src/glpnet08.c
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 05 Dec 2010 17:35:23 +0100
changeset 2 4c8956a7bdf4
permissions -rw-r--r--
Set up CMAKE build environment
     1 /* glpnet08.c */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Two subroutines sub() and wclique() below are intended to find a
     7 *  maximum weight clique in a given undirected graph. These subroutines
     8 *  are slightly modified version of the program WCLIQUE developed by
     9 *  Patric Ostergard <http://www.tcs.hut.fi/~pat/wclique.html> and based
    10 *  on ideas from the article "P. R. J. Ostergard, A new algorithm for
    11 *  the maximum-weight clique problem, submitted for publication", which
    12 *  in turn is a generalization of the algorithm for unweighted graphs
    13 *  presented in "P. R. J. Ostergard, A fast algorithm for the maximum
    14 *  clique problem, submitted for publication".
    15 *
    16 *  USED WITH PERMISSION OF THE AUTHOR OF THE ORIGINAL CODE.
    17 *
    18 *  Changes were made by Andrew Makhorin <mao@gnu.org>.
    19 *
    20 *  GLPK is free software: you can redistribute it and/or modify it
    21 *  under the terms of the GNU General Public License as published by
    22 *  the Free Software Foundation, either version 3 of the License, or
    23 *  (at your option) any later version.
    24 *
    25 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    26 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    27 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    28 *  License for more details.
    29 *
    30 *  You should have received a copy of the GNU General Public License
    31 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    32 ***********************************************************************/
    33 
    34 #include "glpenv.h"
    35 #include "glpnet.h"
    36 
    37 /***********************************************************************
    38 *  NAME
    39 *
    40 *  wclique - find maximum weight clique with Ostergard's algorithm
    41 *
    42 *  SYNOPSIS
    43 *
    44 *  int wclique(int n, const int w[], const unsigned char a[],
    45 *     int ind[]);
    46 *
    47 *  DESCRIPTION
    48 *
    49 *  The routine wclique finds a maximum weight clique in an undirected
    50 *  graph with Ostergard's algorithm.
    51 *
    52 *  INPUT PARAMETERS
    53 *
    54 *  n is the number of vertices, n > 0.
    55 *
    56 *  w[i], i = 1,...,n, is a weight of vertex i.
    57 *
    58 *  a[*] is the strict (without main diagonal) lower triangle of the
    59 *  graph adjacency matrix in packed format.
    60 *
    61 *  OUTPUT PARAMETER
    62 *
    63 *  ind[k], k = 1,...,size, is the number of a vertex included in the
    64 *  clique found, 1 <= ind[k] <= n, where size is the number of vertices
    65 *  in the clique returned on exit.
    66 *
    67 *  RETURNS
    68 *
    69 *  The routine returns the clique size, i.e. the number of vertices in
    70 *  the clique. */
    71 
    72 struct csa
    73 {     /* common storage area */
    74       int n;
    75       /* number of vertices */
    76       const int *wt; /* int wt[0:n-1]; */
    77       /* weights */
    78       const unsigned char *a;
    79       /* adjacency matrix (packed lower triangle without main diag.) */
    80       int record;
    81       /* weight of best clique */
    82       int rec_level;
    83       /* number of vertices in best clique */
    84       int *rec; /* int rec[0:n-1]; */
    85       /* best clique so far */
    86       int *clique; /* int clique[0:n-1]; */
    87       /* table for pruning */
    88       int *set; /* int set[0:n-1]; */
    89       /* current clique */
    90 };
    91 
    92 #define n         (csa->n)
    93 #define wt        (csa->wt)
    94 #define a         (csa->a)
    95 #define record    (csa->record)
    96 #define rec_level (csa->rec_level)
    97 #define rec       (csa->rec)
    98 #define clique    (csa->clique)
    99 #define set       (csa->set)
   100 
   101 #if 0
   102 static int is_edge(struct csa *csa, int i, int j)
   103 {     /* if there is arc (i,j), the routine returns true; otherwise
   104          false; 0 <= i, j < n */
   105       int k;
   106       xassert(0 <= i && i < n);
   107       xassert(0 <= j && j < n);
   108       if (i == j) return 0;
   109       if (i < j) k = i, i = j, j = k;
   110       k = (i * (i - 1)) / 2 + j;
   111       return a[k / CHAR_BIT] &
   112          (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT));
   113 }
