|
1 /* glpnet08.c */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Two subroutines sub() and wclique() below are intended to find a |
|
7 * maximum weight clique in a given undirected graph. These subroutines |
|
8 * are slightly modified version of the program WCLIQUE developed by |
|
9 * Patric Ostergard <http://www.tcs.hut.fi/~pat/wclique.html> and based |
|
10 * on ideas from the article "P. R. J. Ostergard, A new algorithm for |
|
11 * the maximum-weight clique problem, submitted for publication", which |
|
12 * in turn is a generalization of the algorithm for unweighted graphs |
|
13 * presented in "P. R. J. Ostergard, A fast algorithm for the maximum |
|
14 * clique problem, submitted for publication". |
|
15 * |
|
16 * USED WITH PERMISSION OF THE AUTHOR OF THE ORIGINAL CODE. |
|
17 * |
|
18 * Changes were made by Andrew Makhorin <mao@gnu.org>. |
|
19 * |
|
20 * GLPK is free software: you can redistribute it and/or modify it |
|
21 * under the terms of the GNU General Public License as published by |
|
22 * the Free Software Foundation, either version 3 of the License, or |
|
23 * (at your option) any later version. |
|
24 * |
|
25 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
26 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
27 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
28 * License for more details. |
|
29 * |
|
30 * You should have received a copy of the GNU General Public License |
|
31 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
32 ***********************************************************************/ |
|
33 |
|
34 #include "glpenv.h" |
|
35 #include "glpnet.h" |
|
36 |
|
37 /*********************************************************************** |
|
38 * NAME |
|
39 * |
|
40 * wclique - find maximum weight clique with Ostergard's algorithm |
|
41 * |
|
42 * SYNOPSIS |
|
43 * |
|
44 * int wclique(int n, const int w[], const unsigned char a[], |
|
45 * int ind[]); |
|
46 * |
|
47 * DESCRIPTION |
|
48 * |
|
49 * The routine wclique finds a maximum weight clique in an undirected |
|
50 * graph with Ostergard's algorithm. |
|
51 * |
|
52 * INPUT PARAMETERS |
|
53 * |
|
54 * n is the number of vertices, n > 0. |
|
55 * |
|
56 * w[i], i = 1,...,n, is a weight of vertex i. |
|
57 * |
|
58 * a[*] is the strict (without main diagonal) lower triangle of the |
|
59 * graph adjacency matrix in packed format. |
|
60 * |
|
61 * OUTPUT PARAMETER |
|
62 * |
|
63 * ind[k], k = 1,...,size, is the number of a vertex included in the |
|
64 * clique found, 1 <= ind[k] <= n, where size is the number of vertices |
|
65 * in the clique returned on exit. |
|
66 * |
|
67 * RETURNS |
|
68 * |
|
69 * The routine returns the clique size, i.e. the number of vertices in |
|
70 * the clique. */ |
|
71 |
|
72 struct csa |
|
73 { /* common storage area */ |
|
74 int n; |
|
75 /* number of vertices */ |
|
76 const int *wt; /* int wt[0:n-1]; */ |
|
77 /* weights */ |
|
78 const unsigned char *a; |
|
79 /* adjacency matrix (packed lower triangle without main diag.) */ |
|
80 int record; |
|
81 /* weight of best clique */ |
|
82 int rec_level; |
|
83 /* number of vertices in best clique */ |
|
84 int *rec; /* int rec[0:n-1]; */ |
|
85 /* best clique so far */ |
|
86 int *clique; /* int clique[0:n-1]; */ |
|
87 /* table for pruning */ |
|
88 int *set; /* int set[0:n-1]; */ |
|
89 /* current clique */ |
|
90 }; |
|
91 |
|
92 #define n (csa->n) |
|
93 #define wt (csa->wt) |
|
94 #define a (csa->a) |
|
95 #define record (csa->record) |
|
96 #define rec_level (csa->rec_level) |
|
97 #define rec (csa->rec) |
|
98 #define clique (csa->clique) |
|
99 #define set (csa->set) |
|
100 |
|
101 #if 0 |
|
102 static int is_edge(struct csa *csa, int i, int j) |
|
103 { /* if there is arc (i,j), the routine returns true; otherwise |
|
104 false; 0 <= i, j < n */ |
|
105 int k; |
|
106 xassert(0 <= i && i < n); |
|
107 xassert(0 <= j && j < n); |
|
108 if (i == j) return 0; |
|
109 if (i < j) k = i, i = j, j = k; |
