src/glpspx01.c
changeset 2 4c8956a7bdf4
equal deleted inserted replaced
-1:000000000000 0:1cb917cd4832
       
     1 /* glpspx01.c (primal simplex method) */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
       
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
       
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
       
     9 *  E-mail: <mao@gnu.org>.
       
    10 *
       
    11 *  GLPK is free software: you can redistribute it and/or modify it
       
    12 *  under the terms of the GNU General Public License as published by
       
    13 *  the Free Software Foundation, either version 3 of the License, or
       
    14 *  (at your option) any later version.
       
    15 *
       
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    19 *  License for more details.
       
    20 *
       
    21 *  You should have received a copy of the GNU General Public License
       
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    23 ***********************************************************************/
       
    24 
       
    25 #include "glpspx.h"
       
    26 
       
    27 struct csa
       
    28 {     /* common storage area */
       
    29       /*--------------------------------------------------------------*/
       
    30       /* LP data */
       
    31       int m;
       
    32       /* number of rows (auxiliary variables), m > 0 */
       
    33       int n;
       
    34       /* number of columns (structural variables), n > 0 */
       
    35       char *type; /* char type[1+m+n]; */
       
    36       /* type[0] is not used;
       
    37          type[k], 1 <= k <= m+n, is the type of variable x[k]:
       
    38          GLP_FR - free variable
       
    39          GLP_LO - variable with lower bound
       
    40          GLP_UP - variable with upper bound
       
    41          GLP_DB - double-bounded variable
       
    42          GLP_FX - fixed variable */
       
    43       double *lb; /* double lb[1+m+n]; */
       
    44       /* lb[0] is not used;
       
    45          lb[k], 1 <= k <= m+n, is an lower bound of variable x[k];
       
    46          if x[k] has no lower bound, lb[k] is zero */
       
    47       double *ub; /* double ub[1+m+n]; */
       
    48       /* ub[0] is not used;
       
    49          ub[k], 1 <= k <= m+n, is an upper bound of variable x[k];
       
    50          if x[k] has no upper bound, ub[k] is zero;
       
    51          if x[k] is of fixed type, ub[k] is the same as lb[k] */
       
    52       double *coef; /* double coef[1+m+n]; */
       
    53       /* coef[0] is not used;
       
    54          coef[k], 1 <= k <= m+n, is an objective coefficient at
       
    55          variable x[k] (note that on phase I auxiliary variables also
       
    56          may have non-zero objective coefficients) */
       
    57       /*--------------------------------------------------------------*/
       
    58       /* original objective function */
       
    59       double *obj; /* double obj[1+n]; */
       
    60       /* obj[0] is a constant term of the original objective function;
       
    61          obj[j], 1 <= j <= n, is an original objective coefficient at
       
    62          structural variable x[m+j] */
       
    63       double zeta;
       
    64       /* factor used to scale original objective coefficients; its
       
    65          sign defines original optimization direction: zeta > 0 means
       
    66          minimization, zeta < 0 means maximization */
       
    67       /*--------------------------------------------------------------*/
       
    68       /* constraint matrix A; it has m rows and n columns and is stored
       
    69          by columns */
       
    70       int *A_ptr; /* int A_ptr[1+n+1]; */
       
    71       /* A_ptr[0] is not used;
       
    72          A_ptr[j], 1 <= j <= n, is starting position of j-th column in
       
    73          arrays A_ind and A_val; note that A_ptr[1] is always 1;
       
    74          A_ptr[n+1] indicates the position after the last element in
       
    75          arrays A_ind and A_val */
       
    76       int *A_ind; /* int A_ind[A_ptr[n+1]]; */
       
    77       /* row indices */
       
    78       double *A_val; /* double A_val[A_ptr[n+1]]; */
       
    79       /* non-zero element values */
       
    80       /*--------------------------------------------------------------*/
       
    81       /* basis header */
       
    82       int *head; /* int head[1+m+n]; */
       
    83       /* head[0] is not used;
       
    84          head[i], 1 <= i <= m, is the ordinal number of basic variable
       
    85          xB[i]; head[i] = k means that xB[i] = x[k] and i-th column of
       
    86          matrix B is k-th column of matrix (I|-A);
       
    87          head[m+j], 1 <= j <= n, is the ordinal number of non-basic
       
    88          variable xN[j]; head[m+j] = k means that xN[j] = x[k] and j-th
       
    89          column of matrix N is k-th column of matrix (I|-A) */
       
    90       char *stat; /* char stat[1+n]; */
       
    91       /* stat[0] is not used;
       
    92          stat[j], 1 <= j <= n, is the status of non-basic variable
       
    93          xN[j], which defines its active bound:
       
    94          GLP_NL - lower bound is active
       
    95          GLP_NU - upper bound is active
       
    96          GLP_NF - free variable
       
    97          GLP_NS - fixed variable */
       
    98       /*--------------------------------------------------------------*/
       
    99       /* matrix B is the basis matrix; it is composed from columns of
       
   100          the augmented constraint matrix (I|-A) corresponding to basic
       
   101          variables and stored in a factorized (invertable) form */
       
   102       int valid;
       
   103       /* factorization is valid only if this flag is set */
       
   104       BFD *bfd; /* BFD bfd[1:m,1:m]; */
       
   105       /* factorized (invertable) form of the basis matrix */
       
   106       /*--------------------------------------------------------------*/
       
   107       /* matrix N is a matrix composed from columns of the augmented
       
   108          constraint matrix (I|-A) corresponding to non-basic variables
       
   109          except fixed ones; it is stored by rows and changes every time
       
   110          the basis changes */
       
   111       int *N_ptr; /* int N_ptr[1+m+1]; */
       
   112       /* N_ptr[0] is not used;
       
   113          N_ptr[i], 1 <= i <= m, is starting position of i-th row in
       
   114          arrays N_ind and N_val; note that N_ptr[1] is always 1;
       
   115          N_ptr[m+1] indicates the position after the last element in
       
   116          arrays N_ind and N_val */
       
   117       int *N_len; /* int N_len[1+m]; */
       
   118       /* N_len[0] is not used;
       
   119          N_len[i], 1 <= i <= m, is length of i-th row (0 to n) */
       
   120       int *N_ind; /* int N_ind[N_ptr[m+1]]; */
       
   121       /* column indices */
       
   122       double *N_val; /* double N_val[N_ptr[m+1]]; */
       
   123       /* non-zero element values */
       
   124       /*--------------------------------------------------------------*/
       
   125       /* working parameters */
       
   126       int phase;
       
   127       /* search phase:
       
   128          0 - not determined yet
       
   129          1 - search for primal feasible solution
       
   130          2 - search for optimal solution */
       
   131       glp_long tm_beg;
       
   132       /* time value at the beginning of the search */
       
   133       int it_beg;
       
   134       /* simplex iteration count at the beginning of the search */
       
   135       int it_cnt;
       
   136       /* simplex iteration count; it increases by one every time the
       
   137          basis changes (including the case when a non-basic variable
       
   138          jumps to its opposite bound) */
       
   139       int it_dpy;
       
   140       /* simplex iteration count at the most recent display output */
       
   141       /*--------------------------------------------------------------*/
       
   142       /* basic solution components */
       
   143       double *bbar; /* double bbar[1+m]; */
       
   144       /* bbar[0] is not used;
       
   145          bbar[i], 1 <= i <= m, is primal value of basic variable xB[i]
       
   146          (if xB[i] is free, its primal value is not updated) */
       
   147       double *cbar; /* double cbar[1+n]; */
       
   148       /* cbar[0] is not used;
       
   149          cbar[j], 1 <= j <= n, is reduced cost of non-basic variable
       
   150          xN[j] (if xN[j] is fixed, its reduced cost is not updated) */
       
   151       /*--------------------------------------------------------------*/
       
   152       /* the following pricing technique options may be used:
       
   153          GLP_PT_STD - standard ("textbook") pricing;
       
   154          GLP_PT_PSE - projected steepest edge;
       
   155          GLP_PT_DVX - Devex pricing (not implemented yet);
       
   156          in case of GLP_PT_STD the reference space is not used, and all
       
   157          steepest edge coefficients are set to 1 */
       
   158       int refct;
       
   159       /* this count is set to an initial value when the reference space
       
   160          is defined and decreases by one every time the basis changes;
       
   161          once this count reaches zero, the reference space is redefined
       
   162          again */
       
   163       char *refsp; /* char refsp[1+m+n]; */
       
   164       /* refsp[0] is not used;
       
   165          refsp[k], 1 <= k <= m+n, is the flag which means that variable
       
   166          x[k] belongs to the current reference space */
       
   167       double *gamma; /* double gamma[1+n]; */
       
   168       /* gamma[0] is not used;
       
   169          gamma[j], 1 <= j <= n, is the steepest edge coefficient for
       
   170          non-basic variable xN[j]; if xN[j] is fixed, gamma[j] is not
       
   171          used and just set to 1 */
       
   172       /*--------------------------------------------------------------*/
       
   173       /* non-basic variable xN[q] chosen to enter the basis */
       
   174       int q;
       
   175       /* index of the non-basic variable xN[q] chosen, 1 <= q <= n;
       
   176          if the set of eligible non-basic variables is empty and thus
       
   177          no variable has been chosen, q is set to 0 */
       
   178       /*--------------------------------------------------------------*/
       
   179       /* pivot column of the simplex table corresponding to non-basic
       
   180          variable xN[q] chosen is the following vector:
       
   181             T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
       
   182          where B is the current basis matrix, N[q] is a column of the
       
   183          matrix (I|-A) corresponding to xN[q] */
       
   184       int tcol_nnz;
       
   185       /* number of non-zero components, 0 <= nnz <= m */
       
   186       int *tcol_ind; /* int tcol_ind[1+m]; */
       
   187       /* tcol_ind[0] is not used;
       
   188          tcol_ind[t], 1 <= t <= nnz, is an index of non-zero component,
       
   189          i.e. tcol_ind[t] = i means that tcol_vec[i] != 0 */
       
   190       double *tcol_vec; /* double tcol_vec[1+m]; */
       
   191       /* tcol_vec[0] is not used;
       
   192          tcol_vec[i], 1 <= i <= m, is a numeric value of i-th component
       
   193          of the column */
       
   194       double tcol_max;
       
   195       /* infinity (maximum) norm of the column (max |tcol_vec[i]|) */
       
   196       int tcol_num;
       
   197       /* number of significant non-zero components, which means that:
       
   198          |tcol_vec[i]| >= eps for i in tcol_ind[1,...,num],
       
   199          |tcol_vec[i]| <  eps for i in tcol_ind[num+1,...,nnz],
       
   200          where eps is a pivot tolerance */
       
   201       /*--------------------------------------------------------------*/
       
   202       /* basic variable xB[p] chosen to leave the basis */
       
   203       int p;
       
   204       /* index of the basic variable xB[p] chosen, 1 <= p <= m;
       
   205          p = 0 means that no basic variable reaches its bound;
       
   206          p < 0 means that non-basic variable xN[q] reaches its opposite
       
   207          bound before any basic variable */
       
   208       int p_stat;
       
   209       /* new status (GLP_NL, GLP_NU, or GLP_NS) to be assigned to xB[p]
       
   210          once it has left the basis */
       
   211       double teta;
       
   212       /* change of non-basic variable xN[q] (see above), on which xB[p]
       
   213          (or, if p < 0, xN[q] itself) reaches its bound */
       
   214       /*--------------------------------------------------------------*/
       
   215       /* pivot row of the simplex table corresponding to basic variable
       
   216          xB[p] chosen is the following vector:
       
   217             T' * e[p] = - N' * inv(B') * e[p] = - N' * rho,
       
   218          where B' is a matrix transposed to the current basis matrix,
       
   219          N' is a matrix, whose rows are columns of the matrix (I|-A)
       
   220          corresponding to non-basic non-fixed variables */
       
   221       int trow_nnz;
       
   222       /* number of non-zero components, 0 <= nnz <= n */
       
   223       int *trow_ind; /* int trow_ind[1+n]; */
       
   224       /* trow_ind[0] is not used;
       
   225          trow_ind[t], 1 <= t <= nnz, is an index of non-zero component,
       
   226          i.e. trow_ind[t] = j means that trow_vec[j] != 0 */
       
   227       double *trow_vec; /* int trow_vec[1+n]; */
       
   228       /* trow_vec[0] is not used;
       
   229          trow_vec[j], 1 <= j <= n, is a numeric value of j-th component
       
   230          of the row */
       
   231       /*--------------------------------------------------------------*/
       
   232       /* working arrays */
       
   233       double *work1; /* double work1[1+m]; */
       
   234       double *work2; /* double work2[1+m]; */
       
   235       double *work3; /* double work3[1+m]; */
       
   236       double *work4; /* double work4[1+m]; */
       
   237 };
       
   238 
       
   239 static const double kappa = 0.10;
       
   240 
       
   241 /***********************************************************************
       
   242 *  alloc_csa - allocate common storage area
       
   243 *
       
   244 *  This routine allocates all arrays in the common storage area (CSA)
       
   245 *  and returns a pointer to the CSA. */
       
   246 
       
   247 static struct csa *alloc_csa(glp_prob *lp)
       
   248 {     struct csa *csa;
       
   249       int m = lp->m;
       
   250       int n = lp->n;
       
   251       int nnz = lp->nnz;
       
   252       csa = xmalloc(sizeof(struct csa));
       
   253       xassert(m > 0 && n > 0);
       
   254       csa->m = m;
       
   255       csa->n = n;
       
   256       csa->type = xcalloc(1+m+n, sizeof(char));
       
   257       csa->lb = xcalloc(1+m+n, sizeof(double));
       
   258       csa->ub = xcalloc(1+m+n, sizeof(double));
       
   259       csa->coef = xcalloc(1+m+n, sizeof(double));
       
   260       csa->obj = xcalloc(1+n, sizeof(double));
       
   261       csa->A_ptr = xcalloc(1+n+1, sizeof(int));
       
   262       csa->A_ind = xcalloc(1+nnz, sizeof(int));
       
   263       csa->A_val = xcalloc(1+nnz, sizeof(double));
       
   264       csa->head = xcalloc(1+m+n, sizeof(int));
       
   265       csa->stat = xcalloc(1+n, sizeof(char));
       
   266       csa->N_ptr = xcalloc(1+m+1, sizeof(int));
       
   267       csa->N_len = xcalloc(1+m, sizeof(int));
       
   268       csa->N_ind = NULL; /* will be allocated later */
       
   269       csa->N_val = NULL; /* will be allocated later */
       
   270       csa->bbar = xcalloc(1+m, sizeof(double));
       
   271       csa->cbar = xcalloc(1+n, sizeof(double));
       
   272       csa->refsp = xcalloc(1+m+n, sizeof(char));
       
   273       csa->gamma = xcalloc(1+n, sizeof(double));
       
   274       csa->tcol_ind = xcalloc(1+m, sizeof(int));
       
   275       csa->tcol_vec = xcalloc(1+m, sizeof(double));
       
