src/glpini01.c
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 05 Dec 2010 17:35:23 +0100
changeset 2 4c8956a7bdf4
permissions -rw-r--r--
Set up CMAKE build environment
     1 /* glpini01.c */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpapi.h"
    26 
    27 /*----------------------------------------------------------------------
    28 -- triang - find maximal triangular part of a rectangular matrix.
    29 --
    30 -- *Synopsis*
    31 --
    32 -- int triang(int m, int n,
    33 --    void *info, int (*mat)(void *info, int k, int ndx[]),
    34 --    int rn[], int cn[]);
    35 --
    36 -- *Description*
    37 --
    38 -- For a given rectangular (sparse) matrix A with m rows and n columns
    39 -- the routine triang tries to find such permutation matrices P and Q
    40 -- that the first rows and columns of the matrix B = P*A*Q form a lower
    41 -- triangular submatrix of as greatest size as possible:
    42 --
    43 --                   1                       n
    44 --                1  * . . . . . . x x x x x x
    45 --                   * * . . . . . x x x x x x
    46 --                   * * * . . . . x x x x x x
    47 --                   * * * * . . . x x x x x x
    48 --    B = P*A*Q =    * * * * * . . x x x x x x
    49 --                   * * * * * * . x x x x x x
    50 --                   * * * * * * * x x x x x x
    51 --                   x x x x x x x x x x x x x
    52 --                   x x x x x x x x x x x x x
    53 --                m  x x x x x x x x x x x x x
    54 --
    55 -- where: '*' - elements of the lower triangular part, '.' - structural
    56 -- zeros, 'x' - other (either non-zero or zero) elements.
    57 --
    58 -- The parameter info is a transit pointer passed to the formal routine
    59 -- mat (see below).
    60 --
    61 -- The formal routine mat specifies the given matrix A in both row- and
    62 -- column-wise formats. In order to obtain an i-th row of the matrix A
    63 -- the routine triang calls the routine mat with the parameter k = +i,
    64 -- 1 <= i <= m. In response the routine mat should store column indices
    65 -- of (non-zero) elements of the i-th row to the locations ndx[1], ...,
    66 -- ndx[len], where len is number of non-zeros in the i-th row returned
    67 -- on exit. Analogously, in order to obtain a j-th column of the matrix
    68 -- A, the routine mat is called with the parameter k = -j, 1 <= j <= n,
    69 -- and should return pattern of the j-th column in the same way as for
    70 -- row patterns. Note that the routine mat may be called more than once
    71 -- for the same rows and columns.
    72 --
    73 -- On exit the routine computes two resultant arrays rn and cn, which
    74 -- define the permutation matrices P and Q, respectively. The array rn
    75 -- should have at least 1+m locations, where rn[i] = i' (1 <= i <= m)
    76 -- means that i-th row of the original matrix A corresponds to i'-th row
    77 -- of the matrix B = P*A*Q. Similarly, the array cn should have at least
    78 -- 1+n locations, where cn[j] = j' (1 <= j <= n) means that j-th column
    79 -- of the matrix A corresponds to j'-th column of the matrix B.
    80 --
    81 -- *Returns*
    82 --
    83 -- The routine triang returns the size of the lower tringular part of
    84 -- the matrix B = P*A*Q (see the figure above).
    85 --
    86 -- *Complexity*
    87 --
    88 -- The time complexity of the routine triang is O(nnz), where nnz is
    89 -- number of non-zeros in the given matrix A.
    90 --
    91 -- *Algorithm*
    92 --
    93 -- The routine triang starts from the matrix B = P*Q*A, where P and Q
    94 -- are unity matrices, so initially B = A.