   114 #else
   115 #define is_edge(csa, i, j) ((i) == (j) ? 0 : \
   116       (i) > (j) ? is_edge1(i, j) : is_edge1(j, i))
   117 #define is_edge1(i, j) is_edge2(((i) * ((i) - 1)) / 2 + (j))
   118 #define is_edge2(k) (a[(k) / CHAR_BIT] & \
   119       (unsigned char)(1 << ((CHAR_BIT - 1) - (k) % CHAR_BIT)))
   120 #endif
   121 
   122 static void sub(struct csa *csa, int ct, int table[], int level,
   123       int weight, int l_weight)
   124 {     int i, j, k, curr_weight, left_weight, *p1, *p2, *newtable;
   125       newtable = xcalloc(n, sizeof(int));
   126       if (ct <= 0)
   127       {  /* 0 or 1 elements left; include these */
   128          if (ct == 0)
   129          {  set[level++] = table[0];
   130             weight += l_weight;
   131          }
   132          if (weight > record)
   133          {  record = weight;
   134             rec_level = level;
   135             for (i = 0; i < level; i++) rec[i] = set[i];
   136          }
   137          goto done;
   138       }
   139       for (i = ct; i >= 0; i--)
   140       {  if ((level == 0) && (i < ct)) goto done;
   141          k = table[i];
   142          if ((level > 0) && (clique[k] <= (record - weight)))
   143             goto done; /* prune */
   144          set[level] = k;
   145          curr_weight = weight + wt[k];
   146          l_weight -= wt[k];
   147          if (l_weight <= (record - curr_weight))
   148             goto done; /* prune */
   149          p1 = newtable;
   150          p2 = table;
   151          left_weight = 0;
   152          while (p2 < table + i)
   153          {  j = *p2++;
   154             if (is_edge(csa, j, k))
   155             {  *p1++ = j;
   156                left_weight += wt[j];
   157             }
   158          }
   159          if (left_weight <= (record - curr_weight)) continue;
   160          sub(csa, p1 - newtable - 1, newtable, level + 1, curr_weight,
   161             left_weight);
   162       }
   163 done: xfree(newtable);
   164       return;
   165 }
   166 
   167 int wclique(int _n, const int w[], const unsigned char _a[], int ind[])
   168 {     struct csa _csa, *csa = &_csa;
   169       int i, j, p, max_wt, max_nwt, wth, *used, *nwt, *pos;
   170       glp_long timer;
   171       n = _n;
   172       xassert(n > 0);
   173       wt = &w[1];
   174       a = _a;
   175       record = 0;
   176       rec_level = 0;
   177       rec = &ind[1];
   178       clique = xcalloc(n, sizeof(int));
   179       set = xcalloc(n, sizeof(int));
   180       used = xcalloc(n, sizeof(int));
   181       nwt = xcalloc(n, sizeof(int));
   182       pos = xcalloc(n, sizeof(int));
   183       /* start timer */
   184       timer = xtime();
   185       /* order vertices */
   186       for (i = 0; i < n; i++)
   187       {  nwt[i] = 0;
   188          for (j = 0; j < n; j++)
   189             if (is_edge(csa, i, j)) nwt[i] += wt[j];
   190       }
   191       for (i = 0; i < n; i++)
   192          used[i] = 0;
   193       for (i = n-1; i >= 0; i--)
   194       {  max_wt = -1;
   195          max_nwt = -1;
   196          for (j = 0; j < n; j++)
   197          {  if ((!used[j]) && ((wt[j] > max_wt) || (wt[j] == max_wt
   198                && nwt[j] > max_nwt)))
   199             {  max_wt = wt[j];
   200                max_nwt = nwt[j];
   201                p = j;
   202             }
   203          }
   204          pos[i] = p;
   205          used[p] = 1;
   206          for (j = 0; j < n; j++)
   207             if ((!used[j]) && (j != p) && (is_edge(csa, p, j)))
   208                nwt[j] -= wt[p];
   209       }
   210       /* main routine */
   211       wth = 0;
   212       for (i = 0; i < n; i++)
   213       {  wth += wt[pos[i]];
   214          sub(csa, i, pos, 0, 0, wth);
   215          clique[pos[i]] = record;
   216          if (xdifftime(xtime(), timer) >= 5.0 - 0.001)
   217          {  /* print current record and reset timer */
   218             xprintf("level = %d (%d); best = %d\n", i+1, n, record);
   219             timer = xtime();
   220          }
   221       }
   222       xfree(clique);
   223       xfree(set);
   224       xfree(used);
   225       xfree(nwt);
   226       xfree(pos);
   227       /* return the solution found */
   228       for (i = 1; i <= rec_level; i++) ind[i]++;
   229       return rec_level;
   230 }
   231 
   232 #undef n
   233 #undef wt
   234 #undef a
   235 #undef record
   236 #undef rec_level
   237 #undef rec
   238 #undef clique
   239 #undef set
   240 
   241 /* eof */