   276       csa->trow_ind = xcalloc(1+n, sizeof(int));
       
   277       csa->trow_vec = xcalloc(1+n, sizeof(double));
       
   278       csa->work1 = xcalloc(1+m, sizeof(double));
       
   279       csa->work2 = xcalloc(1+m, sizeof(double));
       
   280       csa->work3 = xcalloc(1+m, sizeof(double));
       
   281       csa->work4 = xcalloc(1+m, sizeof(double));
       
   282       return csa;
       
   283 }
       
   284 
       
   285 /***********************************************************************
       
   286 *  init_csa - initialize common storage area
       
   287 *
       
   288 *  This routine initializes all data structures in the common storage
       
   289 *  area (CSA). */
       
   290 
       
   291 static void alloc_N(struct csa *csa);
       
   292 static void build_N(struct csa *csa);
       
   293 
       
   294 static void init_csa(struct csa *csa, glp_prob *lp)
       
   295 {     int m = csa->m;
       
   296       int n = csa->n;
       
   297       char *type = csa->type;
       
   298       double *lb = csa->lb;
       
   299       double *ub = csa->ub;
       
   300       double *coef = csa->coef;
       
   301       double *obj = csa->obj;
       
   302       int *A_ptr = csa->A_ptr;
       
   303       int *A_ind = csa->A_ind;
       
   304       double *A_val = csa->A_val;
       
   305       int *head = csa->head;
       
   306       char *stat = csa->stat;
       
   307       char *refsp = csa->refsp;
       
   308       double *gamma = csa->gamma;
       
   309       int i, j, k, loc;
       
   310       double cmax;
       
   311       /* auxiliary variables */
       
   312       for (i = 1; i <= m; i++)
       
   313       {  GLPROW *row = lp->row[i];
       
   314          type[i] = (char)row->type;
       
   315          lb[i] = row->lb * row->rii;
       
   316          ub[i] = row->ub * row->rii;
       
   317          coef[i] = 0.0;
       
   318       }
       
   319       /* structural variables */
       
   320       for (j = 1; j <= n; j++)
       
   321       {  GLPCOL *col = lp->col[j];
       
   322          type[m+j] = (char)col->type;
       
   323          lb[m+j] = col->lb / col->sjj;
       
   324          ub[m+j] = col->ub / col->sjj;
       
   325          coef[m+j] = col->coef * col->sjj;
       
   326       }
       
   327       /* original objective function */
       
   328       obj[0] = lp->c0;
       
   329       memcpy(&obj[1], &coef[m+1], n * sizeof(double));
       
   330       /* factor used to scale original objective coefficients */
       
   331       cmax = 0.0;
       
   332       for (j = 1; j <= n; j++)
       
   333          if (cmax < fabs(obj[j])) cmax = fabs(obj[j]);
       
   334       if (cmax == 0.0) cmax = 1.0;
       
   335       switch (lp->dir)
       
   336       {  case GLP_MIN:
       
   337             csa->zeta = + 1.0 / cmax;
       
   338             break;
       
   339          case GLP_MAX:
       
   340             csa->zeta = - 1.0 / cmax;
       
   341             break;
       
   342          default:
       
   343             xassert(lp != lp);
       
   344       }
       
   345 #if 1
       
   346       if (fabs(csa->zeta) < 1.0) csa->zeta *= 1000.0;
       
   347 #endif
       
   348       /* matrix A (by columns) */
       
   349       loc = 1;
       
   350       for (j = 1; j <= n; j++)
       
   351       {  GLPAIJ *aij;
       
   352          A_ptr[j] = loc;
       
   353          for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
       
   354          {  A_ind[loc] = aij->row->i;
       
   355             A_val[loc] = aij->row->rii * aij->val * aij->col->sjj;
       
   356             loc++;
       
   357          }
       
   358       }
       
   359       A_ptr[n+1] = loc;
       
   360       xassert(loc == lp->nnz+1);
       
   361       /* basis header */
       
   362       xassert(lp->valid);
       
   363       memcpy(&head[1], &lp->head[1], m * sizeof(int));
       
   364       k = 0;
       
   365       for (i = 1; i <= m; i++)
       
   366       {  GLPROW *row = lp->row[i];
       
   367          if (row->stat != GLP_BS)
       
   368          {  k++;
       
   369             xassert(k <= n);
       
   370             head[m+k] = i;
       
   371             stat[k] = (char)row->stat;
       
   372          }
       
   373       }
       
   374       for (j = 1; j <= n; j++)
       
   375       {  GLPCOL *col = lp->col[j];
       
   376          if (col->stat != GLP_BS)
       
   377          {  k++;
       
   378             xassert(k <= n);
       
   379             head[m+k] = m + j;
       
   380             stat[k] = (char)col->stat;
       
   381          }
       
   382       }
       
   383       xassert(k == n);
       
   384       /* factorization of matrix B */
       
   385       csa->valid = 1, lp->valid = 0;
       
   386       csa->bfd = lp->bfd, lp->bfd = NULL;
       
   387       /* matrix N (by rows) */
       
   388       alloc_N(csa);
       
   389       build_N(csa);
       
   390       /* working parameters */
       
   391       csa->phase = 0;
       
   392       csa->tm_beg = xtime();
       
   393       csa->it_beg = csa->it_cnt = lp->it_cnt;
       
   394       csa->it_dpy = -1;
       
   395       /* reference space and steepest edge coefficients */
       
   396       csa->refct = 0;
       
   397       memset(&refsp[1], 0, (m+n) * sizeof(char));
       
   398       for (j = 1; j <= n; j++) gamma[j] = 1.0;
       
   399       return;
       
   400 }
       
   401 
       
   402 /***********************************************************************
       
   403 *  invert_B - compute factorization of the basis matrix
       
   404 *
       
   405 *  This routine computes factorization of the current basis matrix B.
       
   406 *
       
   407 *  If the operation is successful, the routine returns zero, otherwise
       
   408 *  non-zero. */
       
   409 
       
   410 static int inv_col(void *info, int i, int ind[], double val[])
       
   411 {     /* this auxiliary routine returns row indices and numeric values
       
   412          of non-zero elements of i-th column of the basis matrix */
       
   413       struct csa *csa = info;
       
   414       int m = csa->m;
       
   415 #ifdef GLP_DEBUG
       
   416       int n = csa->n;
       
   417 #endif
       
   418       int *A_ptr = csa->A_ptr;
       
   419       int *A_ind = csa->A_ind;
       
   420       double *A_val = csa->A_val;
       
   421       int *head = csa->head;
       
   422       int k, len, ptr, t;
       
   423 #ifdef GLP_DEBUG
       
   424       xassert(1 <= i && i <= m);
       
   425 #endif
       
   426       k = head[i]; /* B[i] is k-th column of (I|-A) */
       
   427 #ifdef GLP_DEBUG
       
   428       xassert(1 <= k && k <= m+n);
       
   429 #endif
       
   430       if (k <= m)
       
   431       {  /* B[i] is k-th column of submatrix I */
       
   432          len = 1;
       
   433          ind[1] = k;
       
   434          val[1] = 1.0;
       
   435       }
       
   436       else
       
   437       {  /* B[i] is (k-m)-th column of submatrix (-A) */
       
   438          ptr = A_ptr[k-m];
       
   439          len = A_ptr[k-m+1] - ptr;
       
   440          memcpy(&ind[1], &A_ind[ptr], len * sizeof(int));
       
   441          memcpy(&val[1], &A_val[ptr], len * sizeof(double));
       
   442          for (t = 1; t <= len; t++) val[t] = - val[t];
       
   443       }
       
   444       return len;
       
   445 }
       
   446 
       
   447 static int invert_B(struct csa *csa)
       
   448 {     int ret;
       
   449       ret = bfd_factorize(csa->bfd, csa->m, NULL, inv_col, csa);
       
   450       csa->valid = (ret == 0);
       
   451       return ret;
       
   452 }
       
   453 
       
   454 /***********************************************************************
       
   455 *  update_B - update factorization of the basis matrix
       
   456 *
       
   457 *  This routine replaces i-th column of the basis matrix B by k-th
       
   458 *  column of the augmented constraint matrix (I|-A) and then updates
       
   459 *  the factorization of B.
       
   460 *
       
   461 *  If the factorization has been successfully updated, the routine
       
   462 *  returns zero, otherwise non-zero. */
       
   463 
       
   464 static int update_B(struct csa *csa, int i, int k)
       
   465 {     int m = csa->m;
       
   466 #ifdef GLP_DEBUG
       
   467       int n = csa->n;
       
   468 #endif
       
   469       int ret;
       
   470 #ifdef GLP_DEBUG
       
   471       xassert(1 <= i && i <= m);
       
   472       xassert(1 <= k && k <= m+n);
       
   473 #endif
       
   474       if (k <= m)
       
   475       {  /* new i-th column of B is k-th column of I */
       
   476          int ind[1+1];
       
   477          double val[1+1];
       
   478          ind[1] = k;
       
   479          val[1] = 1.0;
       
   480          xassert(csa->valid);
       
   481          ret = bfd_update_it(csa->bfd, i, 0, 1, ind, val);
       
   482       }
       
   483       else
       
   484       {  /* new i-th column of B is (k-m)-th column of (-A) */
       
   485          int *A_ptr = csa->A_ptr;
       
   486          int *A_ind = csa->A_ind;
       
   487          double *A_val = csa->A_val;
       
   488          double *val = csa->work1;
       
   489          int beg, end, ptr, len;
       
   490          beg = A_ptr[k-m];
       
   491          end = A_ptr[k-m+1];
       
   492          len = 0;
       
   493          for (ptr = beg; ptr < end; ptr++)
       
   494             val[++len] = - A_val[ptr];
       
   495          xassert(csa->valid);
       
   496          ret = bfd_update_it(csa->bfd, i, 0, len, &A_ind[beg-1], val);
       
   497       }
       
   498       csa->valid = (ret == 0);
       
   499       return ret;
       
   500 }
       
   501 
       
   502 /***********************************************************************
       
   503 *  error_ftran - compute residual vector r = h - B * x
       
   504 *
       
   505 *  This routine computes the residual vector r = h - B * x, where B is
       
   506 *  the current basis matrix, h is the vector of right-hand sides, x is
       
   507 *  the solution vector. */
       
   508 
       
   509 static void error_ftran(struct csa *csa, double h[], double x[],
       
   510       double r[])
       
   511 {     int m = csa->m;
       
   512 #ifdef GLP_DEBUG
       
   513       int n = csa->n;
       
   514 #endif
       
   515       int *A_ptr = csa->A_ptr;
       
   516       int *A_ind = csa->A_ind;
       
   517       double *A_val = csa->A_val;
       
   518       int *head = csa->head;
       
   519       int i, k, beg, end, ptr;
       
   520       double temp;
       
   521       /* compute the residual vector:
       
   522          r = h - B * x = h - B[1] * x[1] - ... - B[m] * x[m],
       
   523          where B[1], ..., B[m] are columns of matrix B */
       
   524       memcpy(&r[1], &h[1], m * sizeof(double));
       
   525       for (i = 1; i <= m; i++)
       
   526       {  temp = x[i];
       
   527          if (temp == 0.0) continue;
       
   528          k = head[i]; /* B[i] is k-th column of (I|-A) */
       
   529 #ifdef GLP_DEBUG
       
   530          xassert(1 <= k && k <= m+n);
       
   531 #endif
       
   532          if (k <= m)
       
   533          {  /* B[i] is k-th column of submatrix I */
       
   534             r[k] -= temp;
       
   535          }
       
   536          else
       
   537          {  /* B[i] is (k-m)-th column of submatrix (-A) */
       
   538             beg = A_ptr[k-m];
       
   539             end = A_ptr[k-m+1];
       
   540             for (ptr = beg; ptr < end; ptr++)
       
   541                r[A_ind[ptr]] += A_val[ptr] * temp;
       
   542          }
       
   543       }
       
   544       return;
       
   545 }
       
   546 
       
   547 /***********************************************************************
       
   548 *  refine_ftran - refine solution of B * x = h
       
   549 *
       
   550 *  This routine performs one iteration to refine the solution of
       
   551 *  the system B * x = h, where B is the current basis matrix, h is the
       
   552 *  vector of right-hand sides, x is the solution vector. */
       
   553 
       
   554 static void refine_ftran(struct csa *csa, double h[], double x[])
       
   555 {     int m = csa->m;
       
   556       double *r = csa->work1;
       
   557       double *d = csa->work1;
       
   558       int i;
       
   559       /* compute the residual vector r = h - B * x */
       
   560       error_ftran(csa, h, x, r);
       
   561       /* compute the correction vector d = inv(B) * r */
       
   562       xassert(csa->valid);
       
   563       bfd_ftran(csa->bfd, d);
       
   564       /* refine the solution vector (new x) = (old x) + d */
       
   565       for (i = 1; i <= m; i++) x[i] += d[i];
       
   566       return;
       
   567 }
       
   568 
       
   569 /***********************************************************************
       
   570 *  error_btran - compute residual vector r = h - B'* x
       
   571 *
       
   572 *  This routine computes the residual vector r = h - B'* x, where B'
       
   573 *  is a matrix transposed to the current basis matrix, h is the vector
       
   574 *  of right-hand sides, x is the solution vector. */
       
   575 
       
   576 static void error_btran(struct csa *csa, double h[], double x[],
       
   577       double r[])
       
   578 {     int m = csa->m;
       
   579 #ifdef GLP_DEBUG
       
   580       int n = csa->n;
       
   581 #endif
       
   582       int *A_ptr = csa->A_ptr;
       
   583       int *A_ind = csa->A_ind;
       
   584       double *A_val = csa->A_val;
       
   585       int *head = csa->head;
       
   586       int i, k, beg, end, ptr;
       
   587       double temp;
       
   588       /* compute the residual vector r = b - B'* x */
       
   589       for (i = 1; i <= m; i++)
       
   590       {  /* r[i] := b[i] - (i-th column of B)'* x */
       
   591          k = head[i]; /* B[i] is k-th column of (I|-A) */
       
   592 #ifdef GLP_DEBUG
       
   593          xassert(1 <= k && k <= m+n);
       
   594 #endif
       
   595          temp = h[i];
       
   596          if (k <= m)
       
   597          {  /* B[i] is k-th column of submatrix I */
       
   598             temp -= x[k];
       
   599          }
       
   600          else
       
   601          {  /* B[i] is (k-m)-th column of submatrix (-A) */
       
   602             beg = A_ptr[k-m];
       
   603             end = A_ptr[k-m+1];
       
   604             for (ptr = beg; ptr < end; ptr++)
       
   605                temp += A_val[ptr] * x[A_ind[ptr]];
       
   606          }
       
   607          r[i] = temp;
       
   608       }
       
   609       return;
       
   610 }
       
   611 
       
   612 /***********************************************************************
       
   613 *  refine_btran - refine solution of B'* x = h
       
   614 *
       
   615 *  This routine performs one iteration to refine the solution of the
       
   616 *  system B'* x = h, where B' is a matrix transposed to the current
       
   617 *  basis matrix, h is the vector of right-hand sides, x is the solution
       
   618 *  vector. */
       
   619 
       
   620 static void refine_btran(struct csa *csa, double h[], double x[])
       
   621 {     int m = csa->m;
       
   622       double *r = csa->work1;
       
   623       double *d = csa->work1;
       
   624       int i;
       
   625       /* compute the residual vector r = h - B'* x */
       
   626       error_btran(csa, h, x, r);
       
   627       /* compute the correction vector d = inv(B') * r */
       
   628       xassert(csa->valid);
       
   629       bfd_btran(csa->bfd, d);
       
   630       /* refine the solution vector (new x) = (old x) + d */
       
   631       for (i = 1; i <= m; i++) x[i] += d[i];
       
   632       return;
       
   633 }
       
   634 
       
   635 /***********************************************************************
       
   636 *  alloc_N - allocate matrix N
       
   637 *
       
   638 *  This routine determines maximal row lengths of matrix N, sets its
       
   639 *  row pointers, and then allocates arrays N_ind and N_val.
       