|
110 k = (i * (i - 1)) / 2 + j; |
|
111 return a[k / CHAR_BIT] & |
|
112 (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT)); |
|
113 } |
|
114 #else |
|
115 #define is_edge(csa, i, j) ((i) == (j) ? 0 : \ |
|
116 (i) > (j) ? is_edge1(i, j) : is_edge1(j, i)) |
|
117 #define is_edge1(i, j) is_edge2(((i) * ((i) - 1)) / 2 + (j)) |
|
118 #define is_edge2(k) (a[(k) / CHAR_BIT] & \ |
|
119 (unsigned char)(1 << ((CHAR_BIT - 1) - (k) % CHAR_BIT))) |
|
120 #endif |
|
121 |
|
122 static void sub(struct csa *csa, int ct, int table[], int level, |
|
123 int weight, int l_weight) |
|
124 { int i, j, k, curr_weight, left_weight, *p1, *p2, *newtable; |
|
125 newtable = xcalloc(n, sizeof(int)); |
|
126 if (ct <= 0) |
|
127 { /* 0 or 1 elements left; include these */ |
|
128 if (ct == 0) |
|
129 { set[level++] = table[0]; |
|
130 weight += l_weight; |
|
131 } |
|
132 if (weight > record) |
|
133 { record = weight; |
|
134 rec_level = level; |
|
135 for (i = 0; i < level; i++) rec[i] = set[i]; |
|
136 } |
|
137 goto done; |
|
138 } |
|
139 for (i = ct; i >= 0; i--) |
|
140 { if ((level == 0) && (i < ct)) goto done; |
|
141 k = table[i]; |
|
142 if ((level > 0) && (clique[k] <= (record - weight))) |
|
143 goto done; /* prune */ |
|
144 set[level] = k; |
|
145 curr_weight = weight + wt[k]; |
|
146 l_weight -= wt[k]; |
|
147 if (l_weight <= (record - curr_weight)) |
|
148 goto done; /* prune */ |
|
149 p1 = newtable; |
|
150 p2 = table; |
|
151 left_weight = 0; |
|
152 while (p2 < table + i) |
|
153 { j = *p2++; |
|
154 if (is_edge(csa, j, k)) |
|
155 { *p1++ = j; |
|
156 left_weight += wt[j]; |
|
157 } |
|
158 } |
|
159 if (left_weight <= (record - curr_weight)) continue; |
|
160 sub(csa, p1 - newtable - 1, newtable, level + 1, curr_weight, |
|
161 left_weight); |
|
162 } |
|
163 done: xfree(newtable); |
|
164 return; |
|
165 } |
|
166 |
|
167 int wclique(int _n, const int w[], const unsigned char _a[], int ind[]) |
|
168 { struct csa _csa, *csa = &_csa; |
|
169 int i, j, p, max_wt, max_nwt, wth, *used, *nwt, *pos; |
|
170 glp_long timer; |
|
171 n = _n; |
|
172 xassert(n > 0); |
|
173 wt = &w[1]; |
|
174 a = _a; |
|
175 record = 0; |
|
176 rec_level = 0; |
|
177 rec = &ind[1]; |
|
178 clique = xcalloc(n, sizeof(int)); |
|
179 set = xcalloc(n, sizeof(int)); |
|
180 used = xcalloc(n, sizeof(int)); |
|
181 nwt = xcalloc(n, sizeof(int)); |
|
182 pos = xcalloc(n, sizeof(int)); |
|
183 /* start timer */ |
|
184 timer = xtime(); |
|
185 /* order vertices */ |
|
186 for (i = 0; i < n; i++) |
|
187 { nwt[i] = 0; |
|
188 for (j = 0; j < n; j++) |
|
189 if (is_edge(csa, i, j)) nwt[i] += wt[j]; |
|
190 } |
|
191 for (i = 0; i < n; i++) |
|
192 used[i] = 0; |
|
193 for (i = n-1; i >= 0; i--) |
|
194 { max_wt = -1; |
|
195 max_nwt = -1; |
|
196 for (j = 0; j < n; j++) |
|
197 { if ((!used[j]) && ((wt[j] > max_wt) || (wt[j] == max_wt |
|
198 && nwt[j] > max_nwt))) |
|
199 { max_wt = wt[j]; |
|
200 max_nwt = nwt[j]; |
|
201 p = j; |
|
202 } |
|
203 } |
|
204 pos[i] = p; |
|
205 used[p] = 1; |
|
206 for (j = 0; j < n; j++) |
|
207 if ((!used[j]) && (j != p) && (is_edge(csa, p, j))) |
|
208 nwt[j] -= wt[p]; |
|
209 } |
|
210 /* main routine */ |
|
211 wth = 0; |
|
212 for (i = 0; i < n; i++) |
|
213 { wth += wt[pos[i]]; |
|
214 sub(csa, i, pos, 0, 0, wth); |
|
215 clique[pos[i]] = record; |
|
216 if (xdifftime(xtime(), timer) >= 5.0 - 0.001) |
|
217 { /* print current record and reset timer */ |
|
218 xprintf("level = %d (%d); best = %d\n", i+1, n, record); |
|
219 timer = xtime(); |
|
220 } |
|
221 } |
|
222 xfree(clique); |
|
223 xfree(set); |
|
224 xfree(used); |
|
225 xfree(nwt); |
|
226 xfree(pos); |
|
227 /* return the solution found */ |
|
228 for (i = 1; i <= rec_level; i++) ind[i]++; |
|
229 return rec_level; |
|
230 } |
|
231 |
|
232 #undef n |
|
233 #undef wt |
|
234 #undef a |
|
235 #undef record |
|
236 #undef rec_level |
|
237 #undef rec |
|
238 #undef clique |
|
239 #undef set |
|
240 |
|
241 /* eof */ |