 xassert(rs_len[i] == 1); |
|
227 /* determine the number j of an active column of the matrix |
|
228 A, in which this non-zero is placed */ |
|
229 j = 0; |
|
230 t = mat(info, +i, ndx); |
|
231 xassert(0 <= t && t <= n); |
|
232 for (t = t; t >= 1; t--) |
|
233 { jj = ndx[t]; |
|
234 xassert(1 <= jj && jj <= n); |
|
235 if (cn[jj] == 0) |
|
236 { xassert(j == 0); |
|
237 j = jj; |
|
238 } |
|
239 } |
|
240 xassert(j != 0); |
|
241 /* the singleton is a[i,j]; move a[i,j] to the position |
|
242 b[k1,k1] of the matrix B */ |
|
243 rn[i] = cn[j] = k1; |
|
244 /* shift the left bound of the active submatrix */ |
|
245 k1++; |
|
246 /* increase the size of the lower triangular part */ |
|
247 size++; |
|
248 } |
|
249 else |
|
250 { /* the current active submatrix has no row singletons */ |
|
251 /* remove an active column with maximal number of non-zeros |
|
252 from the active submatrix */ |
|
253 j = cs_head; |
|
254 xassert(j != 0); |
|
255 cn[j] = k2; |
|
256 /* shift the right bound of the active submatrix */ |
|
257 k2--; |
|
258 } |
|
259 /* the j-th column of the matrix A has been removed from the |
|
260 active submatrix */ |
|
261 /* remove the j-th column from the linked list */ |
|
262 if (cs_prev[j] == 0) |
|
263 cs_head = cs_next[j]; |
|
264 else |
|
265 cs_next[cs_prev[j]] = cs_next[j]; |
|
266 if (cs_next[j] == 0) |
|
267 /* nop */; |
|
268 else |
|
269 cs_prev[cs_next[j]] = cs_prev[j]; |
|
270 /* go through non-zeros of the j-th columns and update active |
|
271 lengths of the corresponding rows */ |
|
272 t = mat(info, -j, ndx); |
|
273 xassert(0 <= t && t <= m); |
|
274 for (t = t; t >= 1; t--) |
|
275 { i = ndx[t]; |
|
276 xassert(1 <= i && i <= m); |
|
277 /* the non-zero a[i,j] has left the active submatrix */ |
|
278 len = rs_len[i]; |
|
279 xassert(len >= 1); |
|
280 /* remove the i-th row from the linked list of rows with |
|
281 active length len */ |
|
282 if (rs_prev[i] == 0) |
|
283 rs_head[len] = rs_next[i]; |
|
284 else |
|
285 rs_next[rs_prev[i]] = rs_next[i]; |
|
286 if (rs_next[i] == 0) |
|
287 /* nop */; |
|
288 else |
|
289 rs_prev[rs_next[i]] = rs_prev[i]; |
|
290 /* decrease the active length of the i-th row */ |
|
291 rs_len[i] = --len; |
|
292 /* return the i-th row to the corresponding linked list */ |
|
293 rs_prev[i] = 0; |
|
294 rs_next[i] = rs_head[len]; |
|
295 if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; |
|
296 rs_head[len] = i; |
|
297 } |
|
298 } |
|
299 /* other rows of the matrix A, which are still active, correspond |
|
300 to rows k1, ..., m of the matrix B (in arbitrary order) */ |
|
301 for (i = 1; i <= m; i++) if (rn[i] == 0) rn[i] = k1++; |
|
302 /* but for columns this is not needed, because now the submatrix |
|
303 B2 has no columns */ |
|
304 for (j = 1; j <= n; j++) xassert(cn[j] != 0); |
|
305 /* perform some optional checks */ |
|
306 /* make sure that rn is a permutation of {1, ..., m} and cn is a |
|
307 permutation of {1, ..., n} */ |
|
308 rn_inv = rs_len; /* used as working array */ |
|
309 for (ii = 1; ii <= m; ii++) rn_inv[ii] = 0; |
|
310 for (i = 1; i <= m; i++) |
|
311 { ii = rn[i]; |
|
312 xassert(1 <= ii && ii <= m); |