   640 *
       
   641 *  Note that some fixed structural variables may temporarily become
       
   642 *  double-bounded, so corresponding columns of matrix A should not be
       
   643 *  ignored on calculating maximal row lengths of matrix N. */
       
   644 
       
   645 static void alloc_N(struct csa *csa)
       
   646 {     int m = csa->m;
       
   647       int n = csa->n;
       
   648       int *A_ptr = csa->A_ptr;
       
   649       int *A_ind = csa->A_ind;
       
   650       int *N_ptr = csa->N_ptr;
       
   651       int *N_len = csa->N_len;
       
   652       int i, j, beg, end, ptr;
       
   653       /* determine number of non-zeros in each row of the augmented
       
   654          constraint matrix (I|-A) */
       
   655       for (i = 1; i <= m; i++)
       
   656          N_len[i] = 1;
       
   657       for (j = 1; j <= n; j++)
       
   658       {  beg = A_ptr[j];
       
   659          end = A_ptr[j+1];
       
   660          for (ptr = beg; ptr < end; ptr++)
       
   661             N_len[A_ind[ptr]]++;
       
   662       }
       
   663       /* determine maximal row lengths of matrix N and set its row
       
   664          pointers */
       
   665       N_ptr[1] = 1;
       
   666       for (i = 1; i <= m; i++)
       
   667       {  /* row of matrix N cannot have more than n non-zeros */
       
   668          if (N_len[i] > n) N_len[i] = n;
       
   669          N_ptr[i+1] = N_ptr[i] + N_len[i];
       
   670       }
       
   671       /* now maximal number of non-zeros in matrix N is known */
       
   672       csa->N_ind = xcalloc(N_ptr[m+1], sizeof(int));
       
   673       csa->N_val = xcalloc(N_ptr[m+1], sizeof(double));
       
   674       return;
       
   675 }
       
   676 
       
   677 /***********************************************************************
       
   678 *  add_N_col - add column of matrix (I|-A) to matrix N
       
   679 *
       
   680 *  This routine adds j-th column to matrix N which is k-th column of
       
   681 *  the augmented constraint matrix (I|-A). (It is assumed that old j-th
       
   682 *  column was previously removed from matrix N.) */
       
   683 
       
   684 static void add_N_col(struct csa *csa, int j, int k)
       
   685 {     int m = csa->m;
       
   686 #ifdef GLP_DEBUG
       
   687       int n = csa->n;
       
   688 #endif
       
   689       int *N_ptr = csa->N_ptr;
       
   690       int *N_len = csa->N_len;
       
   691       int *N_ind = csa->N_ind;
       
   692       double *N_val = csa->N_val;
       
   693       int pos;
       
   694 #ifdef GLP_DEBUG
       
   695       xassert(1 <= j && j <= n);
       
   696       xassert(1 <= k && k <= m+n);
       
   697 #endif
       
   698       if (k <= m)
       
   699       {  /* N[j] is k-th column of submatrix I */
       
   700          pos = N_ptr[k] + (N_len[k]++);
       
   701 #ifdef GLP_DEBUG
       
   702          xassert(pos < N_ptr[k+1]);
       
   703 #endif
       
   704          N_ind[pos] = j;
       
   705          N_val[pos] = 1.0;
       
   706       }
       
   707       else
       
   708       {  /* N[j] is (k-m)-th column of submatrix (-A) */
       
   709          int *A_ptr = csa->A_ptr;
       
   710          int *A_ind = csa->A_ind;
       
   711          double *A_val = csa->A_val;
       
   712          int i, beg, end, ptr;
       
   713          beg = A_ptr[k-m];
       
   714          end = A_ptr[k-m+1];
       
   715          for (ptr = beg; ptr < end; ptr++)
       
   716          {  i = A_ind[ptr]; /* row number */
       
   717             pos = N_ptr[i] + (N_len[i]++);
       
   718 #ifdef GLP_DEBUG
       
   719             xassert(pos < N_ptr[i+1]);
       
   720 #endif
       
   721             N_ind[pos] = j;
       
   722             N_val[pos] = - A_val[ptr];
       
   723          }
       
   724       }
       
   725       return;
       
   726 }
       
   727 
       
   728 /***********************************************************************
       
   729 *  del_N_col - remove column of matrix (I|-A) from matrix N
       
   730 *
       
   731 *  This routine removes j-th column from matrix N which is k-th column
       
   732 *  of the augmented constraint matrix (I|-A). */
       
   733 
       
   734 static void del_N_col(struct csa *csa, int j, int k)
       
   735 {     int m = csa->m;
       
   736 #ifdef GLP_DEBUG
       
   737       int n = csa->n;
       
   738 #endif
       
   739       int *N_ptr = csa->N_ptr;
       
   740       int *N_len = csa->N_len;
       
   741       int *N_ind = csa->N_ind;
       
   742       double *N_val = csa->N_val;
       
   743       int pos, head, tail;
       
   744 #ifdef GLP_DEBUG
       
   745       xassert(1 <= j && j <= n);
       
   746       xassert(1 <= k && k <= m+n);
       
   747 #endif
       
   748       if (k <= m)
       
   749       {  /* N[j] is k-th column of submatrix I */
       
   750          /* find element in k-th row of N */
       
   751          head = N_ptr[k];
       
   752          for (pos = head; N_ind[pos] != j; pos++) /* nop */;
       
   753          /* and remove it from the row list */
       
   754          tail = head + (--N_len[k]);
       
   755 #ifdef GLP_DEBUG
       
   756          xassert(pos <= tail);
       
   757 #endif
       
   758          N_ind[pos] = N_ind[tail];
       
   759          N_val[pos] = N_val[tail];
       
   760       }
       
   761       else
       
   762       {  /* N[j] is (k-m)-th column of submatrix (-A) */
       
   763          int *A_ptr = csa->A_ptr;
       
   764          int *A_ind = csa->A_ind;
       
   765          int i, beg, end, ptr;
       
   766          beg = A_ptr[k-m];
       
   767          end = A_ptr[k-m+1];
       
   768          for (ptr = beg; ptr < end; ptr++)
       
   769          {  i = A_ind[ptr]; /* row number */
       
   770             /* find element in i-th row of N */
       
   771             head = N_ptr[i];
       
   772             for (pos = head; N_ind[pos] != j; pos++) /* nop */;
       
   773             /* and remove it from the row list */
       
   774             tail = head + (--N_len[i]);
       
   775 #ifdef GLP_DEBUG
       
   776             xassert(pos <= tail);
       
   777 #endif
       
   778             N_ind[pos] = N_ind[tail];
       
   779             N_val[pos] = N_val[tail];
       
   780          }
       
   781       }
       
   782       return;
       
   783 }
       
   784 
       
   785 /***********************************************************************
       
   786 *  build_N - build matrix N for current basis
       
   787 *
       
   788 *  This routine builds matrix N for the current basis from columns
       
   789 *  of the augmented constraint matrix (I|-A) corresponding to non-basic
       
   790 *  non-fixed variables. */
       
   791 
       
   792 static void build_N(struct csa *csa)
       
   793 {     int m = csa->m;
       
   794       int n = csa->n;
       
   795       int *head = csa->head;
       
   796       char *stat = csa->stat;
       
   797       int *N_len = csa->N_len;
       
   798       int j, k;
       
   799       /* N := empty matrix */
       
   800       memset(&N_len[1], 0, m * sizeof(int));
       
   801       /* go through non-basic columns of matrix (I|-A) */
       
   802       for (j = 1; j <= n; j++)
       
   803       {  if (stat[j] != GLP_NS)
       
   804          {  /* xN[j] is non-fixed; add j-th column to matrix N which is
       
   805                k-th column of matrix (I|-A) */
       
   806             k = head[m+j]; /* x[k] = xN[j] */
       
   807 #ifdef GLP_DEBUG
       
   808             xassert(1 <= k && k <= m+n);
       
   809 #endif
       
   810             add_N_col(csa, j, k);
       
   811          }
       
   812       }
       
   813       return;
       
   814 }
       
   815 
       
   816 /***********************************************************************
       
   817 *  get_xN - determine current value of non-basic variable xN[j]
       
   818 *
       
   819 *  This routine returns the current value of non-basic variable xN[j],
       
   820 *  which is a value of its active bound. */
       
   821 
       
   822 static double get_xN(struct csa *csa, int j)
       
   823 {     int m = csa->m;
       
   824 #ifdef GLP_DEBUG
       
   825       int n = csa->n;
       
   826 #endif
       
   827       double *lb = csa->lb;
       
   828       double *ub = csa->ub;
       
   829       int *head = csa->head;
       
   830       char *stat = csa->stat;
       
   831       int k;
       
   832       double xN;
       
   833 #ifdef GLP_DEBUG
       
   834       xassert(1 <= j && j <= n);
       
   835 #endif
       
   836       k = head[m+j]; /* x[k] = xN[j] */
       
   837 #ifdef GLP_DEBUG
       
   838       xassert(1 <= k && k <= m+n);
       
   839 #endif
       
   840       switch (stat[j])
       
   841       {  case GLP_NL:
       
   842             /* x[k] is on its lower bound */
       
   843             xN = lb[k]; break;
       
   844          case GLP_NU:
       
   845             /* x[k] is on its upper bound */
       
   846             xN = ub[k]; break;
       
   847          case GLP_NF:
       
   848             /* x[k] is free non-basic variable */
       
   849             xN = 0.0; break;
       
   850          case GLP_NS:
       
   851             /* x[k] is fixed non-basic variable */
       
   852             xN = lb[k]; break;
       
   853          default:
       
   854             xassert(stat != stat);
       
   855       }
       
   856       return xN;
       
   857 }
       
   858 
       
   859 /***********************************************************************
       
   860 *  eval_beta - compute primal values of basic variables
       
   861 *
       
   862 *  This routine computes current primal values of all basic variables:
       
   863 *
       
   864 *     beta = - inv(B) * N * xN,
       
   865 *
       
   866 *  where B is the current basis matrix, N is a matrix built of columns
       
   867 *  of matrix (I|-A) corresponding to non-basic variables, and xN is the
       
   868 *  vector of current values of non-basic variables. */
       
   869 
       
   870 static void eval_beta(struct csa *csa, double beta[])
       
   871 {     int m = csa->m;
       
   872       int n = csa->n;
       
   873       int *A_ptr = csa->A_ptr;
       
   874       int *A_ind = csa->A_ind;
       
   875       double *A_val = csa->A_val;
       
   876       int *head = csa->head;
       
   877       double *h = csa->work2;
       
   878       int i, j, k, beg, end, ptr;
       
   879       double xN;
       
   880       /* compute the right-hand side vector:
       
   881          h := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n],
       
   882          where N[1], ..., N[n] are columns of matrix N */
       
   883       for (i = 1; i <= m; i++)
       
   884          h[i] = 0.0;
       
   885       for (j = 1; j <= n; j++)
       
   886       {  k = head[m+j]; /* x[k] = xN[j] */
       
   887 #ifdef GLP_DEBUG
       
   888          xassert(1 <= k && k <= m+n);
       
   889 #endif
       
   890          /* determine current value of xN[j] */
       
   891          xN = get_xN(csa, j);
       
   892          if (xN == 0.0) continue;
       
   893          if (k <= m)
       
   894          {  /* N[j] is k-th column of submatrix I */
       
   895             h[k] -= xN;
       
   896          }
       
   897          else
       
   898          {  /* N[j] is (k-m)-th column of submatrix (-A) */
       
   899             beg = A_ptr[k-m];
       
   900             end = A_ptr[k-m+1];
       
   901             for (ptr = beg; ptr < end; ptr++)
       
   902                h[A_ind[ptr]] += xN * A_val[ptr];
       
   903          }
       
   904       }
       
   905       /* solve system B * beta = h */
       
   906       memcpy(&beta[1], &h[1], m * sizeof(double));
       
   907       xassert(csa->valid);
       
   908       bfd_ftran(csa->bfd, beta);
       
   909       /* and refine the solution */
       
   910       refine_ftran(csa, h, beta);
       
   911       return;
       
   912 }
       
   913 
       
   914 /***********************************************************************
       
   915 *  eval_pi - compute vector of simplex multipliers
       
   916 *
       
   917 *  This routine computes the vector of current simplex multipliers:
       
   918 *
       
   919 *     pi = inv(B') * cB,
       
   920 *
       
   921 *  where B' is a matrix transposed to the current basis matrix, cB is
       
   922 *  a subvector of objective coefficients at basic variables. */
       
   923 
       
   924 static void eval_pi(struct csa *csa, double pi[])
       
   925 {     int m = csa->m;
       
   926       double *c = csa->coef;
       
   927       int *head = csa->head;
       
   928       double *cB = csa->work2;
       
   929       int i;
       
   930       /* construct the right-hand side vector cB */
       
   931       for (i = 1; i <= m; i++)
       
   932          cB[i] = c[head[i]];
       
   933       /* solve system B'* pi = cB */
       
   934       memcpy(&pi[1], &cB[1], m * sizeof(double));
       
   935       xassert(csa->valid);
       
   936       bfd_btran(csa->bfd, pi);
       
   937       /* and refine the solution */
       
   938       refine_btran(csa, cB, pi);
       
   939       return;
       
   940 }
       
   941 
       
   942 /***********************************************************************
       
   943 *  eval_cost - compute reduced cost of non-basic variable xN[j]
       
   944 *
       
   945 *  This routine computes the current reduced cost of non-basic variable
       
   946 *  xN[j]:
       
   947 *
       
   948 *     d[j] = cN[j] - N'[j] * pi,
       
   949 *
       
   950 *  where cN[j] is the objective coefficient at variable xN[j], N[j] is
       
   951 *  a column of the augmented constraint matrix (I|-A) corresponding to
       
   952 *  xN[j], pi is the vector of simplex multipliers. */
       
   953 
       
   954 static double eval_cost(struct csa *csa, double pi[], int j)
       