    95 --
    96 -- Before the next iteration B = (B1 | B2 | B3), where B1 is partially
    97 -- built a lower triangular submatrix, B2 is the active submatrix, and
    98 -- B3 is a submatrix that contains rejected columns. Thus, the current
    99 -- matrix B looks like follows (initially k1 = 1 and k2 = n):
   100 --
   101 --       1         k1         k2         n
   102 --    1  x . . . . . . . . . . . . . # # #
   103 --       x x . . . . . . . . . . . . # # #
   104 --       x x x . . . . . . . . . . # # # #
   105 --       x x x x . . . . . . . . . # # # #
   106 --       x x x x x . . . . . . . # # # # #
   107 --    k1 x x x x x * * * * * * * # # # # #
   108 --       x x x x x * * * * * * * # # # # #
   109 --       x x x x x * * * * * * * # # # # #
   110 --       x x x x x * * * * * * * # # # # #
   111 --    m  x x x x x * * * * * * * # # # # #
   112 --       <--B1---> <----B2-----> <---B3-->
   113 --
   114 -- On each iteartion the routine looks for a singleton row, i.e. some
   115 -- row that has the only non-zero in the active submatrix B2. If such
   116 -- row exists and the corresponding non-zero is b[i,j], where (by the
   117 -- definition) k1 <= i <= m and k1 <= j <= k2, the routine permutes
   118 -- k1-th and i-th rows and k1-th and j-th columns of the matrix B (in
   119 -- order to place the element in the position b[k1,k1]), removes the
   120 -- k1-th column from the active submatrix B2, and adds this column to
   121 -- the submatrix B1. If no row singletons exist, but B2 is not empty
   122 -- yet, the routine chooses a j-th column, which has maximal number of
   123 -- non-zeros among other columns of B2, removes this column from B2 and
   124 -- adds it to the submatrix B3 in the hope that new row singletons will
   125 -- appear in the active submatrix. */
   126 
   127 static int triang(int m, int n,
   128       void *info, int (*mat)(void *info, int k, int ndx[]),
   129       int rn[], int cn[])
   130 {     int *ndx; /* int ndx[1+max(m,n)]; */
   131       /* this array is used for querying row and column patterns of the
   132          given matrix A (the third parameter to the routine mat) */
   133       int *rs_len; /* int rs_len[1+m]; */
   134       /* rs_len[0] is not used;
   135          rs_len[i], 1 <= i <= m, is number of non-zeros in the i-th row
   136          of the matrix A, which (non-zeros) belong to the current active
   137          submatrix */
   138       int *rs_head; /* int rs_head[1+n]; */
   139       /* rs_head[len], 0 <= len <= n, is the number i of the first row
   140          of the matrix A, for which rs_len[i] = len */
   141       int *rs_prev; /* int rs_prev[1+m]; */
   142       /* rs_prev[0] is not used;
   143          rs_prev[i], 1 <= i <= m, is a number i' of the previous row of
   144          the matrix A, for which rs_len[i] = rs_len[i'] (zero marks the
   145          end of this linked list) */
   146       int *rs_next; /* int rs_next[1+m]; */
   147       /* rs_next[0] is not used;
   148          rs_next[i], 1 <= i <= m, is a number i' of the next row of the
   149          matrix A, for which rs_len[i] = rs_len[i'] (zero marks the end
   150          this linked list) */
   151       int cs_head;
   152       /* is a number j of the first column of the matrix A, which has
   153          maximal number of non-zeros among other columns */
   154       int *cs_prev; /* cs_prev[1+n]; */
   155       /* cs_prev[0] is not used;
   156          cs_prev[j], 1 <= j <= n, is a number of the previous column of
   157          the matrix A with the same or greater number of non-zeros than
   158          in the j-th column (zero marks the end of this linked list) */
   159       int *cs_next; /* cs_next[1+n]; */
   160       /* cs_next[0] is not used;
   161          cs_next[j], 1 <= j <= n, is a number of the next column of
   162          the matrix A with the same or lesser number of non-zeros than
   163          in the j-th column (zero marks the end of this linked list) */
   164       int i, j, ii, jj, k1, k2, len, t, size = 0;
   165       int *head, *rn_inv, *cn_inv;
   166       if (!(m > 0 && n > 0))
   167          xerror("triang: m = %d; n = %d; invalid dimension\n", m, n);
   168       /* allocate working arrays */
   169       ndx = xcalloc(1+(m >= n ? m : n), sizeof(int));
   170       rs_len = xcalloc(1+m, sizeof(int));
   171       rs_head = xcalloc(1+n, sizeof(int));