|
313 xassert(rn_inv[ii] == 0); |
|
314 rn_inv[ii] = i; |
|
315 } |
|
316 cn_inv = rs_head; /* used as working array */ |
|
317 for (jj = 1; jj <= n; jj++) cn_inv[jj] = 0; |
|
318 for (j = 1; j <= n; j++) |
|
319 { jj = cn[j]; |
|
320 xassert(1 <= jj && jj <= n); |
|
321 xassert(cn_inv[jj] == 0); |
|
322 cn_inv[jj] = j; |
|
323 } |
|
324 /* make sure that the matrix B = P*A*Q really has the form, which |
|
325 was declared */ |
|
326 for (ii = 1; ii <= size; ii++) |
|
327 { int diag = 0; |
|
328 i = rn_inv[ii]; |
|
329 t = mat(info, +i, ndx); |
|
330 xassert(0 <= t && t <= n); |
|
331 for (t = t; t >= 1; t--) |
|
332 { j = ndx[t]; |
|
333 xassert(1 <= j && j <= n); |
|
334 jj = cn[j]; |
|
335 if (jj <= size) xassert(jj <= ii); |
|
336 if (jj == ii) |
|
337 { xassert(!diag); |
|
338 diag = 1; |
|
339 } |
|
340 } |
|
341 xassert(diag); |
|
342 } |
|
343 /* free working arrays */ |
|
344 xfree(ndx); |
|
345 xfree(rs_len); |
|
346 xfree(rs_head); |
|
347 xfree(rs_prev); |
|
348 xfree(rs_next); |
|
349 xfree(cs_prev); |
|
350 xfree(cs_next); |
|
351 /* return to the calling program */ |
|
352 return size; |
|
353 } |
|
354 |
|
355 /*---------------------------------------------------------------------- |
|
356 -- adv_basis - construct advanced initial LP basis. |
|
357 -- |
|
358 -- *Synopsis* |
|
359 -- |
|
360 -- #include "glpini.h" |
|
361 -- void adv_basis(glp_prob *lp); |
|
362 -- |
|
363 -- *Description* |
|
364 -- |
|
365 -- The routine adv_basis constructs an advanced initial basis for an LP |
|
366 -- problem object, which the parameter lp points to. |
|
367 -- |
|
368 -- In order to build the initial basis the routine does the following: |
|
369 -- |
|
370 -- 1) includes in the basis all non-fixed auxiliary variables; |
|
371 -- |
|
372 -- 2) includes in the basis as many as possible non-fixed structural |
|
373 -- variables preserving triangular form of the basis matrix; |
|
374 -- |
|
375 -- 3) includes in the basis appropriate (fixed) auxiliary variables |
|
376 -- in order to complete the basis. |
|
377 -- |
|
378 -- As a result the initial basis has minimum of fixed variables and the |
|
379 -- corresponding basis matrix is triangular. */ |
|
380 |
|
381 static int mat(void *info, int k, int ndx[]) |
|
382 { /* this auxiliary routine returns the pattern of a given row or |
|
383 a given column of the augmented constraint matrix A~ = (I|-A), |
|
384 in which columns of fixed variables are implicitly cleared */ |
|
385 LPX *lp = info; |
|
386 int m = lpx_get_num_rows(lp); |
|
387 int n = lpx_get_num_cols(lp); |
|
388 int typx, i, j, lll, len = 0; |
|
389 if (k > 0) |
|
390 { /* the pattern of the i-th row is required */ |
|
391 i = +k; |
|
392 xassert(1 <= i && i <= m); |
|
393 #if 0 /* 22/XII-2003 */ |
|
394 /* if the auxiliary variable x[i] is non-fixed, include its |
|
395 element (placed in the i-th column) in the pattern */ |
|
396 lpx_get_row_bnds(lp, i, &typx, NULL, NULL); |
|
397 if (typx != LPX_FX) ndx[++len] = i; |
|
398 /* include in the pattern elements placed in columns, which |
|
399 correspond to non-fixed structural varables */ |
|
400 i_beg = aa_ptr[i]; |