   955 {     int m = csa->m;
       
   956 #ifdef GLP_DEBUG
       
   957       int n = csa->n;
       
   958 #endif
       
   959       double *coef = csa->coef;
       
   960       int *head = csa->head;
       
   961       int k;
       
   962       double dj;
       
   963 #ifdef GLP_DEBUG
       
   964       xassert(1 <= j && j <= n);
       
   965 #endif
       
   966       k = head[m+j]; /* x[k] = xN[j] */
       
   967 #ifdef GLP_DEBUG
       
   968       xassert(1 <= k && k <= m+n);
       
   969 #endif
       
   970       dj = coef[k];
       
   971       if (k <= m)
       
   972       {  /* N[j] is k-th column of submatrix I */
       
   973          dj -= pi[k];
       
   974       }
       
   975       else
       
   976       {  /* N[j] is (k-m)-th column of submatrix (-A) */
       
   977          int *A_ptr = csa->A_ptr;
       
   978          int *A_ind = csa->A_ind;
       
   979          double *A_val = csa->A_val;
       
   980          int beg, end, ptr;
       
   981          beg = A_ptr[k-m];
       
   982          end = A_ptr[k-m+1];
       
   983          for (ptr = beg; ptr < end; ptr++)
       
   984             dj += A_val[ptr] * pi[A_ind[ptr]];
       
   985       }
       
   986       return dj;
       
   987 }
       
   988 
       
   989 /***********************************************************************
       
   990 *  eval_bbar - compute and store primal values of basic variables
       
   991 *
       
   992 *  This routine computes primal values of all basic variables and then
       
   993 *  stores them in the solution array. */
       
   994 
       
   995 static void eval_bbar(struct csa *csa)
       
   996 {     eval_beta(csa, csa->bbar);
       
   997       return;
       
   998 }
       
   999 
       
  1000 /***********************************************************************
       
  1001 *  eval_cbar - compute and store reduced costs of non-basic variables
       
  1002 *
       
  1003 *  This routine computes reduced costs of all non-basic variables and
       
  1004 *  then stores them in the solution array. */
       
  1005 
       
  1006 static void eval_cbar(struct csa *csa)
       
  1007 {
       
  1008 #ifdef GLP_DEBUG
       
  1009       int m = csa->m;
       
  1010 #endif
       
  1011       int n = csa->n;
       
  1012 #ifdef GLP_DEBUG
       
  1013       int *head = csa->head;
       
  1014 #endif
       
  1015       double *cbar = csa->cbar;
       
  1016       double *pi = csa->work3;
       
  1017       int j;
       
  1018 #ifdef GLP_DEBUG
       
  1019       int k;
       
  1020 #endif
       
  1021       /* compute simplex multipliers */
       
  1022       eval_pi(csa, pi);
       
  1023       /* compute and store reduced costs */
       
  1024       for (j = 1; j <= n; j++)
       
  1025       {
       
  1026 #ifdef GLP_DEBUG
       
  1027          k = head[m+j]; /* x[k] = xN[j] */
       
  1028          xassert(1 <= k && k <= m+n);
       
  1029 #endif
       
  1030          cbar[j] = eval_cost(csa, pi, j);
       
  1031       }
       
  1032       return;
       
  1033 }
       
  1034 
       
  1035 /***********************************************************************
       
  1036 *  reset_refsp - reset the reference space
       
  1037 *
       
  1038 *  This routine resets (redefines) the reference space used in the
       
  1039 *  projected steepest edge pricing algorithm. */
       
  1040 
       
  1041 static void reset_refsp(struct csa *csa)
       
  1042 {     int m = csa->m;
       
  1043       int n = csa->n;
       
  1044       int *head = csa->head;
       
  1045       char *refsp = csa->refsp;
       
  1046       double *gamma = csa->gamma;
       
  1047       int j, k;
       
  1048       xassert(csa->refct == 0);
       
  1049       csa->refct = 1000;
       
  1050       memset(&refsp[1], 0, (m+n) * sizeof(char));
       
  1051       for (j = 1; j <= n; j++)
       
  1052       {  k = head[m+j]; /* x[k] = xN[j] */
       
  1053          refsp[k] = 1;
       
  1054          gamma[j] = 1.0;
       
  1055       }
       
  1056       return;
       
  1057 }
       
  1058 
       
  1059 /***********************************************************************
       
  1060 *  eval_gamma - compute steepest edge coefficient
       
  1061 *
       
  1062 *  This routine computes the steepest edge coefficient for non-basic
       
  1063 *  variable xN[j] using its direct definition:
       
  1064 *
       
  1065 *     gamma[j] = delta[j] +  sum   alfa[i,j]^2,
       
  1066 *                           i in R
       
  1067 *
       
  1068 *  where delta[j] = 1, if xN[j] is in the current reference space,
       
  1069 *  and 0 otherwise; R is a set of basic variables xB[i], which are in
       
  1070 *  the current reference space; alfa[i,j] are elements of the current
       
  1071 *  simplex table.
       
  1072 *
       
  1073 *  NOTE: The routine is intended only for debugginig purposes. */
       
  1074 
       
  1075 static double eval_gamma(struct csa *csa, int j)
       
  1076 {     int m = csa->m;
       
  1077 #ifdef GLP_DEBUG
       
  1078       int n = csa->n;
       
  1079 #endif
       
  1080       int *head = csa->head;
       
  1081       char *refsp = csa->refsp;
       
  1082       double *alfa = csa->work3;
       
  1083       double *h = csa->work3;
       
  1084       int i, k;
       
  1085       double gamma;
       
  1086 #ifdef GLP_DEBUG
       
  1087       xassert(1 <= j && j <= n);
       
  1088 #endif
       
  1089       k = head[m+j]; /* x[k] = xN[j] */
       
  1090 #ifdef GLP_DEBUG
       
  1091       xassert(1 <= k && k <= m+n);
       
  1092 #endif
       
  1093       /* construct the right-hand side vector h = - N[j] */
       
  1094       for (i = 1; i <= m; i++)
       
  1095          h[i] = 0.0;
       
  1096       if (k <= m)
       
  1097       {  /* N[j] is k-th column of submatrix I */
       
  1098          h[k] = -1.0;
       
  1099       }
       
  1100       else
       
  1101       {  /* N[j] is (k-m)-th column of submatrix (-A) */
       
  1102          int *A_ptr = csa->A_ptr;
       
  1103          int *A_ind = csa->A_ind;
       
  1104          double *A_val = csa->A_val;
       
  1105          int beg, end, ptr;
       
  1106          beg = A_ptr[k-m];
       
  1107          end = A_ptr[k-m+1];
       
  1108          for (ptr = beg; ptr < end; ptr++)
       
  1109             h[A_ind[ptr]] = A_val[ptr];
       
  1110       }
       
  1111       /* solve system B * alfa = h */
       
  1112       xassert(csa->valid);
       
  1113       bfd_ftran(csa->bfd, alfa);
       
  1114       /* compute gamma */
       
  1115       gamma = (refsp[k] ? 1.0 : 0.0);
       
  1116       for (i = 1; i <= m; i++)
       
  1117       {  k = head[i];
       
  1118 #ifdef GLP_DEBUG
       
  1119          xassert(1 <= k && k <= m+n);
       
  1120 #endif
       
  1121          if (refsp[k]) gamma += alfa[i] * alfa[i];
       
  1122       }
       
  1123       return gamma;
       
  1124 }
       
  1125 
       
  1126 /***********************************************************************
       
  1127 *  chuzc - choose non-basic variable (column of the simplex table)
       
  1128 *
       
  1129 *  This routine chooses non-basic variable xN[q], which has largest
       
  1130 *  weighted reduced cost:
       
  1131 *
       
  1132 *     |d[q]| / sqrt(gamma[q]) = max  |d[j]| / sqrt(gamma[j]),
       
  1133 *                              j in J
       
  1134 *
       
  1135 *  where J is a subset of eligible non-basic variables xN[j], d[j] is
       
  1136 *  reduced cost of xN[j], gamma[j] is the steepest edge coefficient.
       
  1137 *
       
  1138 *  The working objective function is always minimized, so the sign of
       
  1139 *  d[q] determines direction, in which xN[q] has to change:
       
  1140 *
       
  1141 *     if d[q] < 0, xN[q] has to increase;
       
  1142 *
       
  1143 *     if d[q] > 0, xN[q] has to decrease.
       
  1144 *
       
  1145 *  If |d[j]| <= tol_dj, where tol_dj is a specified tolerance, xN[j]
       
  1146 *  is not included in J and therefore ignored. (It is assumed that the
       
  1147 *  working objective row is appropriately scaled, i.e. max|c[k]| = 1.)
       
  1148 *
       
  1149 *  If J is empty and no variable has been chosen, q is set to 0. */
       
  1150 
       
  1151 static void chuzc(struct csa *csa, double tol_dj)
       
  1152 {     int n = csa->n;
       
  1153       char *stat = csa->stat;
       
  1154       double *cbar = csa->cbar;
       
  1155       double *gamma = csa->gamma;
       
  1156       int j, q;
       
  1157       double dj, best, temp;
       
  1158       /* nothing is chosen so far */
       
  1159       q = 0, best = 0.0;
       
  1160       /* look through the list of non-basic variables */
       
  1161       for (j = 1; j <= n; j++)
       
  1162       {  dj = cbar[j];
       
  1163          switch (stat[j])
       
  1164          {  case GLP_NL:
       
  1165                /* xN[j] can increase */
       
  1166                if (dj >= - tol_dj) continue;
       
  1167                break;
       
  1168             case GLP_NU:
       
  1169                /* xN[j] can decrease */
       
  1170                if (dj <= + tol_dj) continue;
       
  1171                break;
       
  1172             case GLP_NF:
       
  1173                /* xN[j] can change in any direction */
       
  1174                if (- tol_dj <= dj && dj <= + tol_dj) continue;
       
  1175                break;
       
  1176             case GLP_NS:
       
  1177                /* xN[j] cannot change at all */
       
  1178                continue;
       
  1179             default:
       
  1180                xassert(stat != stat);
       
  1181          }
       
  1182          /* xN[j] is eligible non-basic variable; choose one which has
       
  1183             largest weighted reduced cost */
       
  1184 #ifdef GLP_DEBUG
       
  1185          xassert(gamma[j] > 0.0);
       
  1186 #endif
       
  1187          temp = (dj * dj) / gamma[j];
       
  1188          if (best < temp)
       
  1189             q = j, best = temp;
       
  1190       }
       
  1191       /* store the index of non-basic variable xN[q] chosen */
       
  1192       csa->q = q;
       
  1193       return;
       
  1194 }
       
  1195 
       
  1196 /***********************************************************************
       
  1197 *  eval_tcol - compute pivot column of the simplex table
       
  1198 *
       
  1199 *  This routine computes the pivot column of the simplex table, which
       
  1200 *  corresponds to non-basic variable xN[q] chosen.
       
  1201 *
       
  1202 *  The pivot column is the following vector:
       
  1203 *
       
  1204 *     tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
       
  1205 *
       
  1206 *  where B is the current basis matrix, N[q] is a column of the matrix
       
  1207 *  (I|-A) corresponding to variable xN[q]. */
       
  1208 
       
  1209 static void eval_tcol(struct csa *csa)
       
  1210 {     int m = csa->m;
       
  1211 #ifdef GLP_DEBUG
       
  1212       int n = csa->n;
       
  1213 #endif
       
  1214       int *head = csa->head;
       
  1215       int q = csa->q;
       
  1216       int *tcol_ind = csa->tcol_ind;
       
  1217       double *tcol_vec = csa->tcol_vec;
       
  1218       double *h = csa->tcol_vec;
       
  1219       int i, k, nnz;
       
  1220 #ifdef GLP_DEBUG
       
  1221       xassert(1 <= q && q <= n);
       
  1222 #endif
       
  1223       k = head[m+q]; /* x[k] = xN[q] */
       
  1224 #ifdef GLP_DEBUG
       
  1225       xassert(1 <= k && k <= m+n);
       
  1226 #endif
       
  1227       /* construct the right-hand side vector h = - N[q] */
       
  1228       for (i = 1; i <= m; i++)
       
  1229          h[i] = 0.0;
       
  1230       if (k <= m)
       
  1231       {  /* N[q] is k-th column of submatrix I */
       
  1232          h[k] = -1.0;
       
  1233       }
       
  1234       else
       
  1235       {  /* N[q] is (k-m)-th column of submatrix (-A) */
       
  1236          int *A_ptr = csa->A_ptr;
       
  1237          int *A_ind = csa->A_ind;
       
  1238          double *A_val = csa->A_val;
       
  1239          int beg, end, ptr;
       
  1240          beg = A_ptr[k-m];
       
  1241          end = A_ptr[k-m+1];
       
  1242          for (ptr = beg; ptr < end; ptr++)
       
  1243             h[A_ind[ptr]] = A_val[ptr];
       
  1244       }
       
  1245       /* solve system B * tcol = h */
       
  1246       xassert(csa->valid);
       
  1247       bfd_ftran(csa->bfd, tcol_vec);
       
  1248       /* construct sparse pattern of the pivot column */
       
  1249       nnz = 0;
       
  1250       for (i = 1; i <= m; i++)
       
  1251       {  if (tcol_vec[i] != 0.0)
       
  1252             tcol_ind[++nnz] = i;
       
  1253       }
       
  1254       csa->tcol_nnz = nnz;
       
  1255       return;
       
  1256 }
       
  1257 
       
  1258 /***********************************************************************
       
  1259 *  refine_tcol - refine pivot column of the simplex table
       
  1260 *
       
  1261 *  This routine refines the pivot column of the simplex table assuming
       
  1262 *  that it was previously computed by the routine eval_tcol. */
       
  1263 
       
  1264 static void refine_tcol(struct csa *csa)
       
  1265 {     int m = csa->m;
       
  1266 #ifdef GLP_DEBUG
       
  1267       int n = csa->n;
       
  1268 #endif
       
  1269       int *head = csa->head;
       
  1270       int q = csa->q;
       
  1271       int *tcol_ind = csa->tcol_ind;
       
  1272       double *tcol_vec = csa->tcol_vec;
       
  1273       double *h = csa->work3;
       
  1274       int i, k, nnz;
       
  1275 #ifdef GLP_DEBUG
       
  1276       xassert(1 <= q && q <= n);
       
  1277 #endif
       
  1278       k = head[m+q]; /* x[k] = xN[q] */
       
  1279 #ifdef GLP_DEBUG
       
  1280       xassert(1 <= k && k <= m+n);
       
  1281 #endif
       
  1282       /* construct the right-hand side vector h = - N[q] */
       
  1283       for (i = 1; i <= m; i++)
       
  1284          h[i] = 0.0;
       
  1285       if (k <= m)
       
  1286       {  /* N[q] is k-th column of submatrix I */
       
  1287          h[k] = -1.0;
       