   172       rs_prev = xcalloc(1+m, sizeof(int));
   173       rs_next = xcalloc(1+m, sizeof(int));
   174       cs_prev = xcalloc(1+n, sizeof(int));
   175       cs_next = xcalloc(1+n, sizeof(int));
   176       /* build linked lists of columns of the matrix A with the same
   177          number of non-zeros */
   178       head = rs_len; /* currently rs_len is used as working array */
   179       for (len = 0; len <= m; len ++) head[len] = 0;
   180       for (j = 1; j <= n; j++)
   181       {  /* obtain length of the j-th column */
   182          len = mat(info, -j, ndx);
   183          xassert(0 <= len && len <= m);
   184          /* include the j-th column in the corresponding linked list */
   185          cs_prev[j] = head[len];
   186          head[len] = j;
   187       }
   188       /* merge all linked lists of columns in one linked list, where
   189          columns are ordered by descending of their lengths */
   190       cs_head = 0;
   191       for (len = 0; len <= m; len++)
   192       {  for (j = head[len]; j != 0; j = cs_prev[j])
   193          {  cs_next[j] = cs_head;
   194             cs_head = j;
   195          }
   196       }
   197       jj = 0;
   198       for (j = cs_head; j != 0; j = cs_next[j])
   199       {  cs_prev[j] = jj;
   200          jj = j;
   201       }
   202       /* build initial doubly linked lists of rows of the matrix A with
   203          the same number of non-zeros */
   204       for (len = 0; len <= n; len++) rs_head[len] = 0;
   205       for (i = 1; i <= m; i++)
   206       {  /* obtain length of the i-th row */
   207          rs_len[i] = len = mat(info, +i, ndx);
   208          xassert(0 <= len && len <= n);
   209          /* include the i-th row in the correspondng linked list */
   210          rs_prev[i] = 0;
   211          rs_next[i] = rs_head[len];
   212          if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
   213          rs_head[len] = i;
   214       }
   215       /* initially all rows and columns of the matrix A are active */
   216       for (i = 1; i <= m; i++) rn[i] = 0;
   217       for (j = 1; j <= n; j++) cn[j] = 0;
   218       /* set initial bounds of the active submatrix */
   219       k1 = 1, k2 = n;
   220       /* main loop starts here */
   221       while (k1 <= k2)
   222       {  i = rs_head[1];
   223          if (i != 0)
   224          {  /* the i-th row of the matrix A is a row singleton, since
   225                it has the only non-zero in the active submatrix */
   226             xassert(rs_len[i] == 1);
   227             /* determine the number j of an active column of the matrix
   228                A, in which this non-zero is placed */
   229             j = 0;
   230             t = mat(info, +i, ndx);
   231             xassert(0 <= t && t <= n);
   232             for (t = t; t >= 1; t--)
   233             {  jj = ndx[t];
   234                xassert(1 <= jj && jj <= n);
   235                if (cn[jj] == 0)
   236                {  xassert(j == 0);
   237                   j = jj;
   238                }
   239             }
   240             xassert(j != 0);
   241             /* the singleton is a[i,j]; move a[i,j] to the position
   242                b[k1,k1] of the matrix B */
   243             rn[i] = cn[j] = k1;
   244             /* shift the left bound of the active submatrix */
   245             k1++;
   246             /* increase the size of the lower triangular part */
   247             size++;
   248          }
   249          else
   250          {  /* the current active submatrix has no row singletons */
   251             /* remove an active column with maximal number of non-zeros
   252                from the active submatrix */
   253             j = cs_head;
   254             xassert(j != 0);
   255             cn[j] = k2;
   256             /* shift the right bound of the active submatrix */
   257             k2--;
   258          }
   259          /* the j-th column of the matrix A has been removed from the
   260             active submatrix */
   261          /* remove the j-th column from the linked list */
   262          if (cs_prev[j] == 0)
   263             cs_head = cs_next[j];
   264          else
   265             cs_next[cs_prev[j]] = cs_next[j];
   266          if (cs_next[j] == 0)
   267             /* nop */;
   268          else
   269             cs_prev[cs_next[j]] = cs_prev[j];