|
401 i_end = i_beg + aa_len[i] - 1; |
|
402 for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
|
403 { j = m + sv_ndx[i_ptr]; |
|
404 lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL); |
|
405 if (typx != LPX_FX) ndx[++len] = j; |
|
406 } |
|
407 #else |
|
408 lll = lpx_get_mat_row(lp, i, ndx, NULL); |
|
409 for (k = 1; k <= lll; k++) |
|
410 { lpx_get_col_bnds(lp, ndx[k], &typx, NULL, NULL); |
|
411 if (typx != LPX_FX) ndx[++len] = m + ndx[k]; |
|
412 } |
|
413 lpx_get_row_bnds(lp, i, &typx, NULL, NULL); |
|
414 if (typx != LPX_FX) ndx[++len] = i; |
|
415 #endif |
|
416 } |
|
417 else |
|
418 { /* the pattern of the j-th column is required */ |
|
419 j = -k; |
|
420 xassert(1 <= j && j <= m+n); |
|
421 /* if the (auxiliary or structural) variable x[j] is fixed, |
|
422 the pattern of its column is empty */ |
|
423 if (j <= m) |
|
424 lpx_get_row_bnds(lp, j, &typx, NULL, NULL); |
|
425 else |
|
426 lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL); |
|
427 if (typx != LPX_FX) |
|
428 { if (j <= m) |
|
429 { /* x[j] is non-fixed auxiliary variable */ |
|
430 ndx[++len] = j; |
|
431 } |
|
432 else |
|
433 { /* x[j] is non-fixed structural variables */ |
|
434 #if 0 /* 22/XII-2003 */ |
|
435 j_beg = aa_ptr[j]; |
|
436 j_end = j_beg + aa_len[j] - 1; |
|
437 for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) |
|
438 ndx[++len] = sv_ndx[j_ptr]; |
|
439 #else |
|
440 len = lpx_get_mat_col(lp, j-m, ndx, NULL); |
|
441 #endif |
|
442 } |
|
443 } |
|
444 } |
|
445 /* return the length of the row/column pattern */ |
|
446 return len; |
|
447 } |
|
448 |
|
449 static void adv_basis(glp_prob *lp) |
|
450 { int m = lpx_get_num_rows(lp); |
|
451 int n = lpx_get_num_cols(lp); |
|
452 int i, j, jj, k, size; |
|
453 int *rn, *cn, *rn_inv, *cn_inv; |
|
454 int typx, *tagx = xcalloc(1+m+n, sizeof(int)); |
|
455 double lb, ub; |
|
456 xprintf("Constructing initial basis...\n"); |
|
457 #if 0 /* 13/V-2009 */ |
|
458 if (m == 0) |
|
459 xerror("glp_adv_basis: problem has no rows\n"); |
|
460 if (n == 0) |
|
461 xerror("glp_adv_basis: problem has no columns\n"); |
|
462 #else |
|
463 if (m == 0 || n == 0) |
|
464 { glp_std_basis(lp); |
|
465 return; |
|
466 } |
|
467 #endif |
|
468 /* use the routine triang (see above) to find maximal triangular |
|
469 part of the augmented constraint matrix A~ = (I|-A); in order |
|
470 to prevent columns of fixed variables to be included in the |
|
471 triangular part, such columns are implictly removed from the |
|
472 matrix A~ by the routine adv_mat */ |
|
473 rn = xcalloc(1+m, sizeof(int)); |
|
474 cn = xcalloc(1+m+n, sizeof(int)); |
|
475 size = triang(m, m+n, lp, mat, rn, cn); |
|
476 if (lpx_get_int_parm(lp, LPX_K_MSGLEV) >= 3) |
|
477 xprintf("Size of triangular part = %d\n", size); |
|
478 /* the first size rows and columns of the matrix P*A~*Q (where |
|
479 P and Q are permutation matrices defined by the arrays rn and |
|
480 cn) form a lower triangular matrix; build the arrays (rn_inv |
|
481 and cn_inv), which define the matrices inv(P) and inv(Q) */ |
|
482 rn_inv = xcalloc(1+m, sizeof(int)); |
|
483 cn_inv = xcalloc(1+m+n, sizeof(int)); |