  1288       }
       
  1289       else
       
  1290       {  /* N[q] is (k-m)-th column of submatrix (-A) */
       
  1291          int *A_ptr = csa->A_ptr;
       
  1292          int *A_ind = csa->A_ind;
       
  1293          double *A_val = csa->A_val;
       
  1294          int beg, end, ptr;
       
  1295          beg = A_ptr[k-m];
       
  1296          end = A_ptr[k-m+1];
       
  1297          for (ptr = beg; ptr < end; ptr++)
       
  1298             h[A_ind[ptr]] = A_val[ptr];
       
  1299       }
       
  1300       /* refine solution of B * tcol = h */
       
  1301       refine_ftran(csa, h, tcol_vec);
       
  1302       /* construct sparse pattern of the pivot column */
       
  1303       nnz = 0;
       
  1304       for (i = 1; i <= m; i++)
       
  1305       {  if (tcol_vec[i] != 0.0)
       
  1306             tcol_ind[++nnz] = i;
       
  1307       }
       
  1308       csa->tcol_nnz = nnz;
       
  1309       return;
       
  1310 }
       
  1311 
       
  1312 /***********************************************************************
       
  1313 *  sort_tcol - sort pivot column of the simplex table
       
  1314 *
       
  1315 *  This routine reorders the list of non-zero elements of the pivot
       
  1316 *  column to put significant elements, whose magnitude is not less than
       
  1317 *  a specified tolerance, in front of the list, and stores the number
       
  1318 *  of significant elements in tcol_num. */
       
  1319 
       
  1320 static void sort_tcol(struct csa *csa, double tol_piv)
       
  1321 {
       
  1322 #ifdef GLP_DEBUG
       
  1323       int m = csa->m;
       
  1324 #endif
       
  1325       int nnz = csa->tcol_nnz;
       
  1326       int *tcol_ind = csa->tcol_ind;
       
  1327       double *tcol_vec = csa->tcol_vec;
       
  1328       int i, num, pos;
       
  1329       double big, eps, temp;
       
  1330       /* compute infinity (maximum) norm of the column */
       
  1331       big = 0.0;
       
  1332       for (pos = 1; pos <= nnz; pos++)
       
  1333       {
       
  1334 #ifdef GLP_DEBUG
       
  1335          i = tcol_ind[pos];
       
  1336          xassert(1 <= i && i <= m);
       
  1337 #endif
       
  1338          temp = fabs(tcol_vec[tcol_ind[pos]]);
       
  1339          if (big < temp) big = temp;
       
  1340       }
       
  1341       csa->tcol_max = big;
       
  1342       /* determine absolute pivot tolerance */
       
  1343       eps = tol_piv * (1.0 + 0.01 * big);
       
  1344       /* move significant column components to front of the list */
       
  1345       for (num = 0; num < nnz; )
       
  1346       {  i = tcol_ind[nnz];
       
  1347          if (fabs(tcol_vec[i]) < eps)
       
  1348             nnz--;
       
  1349          else
       
  1350          {  num++;
       
  1351             tcol_ind[nnz] = tcol_ind[num];
       
  1352             tcol_ind[num] = i;
       
  1353          }
       
  1354       }
       
  1355       csa->tcol_num = num;
       
  1356       return;
       
  1357 }
       
  1358 
       
  1359 /***********************************************************************
       
  1360 *  chuzr - choose basic variable (row of the simplex table)
       
  1361 *
       
  1362 *  This routine chooses basic variable xB[p], which reaches its bound
       
  1363 *  first on changing non-basic variable xN[q] in valid direction.
       
  1364 *
       
  1365 *  The parameter rtol is a relative tolerance used to relax bounds of
       
  1366 *  basic variables. If rtol = 0, the routine implements the standard
       
  1367 *  ratio test. Otherwise, if rtol > 0, the routine implements Harris'
       
  1368 *  two-pass ratio test. In the latter case rtol should be about three
       
  1369 *  times less than a tolerance used to check primal feasibility. */
       
  1370 
       
  1371 static void chuzr(struct csa *csa, double rtol)
       
  1372 {     int m = csa->m;
       
  1373 #ifdef GLP_DEBUG
       
  1374       int n = csa->n;
       
  1375 #endif
       
  1376       char *type = csa->type;
       
  1377       double *lb = csa->lb;
       
  1378       double *ub = csa->ub;
       
  1379       double *coef = csa->coef;
       
  1380       int *head = csa->head;
       
  1381       int phase = csa->phase;
       
  1382       double *bbar = csa->bbar;
       
  1383       double *cbar = csa->cbar;
       
  1384       int q = csa->q;
       
  1385       int *tcol_ind = csa->tcol_ind;
       
  1386       double *tcol_vec = csa->tcol_vec;
       
  1387       int tcol_num = csa->tcol_num;
       
  1388       int i, i_stat, k, p, p_stat, pos;
       
  1389       double alfa, big, delta, s, t, teta, tmax;
       
  1390 #ifdef GLP_DEBUG
       
  1391       xassert(1 <= q && q <= n);
       
  1392 #endif
       
  1393       /* s := - sign(d[q]), where d[q] is reduced cost of xN[q] */
       
  1394 #ifdef GLP_DEBUG
       
  1395       xassert(cbar[q] != 0.0);
       
  1396 #endif
       
  1397       s = (cbar[q] > 0.0 ? -1.0 : +1.0);
       
  1398       /*** FIRST PASS ***/
       
  1399       k = head[m+q]; /* x[k] = xN[q] */
       
  1400 #ifdef GLP_DEBUG
       
  1401       xassert(1 <= k && k <= m+n);
       
  1402 #endif
       
  1403       if (type[k] == GLP_DB)
       
  1404       {  /* xN[q] has both lower and upper bounds */
       
  1405          p = -1, p_stat = 0, teta = ub[k] - lb[k], big = 1.0;
       
  1406       }
       
  1407       else
       
  1408       {  /* xN[q] has no opposite bound */
       
  1409          p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
       
  1410       }
       
  1411       /* walk through significant elements of the pivot column */
       
  1412       for (pos = 1; pos <= tcol_num; pos++)
       
  1413       {  i = tcol_ind[pos];
       
  1414 #ifdef GLP_DEBUG
       
  1415          xassert(1 <= i && i <= m);
       
  1416 #endif
       
  1417          k = head[i]; /* x[k] = xB[i] */
       
  1418 #ifdef GLP_DEBUG
       
  1419          xassert(1 <= k && k <= m+n);
       
  1420 #endif
       
  1421          alfa = s * tcol_vec[i];
       
  1422 #ifdef GLP_DEBUG
       
  1423          xassert(alfa != 0.0);
       
  1424 #endif
       
  1425          /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
       
  1426             consider the only case when xN[q] is increasing */
       
  1427          if (alfa > 0.0)
       
  1428          {  /* xB[i] is increasing */
       
  1429             if (phase == 1 && coef[k] < 0.0)
       
  1430             {  /* xB[i] violates its lower bound, which plays the role
       
  1431                   of an upper bound on phase I */
       
  1432                delta = rtol * (1.0 + kappa * fabs(lb[k]));
       
  1433                t = ((lb[k] + delta) - bbar[i]) / alfa;
       
  1434                i_stat = GLP_NL;
       
  1435             }
       
  1436             else if (phase == 1 && coef[k] > 0.0)
       
  1437             {  /* xB[i] violates its upper bound, which plays the role
       
  1438                   of an lower bound on phase I */
       
  1439                continue;
       
  1440             }
       
  1441             else if (type[k] == GLP_UP || type[k] == GLP_DB ||
       
  1442                      type[k] == GLP_FX)
       
  1443             {  /* xB[i] is within its bounds and has an upper bound */
       
  1444                delta = rtol * (1.0 + kappa * fabs(ub[k]));
       
  1445                t = ((ub[k] + delta) - bbar[i]) / alfa;
       
  1446                i_stat = GLP_NU;
       
  1447             }
       
  1448             else
       
  1449             {  /* xB[i] is within its bounds and has no upper bound */
       
  1450                continue;
       
  1451             }
       
  1452          }
       
  1453          else
       
  1454          {  /* xB[i] is decreasing */
       
  1455             if (phase == 1 && coef[k] > 0.0)
       
  1456             {  /* xB[i] violates its upper bound, which plays the role
       
  1457                   of an lower bound on phase I */
       
  1458                delta = rtol * (1.0 + kappa * fabs(ub[k]));
       
  1459                t = ((ub[k] - delta) - bbar[i]) / alfa;
       
  1460                i_stat = GLP_NU;
       
  1461             }
       
  1462             else if (phase == 1 && coef[k] < 0.0)
       
  1463             {  /* xB[i] violates its lower bound, which plays the role
       
  1464                   of an upper bound on phase I */
       
  1465                continue;
       
  1466             }
       
  1467             else if (type[k] == GLP_LO || type[k] == GLP_DB ||
       
  1468                      type[k] == GLP_FX)
       
  1469             {  /* xB[i] is within its bounds and has an lower bound */
       
  1470                delta = rtol * (1.0 + kappa * fabs(lb[k]));
       
  1471                t = ((lb[k] - delta) - bbar[i]) / alfa;
       
  1472                i_stat = GLP_NL;
       
  1473             }
       
  1474             else
       
  1475             {  /* xB[i] is within its bounds and has no lower bound */
       
  1476                continue;
       
  1477             }
       
  1478          }
       
  1479          /* t is a change of xN[q], on which xB[i] reaches its bound
       
  1480             (possibly relaxed); since the basic solution is assumed to
       
  1481             be primal feasible (or pseudo feasible on phase I), t has
       
  1482             to be non-negative by definition; however, it may happen
       
  1483             that xB[i] slightly (i.e. within a tolerance) violates its
       
  1484             bound, that leads to negative t; in the latter case, if
       
  1485             xB[i] is chosen, negative t means that xN[q] changes in
       
  1486             wrong direction; if pivot alfa[i,q] is close to zero, even
       
  1487             small bound violation of xB[i] may lead to a large change
       
  1488             of xN[q] in wrong direction; let, for example, xB[i] >= 0
       
  1489             and in the current basis its value be -5e-9; let also xN[q]
       
  1490             be on its zero bound and should increase; from the ratio
       
  1491             test rule it follows that the pivot alfa[i,q] < 0; however,
       
  1492             if alfa[i,q] is, say, -1e-9, the change of xN[q] in wrong
       
  1493             direction is 5e-9 / (-1e-9) = -5, and using it for updating
       
  1494             values of other basic variables will give absolutely wrong
       
  1495             results; therefore, if t is negative, we should replace it
       
  1496             by exact zero assuming that xB[i] is exactly on its bound,
       
  1497             and the violation appears due to round-off errors */
       
  1498          if (t < 0.0) t = 0.0;
       
  1499          /* apply minimal ratio test */
       
  1500          if (teta > t || teta == t && big < fabs(alfa))
       
  1501             p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
       
  1502       }
       
  1503       /* the second pass is skipped in the following cases: */
       
  1504       /* if the standard ratio test is used */
       
  1505       if (rtol == 0.0) goto done;
       
  1506       /* if xN[q] reaches its opposite bound or if no basic variable
       
  1507          has been chosen on the first pass */
       
  1508       if (p <= 0) goto done;
       
  1509       /* if xB[p] is a blocking variable, i.e. if it prevents xN[q]
       
  1510          from any change */
       
  1511       if (teta == 0.0) goto done;
       
  1512       /*** SECOND PASS ***/
       
  1513       /* here tmax is a maximal change of xN[q], on which the solution
       
  1514          remains primal feasible (or pseudo feasible on phase I) within
       
  1515          a tolerance */
       
  1516 #if 0
       
  1517       tmax = (1.0 + 10.0 * DBL_EPSILON) * teta;
       
  1518 #else
       
  1519       tmax = teta;
       
  1520 #endif
       
  1521       /* nothing is chosen so far */
       
  1522       p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
       
  1523       /* walk through significant elements of the pivot column */
       
  1524       for (pos = 1; pos <= tcol_num; pos++)
       
  1525       {  i = tcol_ind[pos];
       
  1526 #ifdef GLP_DEBUG
       
  1527          xassert(1 <= i && i <= m);
       
  1528 #endif
       
  1529          k = head[i]; /* x[k] = xB[i] */
       
  1530 #ifdef GLP_DEBUG
       
  1531          xassert(1 <= k && k <= m+n);
       
  1532 #endif
       
  1533          alfa = s * tcol_vec[i];
       
  1534 #ifdef GLP_DEBUG
       
  1535          xassert(alfa != 0.0);
       
  1536 #endif
       
  1537          /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
       
  1538             consider the only case when xN[q] is increasing */
       
  1539          if (alfa > 0.0)
       
  1540          {  /* xB[i] is increasing */
       
  1541             if (phase == 1 && coef[k] < 0.0)
       
  1542             {  /* xB[i] violates its lower bound, which plays the role
       
  1543                   of an upper bound on phase I */
       
  1544                t = (lb[k] - bbar[i]) / alfa;
       
  1545                i_stat = GLP_NL;
       
  1546             }
       
  1547             else if (phase == 1 && coef[k] > 0.0)
       
  1548             {  /* xB[i] violates its upper bound, which plays the role
       
  1549                   of an lower bound on phase I */
       
  1550                continue;
       
  1551             }
       
  1552             else if (type[k] == GLP_UP || type[k] == GLP_DB ||
       
  1553                      type[k] == GLP_FX)
       
  1554             {  /* xB[i] is within its bounds and has an upper bound */
       
  1555                t = (ub[k] - bbar[i]) / alfa;
       
  1556                i_stat = GLP_NU;
       
  1557             }
       
  1558             else
       
  1559             {  /* xB[i] is within its bounds and has no upper bound */
       
  1560                continue;
       
  1561             }
       
  1562          }
       
  1563          else
       
  1564          {  /* xB[i] is decreasing */
       
  1565             if (phase == 1 && coef[k] > 0.0)
       
  1566             {  /* xB[i] violates its upper bound, which plays the role
       
  1567                   of an lower bound on phase I */
       
  1568                t = (ub[k] - bbar[i]) / alfa;
       
  1569                i_stat = GLP_NU;
       
  1570             }
       
  1571             else if (phase == 1 && coef[k] < 0.0)
       
  1572             {  /* xB[i] violates its lower bound, which plays the role
       
  1573                   of an upper bound on phase I */
       
  1574                continue;
       
  1575             }
       
  1576             else if (type[k] == GLP_LO || type[k] == GLP_DB ||
       
  1577                      type[k] == GLP_FX)
       
  1578             {  /* xB[i] is within its bounds and has an lower bound */
       
  1579                t = (lb[k] - bbar[i]) / alfa;
       
  1580                i_stat = GLP_NL;
       
  1581             }
       
  1582             else
       
  1583             {  /* xB[i] is within its bounds and has no lower bound */
       
  1584                continue;
       
  1585             }
       
  1586          }
       
  1587          /* (see comments for the first pass) */
       
  1588          if (t < 0.0) t = 0.0;
       