   270          /* go through non-zeros of the j-th columns and update active
   271             lengths of the corresponding rows */
   272          t = mat(info, -j, ndx);
   273          xassert(0 <= t && t <= m);
   274          for (t = t; t >= 1; t--)
   275          {  i = ndx[t];
   276             xassert(1 <= i && i <= m);
   277             /* the non-zero a[i,j] has left the active submatrix */
   278             len = rs_len[i];
   279             xassert(len >= 1);
   280             /* remove the i-th row from the linked list of rows with
   281                active length len */
   282             if (rs_prev[i] == 0)
   283                rs_head[len] = rs_next[i];
   284             else
   285                rs_next[rs_prev[i]] = rs_next[i];
   286             if (rs_next[i] == 0)
   287                /* nop */;
   288             else
   289                rs_prev[rs_next[i]] = rs_prev[i];
   290             /* decrease the active length of the i-th row */
   291             rs_len[i] = --len;
   292             /* return the i-th row to the corresponding linked list */
   293             rs_prev[i] = 0;
   294             rs_next[i] = rs_head[len];
   295             if (rs_next[i] != 0) rs_prev[rs_next[i]] = i;
   296             rs_head[len] = i;
   297          }
   298       }
   299       /* other rows of the matrix A, which are still active, correspond
   300          to rows k1, ..., m of the matrix B (in arbitrary order) */
   301       for (i = 1; i <= m; i++) if (rn[i] == 0) rn[i] = k1++;
   302       /* but for columns this is not needed, because now the submatrix
   303          B2 has no columns */
   304       for (j = 1; j <= n; j++) xassert(cn[j] != 0);
   305       /* perform some optional checks */
   306       /* make sure that rn is a permutation of {1, ..., m} and cn is a
   307          permutation of {1, ..., n} */
   308       rn_inv = rs_len; /* used as working array */
   309       for (ii = 1; ii <= m; ii++) rn_inv[ii] = 0;
   310       for (i = 1; i <= m; i++)
   311       {  ii = rn[i];
   312          xassert(1 <= ii && ii <= m);
   313          xassert(rn_inv[ii] == 0);
   314          rn_inv[ii] = i;
   315       }
   316       cn_inv = rs_head; /* used as working array */
   317       for (jj = 1; jj <= n; jj++) cn_inv[jj] = 0;
   318       for (j = 1; j <= n; j++)
   319       {  jj = cn[j];
   320          xassert(1 <= jj && jj <= n);
   321          xassert(cn_inv[jj] == 0);
   322          cn_inv[jj] = j;
   323       }
   324       /* make sure that the matrix B = P*A*Q really has the form, which
   325          was declared */
   326       for (ii = 1; ii <= size; ii++)
   327       {  int diag = 0;
   328          i = rn_inv[ii];
   329          t = mat(info, +i, ndx);
   330          xassert(0 <= t && t <= n);
   331          for (t = t; t >= 1; t--)
   332          {  j = ndx[t];
   333             xassert(1 <= j && j <= n);
   334             jj = cn[j];
   335             if (jj <= size) xassert(jj <= ii);
   336             if (jj == ii)
   337             {  xassert(!diag);
   338                diag = 1;
   339             }
   340          }
   341          xassert(diag);
   342       }
   343       /* free working arrays */
   344       xfree(ndx);
   345       xfree(rs_len);
   346       xfree(rs_head);
   347       xfree(rs_prev);
   348       xfree(rs_next);
   349       xfree(cs_prev);
   350       xfree(cs_next);
   351       /* return to the calling program */
   352       return size;
   353 }
   354 
   355 /*----------------------------------------------------------------------
   356 -- adv_basis - construct advanced initial LP basis.
   357 --
   358 -- *Synopsis*
   359 --
   360 -- #include "glpini.h"
   361 -- void adv_basis(glp_prob *lp);
   362 --
   363 -- *Description*
   364 --
   365 -- The routine adv_basis constructs an advanced initial basis for an LP
   366 -- problem object, which the parameter lp points to.
   367 --
   368 -- In order to build the initial basis the routine does the following:
   369 --
   370 -- 1) includes in the basis all non-fixed auxiliary variables;
   371 --
   372 -- 2) includes in the basis as many as possible non-fixed structural
   373 --    variables preserving triangular form of the basis matrix;
   374 --
   375 -- 3) includes in the basis appropriate (fixed) auxiliary variables
   376 --    in order to complete the basis.