|
484 for (i = 1; i <= m; i++) rn_inv[rn[i]] = i; |
|
485 for (j = 1; j <= m+n; j++) cn_inv[cn[j]] = j; |
|
486 /* include the columns of the matrix A~, which correspond to the |
|
487 first size columns of the matrix P*A~*Q, in the basis */ |
|
488 for (k = 1; k <= m+n; k++) tagx[k] = -1; |
|
489 for (jj = 1; jj <= size; jj++) |
|
490 { j = cn_inv[jj]; |
|
491 /* the j-th column of A~ is the jj-th column of P*A~*Q */ |
|
492 tagx[j] = LPX_BS; |
|
493 } |
|
494 /* if size < m, we need to add appropriate columns of auxiliary |
|
495 variables to the basis */ |
|
496 for (jj = size + 1; jj <= m; jj++) |
|
497 { /* the jj-th column of P*A~*Q should be replaced by the column |
|
498 of the auxiliary variable, for which the only unity element |
|
499 is placed in the position [jj,jj] */ |
|
500 i = rn_inv[jj]; |
|
501 /* the jj-th row of P*A~*Q is the i-th row of A~, but in the |
|
502 i-th row of A~ the unity element belongs to the i-th column |
|
503 of A~; therefore the disired column corresponds to the i-th |
|
504 auxiliary variable (note that this column doesn't belong to |
|
505 the triangular part found by the routine triang) */ |
|
506 xassert(1 <= i && i <= m); |
|
507 xassert(cn[i] > size); |
|
508 tagx[i] = LPX_BS; |
|
509 } |
|
510 /* free working arrays */ |
|
511 xfree(rn); |
|
512 xfree(cn); |
|
513 xfree(rn_inv); |
|
514 xfree(cn_inv); |
|
515 /* build tags of non-basic variables */ |
|
516 for (k = 1; k <= m+n; k++) |
|
517 { if (tagx[k] != LPX_BS) |
|
518 { if (k <= m) |
|
519 lpx_get_row_bnds(lp, k, &typx, &lb, &ub); |
|
520 else |
|
521 lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub); |
|
522 switch (typx) |
|
523 { case LPX_FR: |
|
524 tagx[k] = LPX_NF; break; |
|
525 case LPX_LO: |
|
526 tagx[k] = LPX_NL; break; |
|
527 case LPX_UP: |
|
528 tagx[k] = LPX_NU; break; |
|
529 case LPX_DB: |
|
530 tagx[k] = |
|
531 (fabs(lb) <= fabs(ub) ? LPX_NL : LPX_NU); |
|
532 break; |
|
533 case LPX_FX: |
|
534 tagx[k] = LPX_NS; break; |
|
535 default: |
|
536 xassert(typx != typx); |
|
537 } |
|
538 } |
|
539 } |
|
540 for (k = 1; k <= m+n; k++) |
|
541 { if (k <= m) |
|
542 lpx_set_row_stat(lp, k, tagx[k]); |
|
543 else |
|
544 lpx_set_col_stat(lp, k-m, tagx[k]); |
|
545 } |
|
546 xfree(tagx); |
|
547 return; |
|
548 } |
|
549 |
|
550 /*********************************************************************** |
|
551 * NAME |
|
552 * |
|
553 * glp_adv_basis - construct advanced initial LP basis |
|
554 * |
|
555 * SYNOPSIS |
|
556 * |
|
557 * void glp_adv_basis(glp_prob *lp, int flags); |
|
558 * |
|
559 * DESCRIPTION |
|
560 * |
|
561 * The routine glp_adv_basis constructs an advanced initial basis for |
|
562 * the specified problem object. |
|
563 * |
|
564 * The parameter flags is reserved for use in the future and must be |
|
565 * specified as zero. */ |
|
566 |
|
567 void glp_adv_basis(glp_prob *lp, int flags) |
|
568 { if (flags != 0) |
|
569 xerror("glp_adv_basis: flags = %d; invalid flags\n", flags); |
|
570 if (lp->m == 0 || lp->n == 0) |
|
571 glp_std_basis(lp); |
|
572 else |
|
573 adv_basis(lp); |
|
574 return; |
|
575 } |
|
576 |
|
577 /* eof */ |