  1589          /* t is a change of xN[q], on which xB[i] reaches its bound;
       
  1590             if t <= tmax, all basic variables can violate their bounds
       
  1591             only within relaxation tolerance delta; we can use this
       
  1592             freedom and choose basic variable having largest influence
       
  1593             coefficient to avoid possible numeric instability */
       
  1594          if (t <= tmax && big < fabs(alfa))
       
  1595             p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
       
  1596       }
       
  1597       /* something must be chosen on the second pass */
       
  1598       xassert(p != 0);
       
  1599 done: /* store the index and status of basic variable xB[p] chosen */
       
  1600       csa->p = p;
       
  1601       if (p > 0 && type[head[p]] == GLP_FX)
       
  1602          csa->p_stat = GLP_NS;
       
  1603       else
       
  1604          csa->p_stat = p_stat;
       
  1605       /* store corresponding change of non-basic variable xN[q] */
       
  1606 #ifdef GLP_DEBUG
       
  1607       xassert(teta >= 0.0);
       
  1608 #endif
       
  1609       csa->teta = s * teta;
       
  1610       return;
       
  1611 }
       
  1612 
       
  1613 /***********************************************************************
       
  1614 *  eval_rho - compute pivot row of the inverse
       
  1615 *
       
  1616 *  This routine computes the pivot (p-th) row of the inverse inv(B),
       
  1617 *  which corresponds to basic variable xB[p] chosen:
       
  1618 *
       
  1619 *     rho = inv(B') * e[p],
       
  1620 *
       
  1621 *  where B' is a matrix transposed to the current basis matrix, e[p]
       
  1622 *  is unity vector. */
       
  1623 
       
  1624 static void eval_rho(struct csa *csa, double rho[])
       
  1625 {     int m = csa->m;
       
  1626       int p = csa->p;
       
  1627       double *e = rho;
       
  1628       int i;
       
  1629 #ifdef GLP_DEBUG
       
  1630       xassert(1 <= p && p <= m);
       
  1631 #endif
       
  1632       /* construct the right-hand side vector e[p] */
       
  1633       for (i = 1; i <= m; i++)
       
  1634          e[i] = 0.0;
       
  1635       e[p] = 1.0;
       
  1636       /* solve system B'* rho = e[p] */
       
  1637       xassert(csa->valid);
       
  1638       bfd_btran(csa->bfd, rho);
       
  1639       return;
       
  1640 }
       
  1641 
       
  1642 /***********************************************************************
       
  1643 *  refine_rho - refine pivot row of the inverse
       
  1644 *
       
  1645 *  This routine refines the pivot row of the inverse inv(B) assuming
       
  1646 *  that it was previously computed by the routine eval_rho. */
       
  1647 
       
  1648 static void refine_rho(struct csa *csa, double rho[])
       
  1649 {     int m = csa->m;
       
  1650       int p = csa->p;
       
  1651       double *e = csa->work3;
       
  1652       int i;
       
  1653 #ifdef GLP_DEBUG
       
  1654       xassert(1 <= p && p <= m);
       
  1655 #endif
       
  1656       /* construct the right-hand side vector e[p] */
       
  1657       for (i = 1; i <= m; i++)
       
  1658          e[i] = 0.0;
       
  1659       e[p] = 1.0;
       
  1660       /* refine solution of B'* rho = e[p] */
       
  1661       refine_btran(csa, e, rho);
       
  1662       return;
       
  1663 }
       
  1664 
       
  1665 /***********************************************************************
       
  1666 *  eval_trow - compute pivot row of the simplex table
       
  1667 *
       
  1668 *  This routine computes the pivot row of the simplex table, which
       
  1669 *  corresponds to basic variable xB[p] chosen.
       
  1670 *
       
  1671 *  The pivot row is the following vector:
       
  1672 *
       
  1673 *     trow = T'* e[p] = - N'* inv(B') * e[p] = - N' * rho,
       
  1674 *
       
  1675 *  where rho is the pivot row of the inverse inv(B) previously computed
       
  1676 *  by the routine eval_rho.
       
  1677 *
       
  1678 *  Note that elements of the pivot row corresponding to fixed non-basic
       
  1679 *  variables are not computed. */
       
  1680 
       
  1681 static void eval_trow(struct csa *csa, double rho[])
       
  1682 {     int m = csa->m;
       
  1683       int n = csa->n;
       
  1684 #ifdef GLP_DEBUG
       
  1685       char *stat = csa->stat;
       
  1686 #endif
       
  1687       int *N_ptr = csa->N_ptr;
       
  1688       int *N_len = csa->N_len;
       
  1689       int *N_ind = csa->N_ind;
       
  1690       double *N_val = csa->N_val;
       
  1691       int *trow_ind = csa->trow_ind;
       
  1692       double *trow_vec = csa->trow_vec;
       
  1693       int i, j, beg, end, ptr, nnz;
       
  1694       double temp;
       
  1695       /* clear the pivot row */
       
  1696       for (j = 1; j <= n; j++)
       
  1697          trow_vec[j] = 0.0;
       
  1698       /* compute the pivot row as a linear combination of rows of the
       
  1699          matrix N: trow = - rho[1] * N'[1] - ... - rho[m] * N'[m] */
       
  1700       for (i = 1; i <= m; i++)
       
  1701       {  temp = rho[i];
       
  1702          if (temp == 0.0) continue;
       
  1703          /* trow := trow - rho[i] * N'[i] */
       
  1704          beg = N_ptr[i];
       
  1705          end = beg + N_len[i];
       
  1706          for (ptr = beg; ptr < end; ptr++)
       
  1707          {
       
  1708 #ifdef GLP_DEBUG
       
  1709             j = N_ind[ptr];
       
  1710             xassert(1 <= j && j <= n);
       
  1711             xassert(stat[j] != GLP_NS);
       
  1712 #endif
       
  1713             trow_vec[N_ind[ptr]] -= temp * N_val[ptr];
       
  1714          }
       
  1715       }
       
  1716       /* construct sparse pattern of the pivot row */
       
  1717       nnz = 0;
       
  1718       for (j = 1; j <= n; j++)
       
  1719       {  if (trow_vec[j] != 0.0)
       
  1720             trow_ind[++nnz] = j;
       
  1721       }
       
  1722       csa->trow_nnz = nnz;
       
  1723       return;
       
  1724 }
       
  1725 
       
  1726 /***********************************************************************
       
  1727 *  update_bbar - update values of basic variables
       
  1728 *
       
  1729 *  This routine updates values of all basic variables for the adjacent
       
  1730 *  basis. */
       
  1731 
       
  1732 static void update_bbar(struct csa *csa)
       
  1733 {
       
  1734 #ifdef GLP_DEBUG
       
  1735       int m = csa->m;
       
  1736       int n = csa->n;
       
  1737 #endif
       
  1738       double *bbar = csa->bbar;
       
  1739       int q = csa->q;
       
  1740       int tcol_nnz = csa->tcol_nnz;
       
  1741       int *tcol_ind = csa->tcol_ind;
       
  1742       double *tcol_vec = csa->tcol_vec;
       
  1743       int p = csa->p;
       
  1744       double teta = csa->teta;
       
  1745       int i, pos;
       
  1746 #ifdef GLP_DEBUG
       
  1747       xassert(1 <= q && q <= n);
       
  1748       xassert(p < 0 || 1 <= p && p <= m);
       
  1749 #endif
       
  1750       /* if xN[q] leaves the basis, compute its value in the adjacent
       
  1751          basis, where it will replace xB[p] */
       
  1752       if (p > 0)
       
  1753          bbar[p] = get_xN(csa, q) + teta;
       
  1754       /* update values of other basic variables (except xB[p], because
       
  1755          it will be replaced by xN[q]) */
       
  1756       if (teta == 0.0) goto done;
       
  1757       for (pos = 1; pos <= tcol_nnz; pos++)
       
  1758       {  i = tcol_ind[pos];
       
  1759          /* skip xB[p] */
       
  1760          if (i == p) continue;
       
  1761          /* (change of xB[i]) = alfa[i,q] * (change of xN[q]) */
       
  1762          bbar[i] += tcol_vec[i] * teta;
       
  1763       }
       
  1764 done: return;
       
  1765 }
       
  1766 
       
  1767 /***********************************************************************
       
  1768 *  reeval_cost - recompute reduced cost of non-basic variable xN[q]
       
  1769 *
       
  1770 *  This routine recomputes reduced cost of non-basic variable xN[q] for
       
  1771 *  the current basis more accurately using its direct definition:
       
  1772 *
       
  1773 *     d[q] = cN[q] - N'[q] * pi =
       
  1774 *
       
  1775 *          = cN[q] - N'[q] * (inv(B') * cB) =
       
  1776 *
       
  1777 *          = cN[q] - (cB' * inv(B) * N[q]) =
       
  1778 *
       
  1779 *          = cN[q] + cB' * (pivot column).
       
  1780 *
       
  1781 *  It is assumed that the pivot column of the simplex table is already
       
  1782 *  computed. */
       
  1783 
       
  1784 static double reeval_cost(struct csa *csa)
       
  1785 {     int m = csa->m;
       
  1786 #ifdef GLP_DEBUG
       
  1787       int n = csa->n;
       
  1788 #endif
       
  1789       double *coef = csa->coef;
       
  1790       int *head = csa->head;
       
  1791       int q = csa->q;
       
  1792       int tcol_nnz = csa->tcol_nnz;
       
  1793       int *tcol_ind = csa->tcol_ind;
       
  1794       double *tcol_vec = csa->tcol_vec;
       
  1795       int i, pos;
       
  1796       double dq;
       
  1797 #ifdef GLP_DEBUG
       
  1798       xassert(1 <= q && q <= n);
       
  1799 #endif
       
  1800       dq = coef[head[m+q]];
       
  1801       for (pos = 1; pos <= tcol_nnz; pos++)
       
  1802       {  i = tcol_ind[pos];
       
  1803 #ifdef GLP_DEBUG
       
  1804          xassert(1 <= i && i <= m);
       
  1805 #endif
       
  1806          dq += coef[head[i]] * tcol_vec[i];
       
  1807       }
       
  1808       return dq;
       
  1809 }
       
  1810 
       
  1811 /***********************************************************************
       
  1812 *  update_cbar - update reduced costs of non-basic variables
       
  1813 *
       
  1814 *  This routine updates reduced costs of all (except fixed) non-basic
       
  1815 *  variables for the adjacent basis. */
       
  1816 
       
  1817 static void update_cbar(struct csa *csa)
       
  1818 {
       
  1819 #ifdef GLP_DEBUG
       
  1820       int n = csa->n;
       
  1821 #endif
       
  1822       double *cbar = csa->cbar;
       
  1823       int q = csa->q;
       
  1824       int trow_nnz = csa->trow_nnz;
       
  1825       int *trow_ind = csa->trow_ind;
       
  1826       double *trow_vec = csa->trow_vec;
       
  1827       int j, pos;
       
  1828       double new_dq;
       
  1829 #ifdef GLP_DEBUG
       
  1830       xassert(1 <= q && q <= n);
       
  1831 #endif
       
  1832       /* compute reduced cost of xB[p] in the adjacent basis, where it
       
  1833          will replace xN[q] */
       
  1834 #ifdef GLP_DEBUG
       
  1835       xassert(trow_vec[q] != 0.0);
       
  1836 #endif
       
  1837       new_dq = (cbar[q] /= trow_vec[q]);
       
  1838       /* update reduced costs of other non-basic variables (except
       
  1839          xN[q], because it will be replaced by xB[p]) */
       
  1840       for (pos = 1; pos <= trow_nnz; pos++)
       
  1841       {  j = trow_ind[pos];
       
  1842          /* skip xN[q] */
       
  1843          if (j == q) continue;
       
  1844          cbar[j] -= trow_vec[j] * new_dq;
       
  1845       }
       
  1846       return;
       
  1847 }
       
  1848 
       
  1849 /***********************************************************************
       
  1850 *  update_gamma - update steepest edge coefficients
       
  1851 *
       
  1852 *  This routine updates steepest-edge coefficients for the adjacent
       
  1853 *  basis. */
       
  1854 
       
  1855 static void update_gamma(struct csa *csa)
       
  1856 {     int m = csa->m;
       
  1857 #ifdef GLP_DEBUG
       
  1858       int n = csa->n;
       
  1859 #endif
       
  1860       char *type = csa->type;
       
  1861       int *A_ptr = csa->A_ptr;
       
  1862       int *A_ind = csa->A_ind;
       
  1863       double *A_val = csa->A_val;
       
  1864       int *head = csa->head;
       
  1865       char *refsp = csa->refsp;
       
  1866       double *gamma = csa->gamma;
       
  1867       int q = csa->q;
       
  1868       int tcol_nnz = csa->tcol_nnz;
       
  1869       int *tcol_ind = csa->tcol_ind;
       
  1870       double *tcol_vec = csa->tcol_vec;
       
  1871       int p = csa->p;
       
  1872       int trow_nnz = csa->trow_nnz;
       
  1873       int *trow_ind = csa->trow_ind;
       
  1874       double *trow_vec = csa->trow_vec;
       
  1875       double *u = csa->work3;
       
  1876       int i, j, k, pos, beg, end, ptr;
       
  1877       double gamma_q, delta_q, pivot, s, t, t1, t2;
       
  1878 #ifdef GLP_DEBUG
       
  1879       xassert(1 <= p && p <= m);
       
  1880       xassert(1 <= q && q <= n);
       
  1881 #endif
       
  1882       /* the basis changes, so decrease the count */
       
  1883       xassert(csa->refct > 0);
       
  1884       csa->refct--;
       
  1885       /* recompute gamma[q] for the current basis more accurately and
       
  1886          compute auxiliary vector u */
       
  1887       gamma_q = delta_q = (refsp[head[m+q]] ? 1.0 : 0.0);
       
  1888       for (i = 1; i <= m; i++) u[i] = 0.0;
       
  1889       for (pos = 1; pos <= tcol_nnz; pos++)
       
  1890       {  i = tcol_ind[pos];
       
  1891          if (refsp[head[i]])
       
  1892          {  u[i] = t = tcol_vec[i];
       
  1893             gamma_q += t * t;
       
  1894          }
       
  1895          else
       
  1896             u[i] = 0.0;
       
  1897       }
       
  1898       xassert(csa->valid);
       
  1899       bfd_btran(csa->bfd, u);
       
  1900       /* update gamma[k] for other non-basic variables (except fixed
       
  1901          variables and xN[q], because it will be replaced by xB[p]) */
       
  1902       pivot = trow_vec[q];
       
  1903 #ifdef GLP_DEBUG
       
  1904       xassert(pivot != 0.0);
       
  1905 #endif
       
  1906       for (pos = 1; pos <= trow_nnz; pos++)
       
  1907       {  j = trow_ind[pos];
       
  1908          /* skip xN[q] */
       
  1909          if (j == q) continue;
       
  1910          /* compute t */
       
  1911          t = trow_vec[j] / pivot;
       
  1912          /* compute inner product s = N'[j] * u */
       
  1913          k = head[m+j]; /* x[k] = xN[j] */
       
  1914          if (k <= m)
       
  1915             s = u[k];
       
  1916          else
       
  1917          {  s = 0.0;
       
  1918             beg = A_ptr[k-m];
       
  1919             end = A_ptr[k-m+1];
       
  1920             for (ptr = beg; ptr < end; ptr++)
       
  1921                s -= A_val[ptr] * u[A_ind[ptr]];
       
  1922          }
       
  1923          /* compute gamma[k] for the adjacent basis */
       
  1924          t1 = gamma[j] + t * t * gamma_q + 2.0 * t * s;
       
  1925          t2 = (refsp[k] ? 1.0 : 0.0) + delta_q * t * t;
       
  1926          gamma[j] = (t1 >= t2 ? t1 : t2);
       
  1927          if (gamma[j] < DBL_EPSILON) gamma[j] = DBL_EPSILON;
       
  1928       }
       
  1929       /* compute gamma[q] for the adjacent basis */
       
  1930       if (type[head[p]] == GLP_FX)
       
  1931          gamma[q] = 1.0;
       
  1932       else
       
  1933       {  gamma[q] = gamma_q / (pivot * pivot);
       
  1934          if (gamma[q] < DBL_EPSILON) gamma[q] = DBL_EPSILON;
       
  1935       }
       
  1936       return;
       
  1937 }
       
  1938 
       
  1939 /***********************************************************************
       
  1940 *  err_in_bbar - compute maximal relative error in primal solution
       
  1941 *
       
  1942 *  This routine returns maximal relative error:
       
  1943 *
       
  1944 *     max |beta[i] - bbar[i]| / (1 + |beta[i]|),
       
  1945 *
       
  1946 *  where beta and bbar are, respectively, directly computed and the
       
  1947 *  current (updated) values of basic variables.
       