   377 --
   378 -- As a result the initial basis has minimum of fixed variables and the
   379 -- corresponding basis matrix is triangular. */
   380 
   381 static int mat(void *info, int k, int ndx[])
   382 {     /* this auxiliary routine returns the pattern of a given row or
   383          a given column of the augmented constraint matrix A~ = (I|-A),
   384          in which columns of fixed variables are implicitly cleared */
   385       LPX *lp = info;
   386       int m = lpx_get_num_rows(lp);
   387       int n = lpx_get_num_cols(lp);
   388       int typx, i, j, lll, len = 0;
   389       if (k > 0)
   390       {  /* the pattern of the i-th row is required */
   391          i = +k;
   392          xassert(1 <= i && i <= m);
   393 #if 0 /* 22/XII-2003 */
   394          /* if the auxiliary variable x[i] is non-fixed, include its
   395             element (placed in the i-th column) in the pattern */
   396          lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
   397          if (typx != LPX_FX) ndx[++len] = i;
   398          /* include in the pattern elements placed in columns, which
   399             correspond to non-fixed structural varables */
   400          i_beg = aa_ptr[i];
   401          i_end = i_beg + aa_len[i] - 1;
   402          for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++)
   403          {  j = m + sv_ndx[i_ptr];
   404             lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
   405             if (typx != LPX_FX) ndx[++len] = j;
   406          }
   407 #else
   408          lll = lpx_get_mat_row(lp, i, ndx, NULL);
   409          for (k = 1; k <= lll; k++)
   410          {  lpx_get_col_bnds(lp, ndx[k], &typx, NULL, NULL);
   411             if (typx != LPX_FX) ndx[++len] = m + ndx[k];
   412          }
   413          lpx_get_row_bnds(lp, i, &typx, NULL, NULL);
   414          if (typx != LPX_FX) ndx[++len] = i;
   415 #endif
   416       }
   417       else
   418       {  /* the pattern of the j-th column is required */
   419          j = -k;
   420          xassert(1 <= j && j <= m+n);
   421          /* if the (auxiliary or structural) variable x[j] is fixed,
   422             the pattern of its column is empty */
   423          if (j <= m)
   424             lpx_get_row_bnds(lp, j, &typx, NULL, NULL);
   425          else
   426             lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL);
   427          if (typx != LPX_FX)
   428          {  if (j <= m)
   429             {  /* x[j] is non-fixed auxiliary variable */
   430                ndx[++len] = j;
   431             }
   432             else
   433             {  /* x[j] is non-fixed structural variables */
   434 #if 0 /* 22/XII-2003 */
   435                j_beg = aa_ptr[j];
   436                j_end = j_beg + aa_len[j] - 1;
   437                for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++)
   438                   ndx[++len] = sv_ndx[j_ptr];
   439 #else
   440                len = lpx_get_mat_col(lp, j-m, ndx, NULL);
   441 #endif
   442             }
   443          }
   444       }
   445       /* return the length of the row/column pattern */
   446       return len;
   447 }
   448 
   449 static void adv_basis(glp_prob *lp)
   450 {     int m = lpx_get_num_rows(lp);
   451       int n = lpx_get_num_cols(lp);
   452       int i, j, jj, k, size;
   453       int *rn, *cn, *rn_inv, *cn_inv;
   454       int typx, *tagx = xcalloc(1+m+n, sizeof(int));
   455       double lb, ub;
   456       xprintf("Constructing initial basis...\n");
   457 #if 0 /* 13/V-2009 */
   458       if (m == 0)
   459          xerror("glp_adv_basis: problem has no rows\n");
   460       if (n == 0)
   461          xerror("glp_adv_basis: problem has no columns\n");
   462 #else
   463       if (m == 0 || n == 0)
   464       {  glp_std_basis(lp);
   465          return;
   466       }
   467 #endif
   468       /* use the routine triang (see above) to find maximal triangular
   469          part of the augmented constraint matrix A~ = (I|-A); in order
   470          to prevent columns of fixed variables to be included in the
   471          triangular part, such columns are implictly removed from the
   472          matrix A~ by the routine adv_mat */
   473       rn = xcalloc(1+m, sizeof(int));
   474       cn = xcalloc(1+m+n, sizeof(int));