  1948 *
       
  1949 *  NOTE: The routine is intended only for debugginig purposes. */
       
  1950 
       
  1951 static double err_in_bbar(struct csa *csa)
       
  1952 {     int m = csa->m;
       
  1953       double *bbar = csa->bbar;
       
  1954       int i;
       
  1955       double e, emax, *beta;
       
  1956       beta = xcalloc(1+m, sizeof(double));
       
  1957       eval_beta(csa, beta);
       
  1958       emax = 0.0;
       
  1959       for (i = 1; i <= m; i++)
       
  1960       {  e = fabs(beta[i] - bbar[i]) / (1.0 + fabs(beta[i]));
       
  1961          if (emax < e) emax = e;
       
  1962       }
       
  1963       xfree(beta);
       
  1964       return emax;
       
  1965 }
       
  1966 
       
  1967 /***********************************************************************
       
  1968 *  err_in_cbar - compute maximal relative error in dual solution
       
  1969 *
       
  1970 *  This routine returns maximal relative error:
       
  1971 *
       
  1972 *     max |cost[j] - cbar[j]| / (1 + |cost[j]|),
       
  1973 *
       
  1974 *  where cost and cbar are, respectively, directly computed and the
       
  1975 *  current (updated) reduced costs of non-basic non-fixed variables.
       
  1976 *
       
  1977 *  NOTE: The routine is intended only for debugginig purposes. */
       
  1978 
       
  1979 static double err_in_cbar(struct csa *csa)
       
  1980 {     int m = csa->m;
       
  1981       int n = csa->n;
       
  1982       char *stat = csa->stat;
       
  1983       double *cbar = csa->cbar;
       
  1984       int j;
       
  1985       double e, emax, cost, *pi;
       
  1986       pi = xcalloc(1+m, sizeof(double));
       
  1987       eval_pi(csa, pi);
       
  1988       emax = 0.0;
       
  1989       for (j = 1; j <= n; j++)
       
  1990       {  if (stat[j] == GLP_NS) continue;
       
  1991          cost = eval_cost(csa, pi, j);
       
  1992          e = fabs(cost - cbar[j]) / (1.0 + fabs(cost));
       
  1993          if (emax < e) emax = e;
       
  1994       }
       
  1995       xfree(pi);
       
  1996       return emax;
       
  1997 }
       
  1998 
       
  1999 /***********************************************************************
       
  2000 *  err_in_gamma - compute maximal relative error in steepest edge cff.
       
  2001 *
       
  2002 *  This routine returns maximal relative error:
       
  2003 *
       
  2004 *     max |gamma'[j] - gamma[j]| / (1 + |gamma'[j]),
       
  2005 *
       
  2006 *  where gamma'[j] and gamma[j] are, respectively, directly computed
       
  2007 *  and the current (updated) steepest edge coefficients for non-basic
       
  2008 *  non-fixed variable x[j].
       
  2009 *
       
  2010 *  NOTE: The routine is intended only for debugginig purposes. */
       
  2011 
       
  2012 static double err_in_gamma(struct csa *csa)
       
  2013 {     int n = csa->n;
       
  2014       char *stat = csa->stat;
       
  2015       double *gamma = csa->gamma;
       
  2016       int j;
       
  2017       double e, emax, temp;
       
  2018       emax = 0.0;
       
  2019       for (j = 1; j <= n; j++)
       
  2020       {  if (stat[j] == GLP_NS)
       
  2021          {  xassert(gamma[j] == 1.0);
       
  2022             continue;
       
  2023          }
       
  2024          temp = eval_gamma(csa, j);
       
  2025          e = fabs(temp - gamma[j]) / (1.0 + fabs(temp));
       
  2026          if (emax < e) emax = e;
       
  2027       }
       
  2028       return emax;
       
  2029 }
       
  2030 
       
  2031 /***********************************************************************
       
  2032 *  change_basis - change basis header
       
  2033 *
       
  2034 *  This routine changes the basis header to make it corresponding to
       
  2035 *  the adjacent basis. */
       
  2036 
       
  2037 static void change_basis(struct csa *csa)
       
  2038 {     int m = csa->m;
       
  2039 #ifdef GLP_DEBUG
       
  2040       int n = csa->n;
       
  2041       char *type = csa->type;
       
  2042 #endif
       
  2043       int *head = csa->head;
       
  2044       char *stat = csa->stat;
       
  2045       int q = csa->q;
       
  2046       int p = csa->p;
       
  2047       int p_stat = csa->p_stat;
       
  2048       int k;
       
  2049 #ifdef GLP_DEBUG
       
  2050       xassert(1 <= q && q <= n);
       
  2051 #endif
       
  2052       if (p < 0)
       
  2053       {  /* xN[q] goes to its opposite bound */
       
  2054 #ifdef GLP_DEBUG
       
  2055          k = head[m+q]; /* x[k] = xN[q] */
       
  2056          xassert(1 <= k && k <= m+n);
       
  2057          xassert(type[k] == GLP_DB);
       
  2058 #endif
       
  2059          switch (stat[q])
       
  2060          {  case GLP_NL:
       
  2061                /* xN[q] increases */
       
  2062                stat[q] = GLP_NU;
       
  2063                break;
       
  2064             case GLP_NU:
       
  2065                /* xN[q] decreases */
       
  2066                stat[q] = GLP_NL;
       
  2067                break;
       
  2068             default:
       
  2069                xassert(stat != stat);
       
  2070          }
       
  2071       }
       
  2072       else
       
  2073       {  /* xB[p] leaves the basis, xN[q] enters the basis */
       
  2074 #ifdef GLP_DEBUG
       
  2075          xassert(1 <= p && p <= m);
       
  2076          k = head[p]; /* x[k] = xB[p] */
       
  2077          switch (p_stat)
       
  2078          {  case GLP_NL:
       
  2079                /* xB[p] goes to its lower bound */
       
  2080                xassert(type[k] == GLP_LO || type[k] == GLP_DB);
       
  2081                break;
       
  2082             case GLP_NU:
       
  2083                /* xB[p] goes to its upper bound */
       
  2084                xassert(type[k] == GLP_UP || type[k] == GLP_DB);
       
  2085                break;
       
  2086             case GLP_NS:
       
  2087                /* xB[p] goes to its fixed value */
       
  2088                xassert(type[k] == GLP_NS);
       
  2089                break;
       
  2090             default:
       
  2091                xassert(p_stat != p_stat);
       
  2092          }
       
  2093 #endif
       
  2094          /* xB[p] <-> xN[q] */
       
  2095          k = head[p], head[p] = head[m+q], head[m+q] = k;
       
  2096          stat[q] = (char)p_stat;
       
  2097       }
       
  2098       return;
       
  2099 }
       
  2100 
       
  2101 /***********************************************************************
       
  2102 *  set_aux_obj - construct auxiliary objective function
       
  2103 *
       
  2104 *  The auxiliary objective function is a separable piecewise linear
       
  2105 *  convex function, which is the sum of primal infeasibilities:
       
  2106 *
       
  2107 *     z = t[1] + ... + t[m+n] -> minimize,
       
  2108 *
       
  2109 *  where:
       
  2110 *
       
  2111 *            / lb[k] - x[k], if x[k] < lb[k]
       
  2112 *            |
       
  2113 *     t[k] = <  0, if lb[k] <= x[k] <= ub[k]
       
  2114 *            |
       
  2115 *            \ x[k] - ub[k], if x[k] > ub[k]
       
  2116 *
       
  2117 *  This routine computes objective coefficients for the current basis
       
  2118 *  and returns the number of non-zero terms t[k]. */
       
  2119 
       
  2120 static int set_aux_obj(struct csa *csa, double tol_bnd)
       
  2121 {     int m = csa->m;
       
  2122       int n = csa->n;
       
  2123       char *type = csa->type;
       
  2124       double *lb = csa->lb;
       
  2125       double *ub = csa->ub;
       
  2126       double *coef = csa->coef;
       
  2127       int *head = csa->head;
       
  2128       double *bbar = csa->bbar;
       
  2129       int i, k, cnt = 0;
       
  2130       double eps;
       
  2131       /* use a bit more restrictive tolerance */
       
  2132       tol_bnd *= 0.90;
       
  2133       /* clear all objective coefficients */
       
  2134       for (k = 1; k <= m+n; k++)
       
  2135          coef[k] = 0.0;
       
  2136       /* walk through the list of basic variables */
       
  2137       for (i = 1; i <= m; i++)
       
  2138       {  k = head[i]; /* x[k] = xB[i] */
       
  2139          if (type[k] == GLP_LO || type[k] == GLP_DB ||
       
  2140              type[k] == GLP_FX)
       
  2141          {  /* x[k] has lower bound */
       
  2142             eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
       
  2143             if (bbar[i] < lb[k] - eps)
       
  2144             {  /* and violates it */
       
  2145                coef[k] = -1.0;
       
  2146                cnt++;
       
  2147             }
       
  2148          }
       
  2149          if (type[k] == GLP_UP || type[k] == GLP_DB ||
       
  2150              type[k] == GLP_FX)
       
  2151          {  /* x[k] has upper bound */
       
  2152             eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
       
  2153             if (bbar[i] > ub[k] + eps)
       
  2154             {  /* and violates it */
       
  2155                coef[k] = +1.0;
       
  2156                cnt++;
       
  2157             }
       
  2158          }
       
  2159       }
       
  2160       return cnt;
       
  2161 }
       
  2162 
       
  2163 /***********************************************************************
       
  2164 *  set_orig_obj - restore original objective function
       
  2165 *
       
  2166 *  This routine assigns scaled original objective coefficients to the
       
  2167 *  working objective function. */
       
  2168 
       
  2169 static void set_orig_obj(struct csa *csa)
       
  2170 {     int m = csa->m;
       
  2171       int n = csa->n;
       
  2172       double *coef = csa->coef;
       
  2173       double *obj = csa->obj;
       
  2174       double zeta = csa->zeta;
       
  2175       int i, j;
       
  2176       for (i = 1; i <= m; i++)
       
  2177          coef[i] = 0.0;
       
  2178       for (j = 1; j <= n; j++)
       
  2179          coef[m+j] = zeta * obj[j];
       
  2180       return;
       
  2181 }
       
  2182 
       
  2183 /***********************************************************************
       
  2184 *  check_stab - check numerical stability of basic solution
       
  2185 *
       
  2186 *  If the current basic solution is primal feasible (or pseudo feasible
       
  2187 *  on phase I) within a tolerance, this routine returns zero, otherwise
       
  2188 *  it returns non-zero. */
       
  2189 
       
  2190 static int check_stab(struct csa *csa, double tol_bnd)
       
  2191 {     int m = csa->m;
       
  2192 #ifdef GLP_DEBUG
       
  2193       int n = csa->n;
       
  2194 #endif
       
  2195       char *type = csa->type;
       
  2196       double *lb = csa->lb;
       
  2197       double *ub = csa->ub;
       
  2198       double *coef = csa->coef;
       
  2199       int *head = csa->head;
       
  2200       int phase = csa->phase;
       
  2201       double *bbar = csa->bbar;
       
  2202       int i, k;
       
  2203       double eps;
       
  2204       /* walk through the list of basic variables */
       
  2205       for (i = 1; i <= m; i++)
       
  2206       {  k = head[i]; /* x[k] = xB[i] */
       
  2207 #ifdef GLP_DEBUG
       
  2208          xassert(1 <= k && k <= m+n);
       
  2209 #endif
       
  2210          if (phase == 1 && coef[k] < 0.0)
       
  2211          {  /* x[k] must not be greater than its lower bound */
       
  2212 #ifdef GLP_DEBUG
       
  2213             xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
       
  2214                     type[k] == GLP_FX);
       
  2215 #endif
       
  2216             eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
       
  2217             if (bbar[i] > lb[k] + eps) return 1;
       
  2218          }
       
  2219          else if (phase == 1 && coef[k] > 0.0)
       
  2220          {  /* x[k] must not be less than its upper bound */
       
  2221 #ifdef GLP_DEBUG
       
  2222             xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
       
  2223                     type[k] == GLP_FX);
       
  2224 #endif
       
  2225             eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
       
  2226             if (bbar[i] < ub[k] - eps) return 1;
       
  2227          }
       
  2228          else
       
  2229          {  /* either phase = 1 and coef[k] = 0, or phase = 2 */
       
  2230             if (type[k] == GLP_LO || type[k] == GLP_DB ||
       
  2231                 type[k] == GLP_FX)
       
  2232             {  /* x[k] must not be less than its lower bound */
       
  2233                eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
       
  2234                if (bbar[i] < lb[k] - eps) return 1;
       
  2235             }
       
  2236             if (type[k] == GLP_UP || type[k] == GLP_DB ||
       
  2237                 type[k] == GLP_FX)
       
  2238             {  /* x[k] must not be greater then its upper bound */
       
  2239                eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
       
  2240                if (bbar[i] > ub[k] + eps) return 1;
       
  2241             }
       
  2242          }
       
  2243       }
       
  2244       /* basic solution is primal feasible within a tolerance */
       
  2245       return 0;
       