   475       size = triang(m, m+n, lp, mat, rn, cn);
   476       if (lpx_get_int_parm(lp, LPX_K_MSGLEV) >= 3)
   477          xprintf("Size of triangular part = %d\n", size);
   478       /* the first size rows and columns of the matrix P*A~*Q (where
   479          P and Q are permutation matrices defined by the arrays rn and
   480          cn) form a lower triangular matrix; build the arrays (rn_inv
   481          and cn_inv), which define the matrices inv(P) and inv(Q) */
   482       rn_inv = xcalloc(1+m, sizeof(int));
   483       cn_inv = xcalloc(1+m+n, sizeof(int));
   484       for (i = 1; i <= m; i++) rn_inv[rn[i]] = i;
   485       for (j = 1; j <= m+n; j++) cn_inv[cn[j]] = j;
   486       /* include the columns of the matrix A~, which correspond to the
   487          first size columns of the matrix P*A~*Q, in the basis */
   488       for (k = 1; k <= m+n; k++) tagx[k] = -1;
   489       for (jj = 1; jj <= size; jj++)
   490       {  j = cn_inv[jj];
   491          /* the j-th column of A~ is the jj-th column of P*A~*Q */
   492          tagx[j] = LPX_BS;
   493       }
   494       /* if size < m, we need to add appropriate columns of auxiliary
   495          variables to the basis */
   496       for (jj = size + 1; jj <= m; jj++)
   497       {  /* the jj-th column of P*A~*Q should be replaced by the column
   498             of the auxiliary variable, for which the only unity element
   499             is placed in the position [jj,jj] */
   500          i = rn_inv[jj];
   501          /* the jj-th row of P*A~*Q is the i-th row of A~, but in the
   502             i-th row of A~ the unity element belongs to the i-th column
   503             of A~; therefore the disired column corresponds to the i-th
   504             auxiliary variable (note that this column doesn't belong to
   505             the triangular part found by the routine triang) */
   506          xassert(1 <= i && i <= m);
   507          xassert(cn[i] > size);
   508          tagx[i] = LPX_BS;
   509       }
   510       /* free working arrays */
   511       xfree(rn);
   512       xfree(cn);
   513       xfree(rn_inv);
   514       xfree(cn_inv);
   515       /* build tags of non-basic variables */
   516       for (k = 1; k <= m+n; k++)
   517       {  if (tagx[k] != LPX_BS)
   518          {  if (k <= m)
   519                lpx_get_row_bnds(lp, k, &typx, &lb, &ub);
   520             else
   521                lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub);
   522             switch (typx)
   523             {  case LPX_FR:
   524                   tagx[k] = LPX_NF; break;
   525                case LPX_LO:
   526                   tagx[k] = LPX_NL; break;
   527                case LPX_UP:
   528                   tagx[k] = LPX_NU; break;
   529                case LPX_DB:
   530                   tagx[k] =
   531                      (fabs(lb) <= fabs(ub) ? LPX_NL : LPX_NU);
   532                   break;
   533                case LPX_FX:
   534                   tagx[k] = LPX_NS; break;
   535                default:
   536                   xassert(typx != typx);
   537             }
   538          }
   539       }
   540       for (k = 1; k <= m+n; k++)
   541       {  if (k <= m)
   542             lpx_set_row_stat(lp, k, tagx[k]);
   543          else
   544             lpx_set_col_stat(lp, k-m, tagx[k]);
   545       }
   546       xfree(tagx);
   547       return;
   548 }
   549 
   550 /***********************************************************************
   551 *  NAME
   552 *
   553 *  glp_adv_basis - construct advanced initial LP basis
   554 *
   555 *  SYNOPSIS
   556 *
   557 *  void glp_adv_basis(glp_prob *lp, int flags);
   558 *
   559 *  DESCRIPTION
   560 *
   561 *  The routine glp_adv_basis constructs an advanced initial basis for
   562 *  the specified problem object.
   563 *
   564 *  The parameter flags is reserved for use in the future and must be
   565 *  specified as zero. */
   566 
   567 void glp_adv_basis(glp_prob *lp, int flags)
   568 {     if (flags != 0)
   569          xerror("glp_adv_basis: flags = %d; invalid flags\n", flags);
   570       if (lp->m == 0 || lp->n == 0)
   571          glp_std_basis(lp);
   572       else
   573          adv_basis(lp);
   574       return;
   575 }
   576 
   577 /* eof */