  2246 }
       
  2247 
       
  2248 /***********************************************************************
       
  2249 *  check_feas - check primal feasibility of basic solution
       
  2250 *
       
  2251 *  If the current basic solution is primal feasible within a tolerance,
       
  2252 *  this routine returns zero, otherwise it returns non-zero. */
       
  2253 
       
  2254 static int check_feas(struct csa *csa, double tol_bnd)
       
  2255 {     int m = csa->m;
       
  2256 #ifdef GLP_DEBUG
       
  2257       int n = csa->n;
       
  2258       char *type = csa->type;
       
  2259 #endif
       
  2260       double *lb = csa->lb;
       
  2261       double *ub = csa->ub;
       
  2262       double *coef = csa->coef;
       
  2263       int *head = csa->head;
       
  2264       double *bbar = csa->bbar;
       
  2265       int i, k;
       
  2266       double eps;
       
  2267       xassert(csa->phase == 1);
       
  2268       /* walk through the list of basic variables */
       
  2269       for (i = 1; i <= m; i++)
       
  2270       {  k = head[i]; /* x[k] = xB[i] */
       
  2271 #ifdef GLP_DEBUG
       
  2272          xassert(1 <= k && k <= m+n);
       
  2273 #endif
       
  2274          if (coef[k] < 0.0)
       
  2275          {  /* check if x[k] still violates its lower bound */
       
  2276 #ifdef GLP_DEBUG
       
  2277             xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
       
  2278                     type[k] == GLP_FX);
       
  2279 #endif
       
  2280             eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
       
  2281             if (bbar[i] < lb[k] - eps) return 1;
       
  2282          }
       
  2283          else if (coef[k] > 0.0)
       
  2284          {  /* check if x[k] still violates its upper bound */
       
  2285 #ifdef GLP_DEBUG
       
  2286             xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
       
  2287                     type[k] == GLP_FX);
       
  2288 #endif
       
  2289             eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
       
  2290             if (bbar[i] > ub[k] + eps) return 1;
       
  2291          }
       
  2292       }
       
  2293       /* basic solution is primal feasible within a tolerance */
       
  2294       return 0;
       
  2295 }
       
  2296 
       
  2297 /***********************************************************************
       
  2298 *  eval_obj - compute original objective function
       
  2299 *
       
  2300 *  This routine computes the current value of the original objective
       
  2301 *  function. */
       
  2302 
       
  2303 static double eval_obj(struct csa *csa)
       
  2304 {     int m = csa->m;
       
  2305       int n = csa->n;
       
  2306       double *obj = csa->obj;
       
  2307       int *head = csa->head;
       
  2308       double *bbar = csa->bbar;
       
  2309       int i, j, k;
       
  2310       double sum;
       
  2311       sum = obj[0];
       
  2312       /* walk through the list of basic variables */
       
  2313       for (i = 1; i <= m; i++)
       
  2314       {  k = head[i]; /* x[k] = xB[i] */
       
  2315 #ifdef GLP_DEBUG
       
  2316          xassert(1 <= k && k <= m+n);
       
  2317 #endif
       
  2318          if (k > m)
       
  2319             sum += obj[k-m] * bbar[i];
       
  2320       }
       
  2321       /* walk through the list of non-basic variables */
       
  2322       for (j = 1; j <= n; j++)
       
  2323       {  k = head[m+j]; /* x[k] = xN[j] */
       
  2324 #ifdef GLP_DEBUG
       
  2325          xassert(1 <= k && k <= m+n);
       
  2326 #endif
       
  2327          if (k > m)
       
  2328             sum += obj[k-m] * get_xN(csa, j);
       
  2329       }
       
  2330       return sum;
       
  2331 }
       
  2332 
       
  2333 /***********************************************************************
       
  2334 *  display - display the search progress
       
  2335 *
       
  2336 *  This routine displays some information about the search progress
       
  2337 *  that includes:
       
  2338 *
       
  2339 *  the search phase;
       
  2340 *
       
  2341 *  the number of simplex iterations performed by the solver;
       
  2342 *
       
  2343 *  the original objective value;
       
  2344 *
       
  2345 *  the sum of (scaled) primal infeasibilities;
       
  2346 *
       
  2347 *  the number of basic fixed variables. */
       
  2348 
       
  2349 static void display(struct csa *csa, const glp_smcp *parm, int spec)
       
  2350 {     int m = csa->m;
       
  2351 #ifdef GLP_DEBUG
       
  2352       int n = csa->n;
       
  2353 #endif
       
  2354       char *type = csa->type;
       
  2355       double *lb = csa->lb;
       
  2356       double *ub = csa->ub;
       
  2357       int phase = csa->phase;
       
  2358       int *head = csa->head;
       
  2359       double *bbar = csa->bbar;
       
  2360       int i, k, cnt;
       
  2361       double sum;
       
  2362       if (parm->msg_lev < GLP_MSG_ON) goto skip;
       
  2363       if (parm->out_dly > 0 &&
       
  2364          1000.0 * xdifftime(xtime(), csa->tm_beg) < parm->out_dly)
       
  2365          goto skip;
       
  2366       if (csa->it_cnt == csa->it_dpy) goto skip;
       
  2367       if (!spec && csa->it_cnt % parm->out_frq != 0) goto skip;
       
  2368       /* compute the sum of primal infeasibilities and determine the
       
  2369          number of basic fixed variables */
       
  2370       sum = 0.0, cnt = 0;
       
  2371       for (i = 1; i <= m; i++)
       
  2372       {  k = head[i]; /* x[k] = xB[i] */
       
  2373 #ifdef GLP_DEBUG
       
  2374          xassert(1 <= k && k <= m+n);
       
  2375 #endif
       
  2376          if (type[k] == GLP_LO || type[k] == GLP_DB ||
       
  2377              type[k] == GLP_FX)
       
  2378          {  /* x[k] has lower bound */
       
  2379             if (bbar[i] < lb[k])
       
  2380                sum += (lb[k] - bbar[i]);
       
  2381          }
       
  2382          if (type[k] == GLP_UP || type[k] == GLP_DB ||
       
  2383              type[k] == GLP_FX)
       
  2384          {  /* x[k] has upper bound */
       
  2385             if (bbar[i] > ub[k])
       
  2386                sum += (bbar[i] - ub[k]);
       
  2387          }
       
  2388          if (type[k] == GLP_FX) cnt++;
       
  2389       }
       
  2390       xprintf("%c%6d: obj = %17.9e  infeas = %10.3e (%d)\n",
       
  2391          phase == 1 ? ' ' : '*', csa->it_cnt, eval_obj(csa), sum, cnt);
       
  2392       csa->it_dpy = csa->it_cnt;
       
  2393 skip: return;
       
  2394 }
       
  2395 
       
  2396 /***********************************************************************
       
  2397 *  store_sol - store basic solution back to the problem object
       
  2398 *
       
  2399 *  This routine stores basic solution components back to the problem
       
  2400 *  object. */
       
  2401 
       
  2402 static void store_sol(struct csa *csa, glp_prob *lp, int p_stat,
       
  2403       int d_stat, int ray)
       
  2404 {     int m = csa->m;
       
  2405       int n = csa->n;
       
  2406       double zeta = csa->zeta;
       
  2407       int *head = csa->head;
       
  2408       char *stat = csa->stat;
       
  2409       double *bbar = csa->bbar;
       
  2410       double *cbar = csa->cbar;
       
  2411       int i, j, k;
       
  2412 #ifdef GLP_DEBUG
       
  2413       xassert(lp->m == m);
       
  2414       xassert(lp->n == n);
       
  2415 #endif
       
  2416       /* basis factorization */
       
  2417 #ifdef GLP_DEBUG
       
  2418       xassert(!lp->valid && lp->bfd == NULL);
       
  2419       xassert(csa->valid && csa->bfd != NULL);
       
  2420 #endif
       
  2421       lp->valid = 1, csa->valid = 0;
       
  2422       lp->bfd = csa->bfd, csa->bfd = NULL;
       
  2423       memcpy(&lp->head[1], &head[1], m * sizeof(int));
       
  2424       /* basic solution status */
       
  2425       lp->pbs_stat = p_stat;
       
  2426       lp->dbs_stat = d_stat;
       
  2427       /* objective function value */
       
  2428       lp->obj_val = eval_obj(csa);
       
  2429       /* simplex iteration count */
       
  2430       lp->it_cnt = csa->it_cnt;
       
  2431       /* unbounded ray */
       
  2432       lp->some = ray;
       
  2433       /* basic variables */
       
  2434       for (i = 1; i <= m; i++)
       
  2435       {  k = head[i]; /* x[k] = xB[i] */
       
  2436 #ifdef GLP_DEBUG
       
  2437          xassert(1 <= k && k <= m+n);
       
  2438 #endif
       
  2439          if (k <= m)
       
  2440          {  GLPROW *row = lp->row[k];
       
  2441             row->stat = GLP_BS;
       
  2442             row->bind = i;
       
  2443             row->prim = bbar[i] / row->rii;
       
  2444             row->dual = 0.0;
       
  2445          }
       
  2446          else
       
  2447          {  GLPCOL *col = lp->col[k-m];
       
  2448             col->stat = GLP_BS;
       
  2449             col->bind = i;
       
  2450             col->prim = bbar[i] * col->sjj;
       
  2451             col->dual = 0.0;
       
  2452          }
       
  2453       }
       
  2454       /* non-basic variables */
       
  2455       for (j = 1; j <= n; j++)
       
  2456       {  k = head[m+j]; /* x[k] = xN[j] */
       
  2457 #ifdef GLP_DEBUG
       
  2458          xassert(1 <= k && k <= m+n);
       
  2459 #endif
       
  2460          if (k <= m)
       
  2461          {  GLPROW *row = lp->row[k];
       
  2462             row->stat = stat[j];
       
  2463             row->bind = 0;
       
  2464 #if 0
       
  2465             row->prim = get_xN(csa, j) / row->rii;
       
  2466 #else
       
  2467             switch (stat[j])
       
  2468             {  case GLP_NL:
       
  2469                   row->prim = row->lb; break;
       
  2470                case GLP_NU:
       
  2471                   row->prim = row->ub; break;
       
  2472                case GLP_NF:
       
  2473                   row->prim = 0.0; break;
       
  2474                case GLP_NS:
       
  2475                   row->prim = row->lb; break;
       
  2476                default:
       
  2477                   xassert(stat != stat);
       
  2478             }
       
  2479 #endif
       
  2480             row->dual = (cbar[j] * row->rii) / zeta;
       
  2481          }
       
  2482          else
       
  2483          {  GLPCOL *col = lp->col[k-m];
       
  2484             col->stat = stat[j];
       
  2485             col->bind = 0;
       
  2486 #if 0
       
  2487             col->prim = get_xN(csa, j) * col->sjj;
       
  2488 #else
       
  2489             switch (stat[j])
       
  2490             {  case GLP_NL:
       
  2491                   col->prim = col->lb; break;
       
  2492                case GLP_NU:
       
  2493                   col->prim = col->ub; break;
       
  2494                case GLP_NF:
       
  2495                   col->prim = 0.0; break;
       
  2496                case GLP_NS:
       
  2497                   col->prim = col->lb; break;
       
  2498                default:
       
  2499                   xassert(stat != stat);
       
  2500             }
       
  2501 #endif
       
  2502             col->dual = (cbar[j] / col->sjj) / zeta;
       
  2503          }
       
  2504       }
       
  2505       return;
       
  2506 }
       
  2507 
       
  2508 /***********************************************************************
       
  2509 *  free_csa - deallocate common storage area
       
  2510 *
       
  2511 *  This routine frees all the memory allocated to arrays in the common
       
  2512 *  storage area (CSA). */
       
  2513 
       
  2514 static void free_csa(struct csa *csa)
       
  2515 {     xfree(csa->type);
       
  2516       xfree(csa->lb);
       
  2517       xfree(csa->ub);
       
  2518       xfree(csa->coef);
       
  2519       xfree(csa->obj);
       
  2520       xfree(csa->A_ptr);
       
  2521       xfree(csa->A_ind);
       
  2522       xfree(csa->A_val);
       
  2523       xfree(csa->head);
       
  2524       xfree(csa->stat);
       
  2525       xfree(csa->N_ptr);
       
  2526       xfree(csa->N_len);
       
  2527       xfree(csa->N_ind);
       
  2528       xfree(csa->N_val);
       
  2529       xfree(csa->bbar);
       
  2530       xfree(csa->cbar);
       
  2531       xfree(csa->refsp);
       
  2532       xfree(csa->gamma);
       
  2533       xfree(csa->tcol_ind);
       
  2534       xfree(csa->tcol_vec);
       
  2535       xfree(csa->trow_ind);
       
  2536       xfree(csa->trow_vec);
       
  2537       xfree(csa->work1);
       
  2538       xfree(csa->work2);
       
  2539       xfree(csa->work3);
       
  2540       xfree(csa->work4);
       
  2541       xfree(csa);
       
  2542       return;
       
  2543 }
       
  2544 
       
  2545 /***********************************************************************
       
  2546 *  spx_primal - core LP solver based on the primal simplex method
       
  2547 *
       
  2548 *  SYNOPSIS
       
  2549 *
       
  2550 *  #include "glpspx.h"
       
  2551 *  int spx_primal(glp_prob *lp, const glp_smcp *parm);
       
  2552 *
       
  2553 *  DESCRIPTION
       
  2554 *
       
  2555 *  The routine spx_primal is a core LP solver based on the two-phase
       
  2556 *  primal simplex method.
       
  2557 *
       
  2558 *  RETURNS
       
  2559 *
       
  2560 *  0  LP instance has been successfully solved.
       
  2561 *
       
  2562 *  GLP_EITLIM
       
  2563 *     Iteration limit has been exhausted.
       
  2564 *
       
  2565 *  GLP_ETMLIM
       
  2566 *     Time limit has been exhausted.
       
  2567 *
       
  2568 *  GLP_EFAIL
       
  2569 *     The solver failed to solve LP instance. */
       
  2570 
       
  2571 int spx_primal(glp_prob *lp, const glp_smcp *parm)
       
  2572 {     struct csa *csa;
       
  2573       int binv_st = 2;
       
  2574       /* status of basis matrix factorization:
       
  2575          0 - invalid; 1 - just computed; 2 - updated */
       
  2576       int bbar_st = 0;
       
  2577       /* status of primal values of basic variables:
       
  2578          0 - invalid; 1 - just computed; 2 - updated */
       
  2579       int cbar_st = 0;
       
  2580       /* status of reduced costs of non-basic variables:
       
  2581          0 - invalid; 1 - just computed; 2 - updated */
       
  2582       int rigorous = 0;
       
  2583       /* rigorous mode flag; this flag is used to enable iterative
       
  2584          refinement on computing pivot rows and columns of the simplex
       
  2585          table */
       
  2586       int check = 0;
       
  2587       int p_stat, d_stat, ret;
       
  2588       /* allocate and initialize the common storage area */
       
  2589       csa = alloc_csa(lp);
       
  2590       init_csa(csa, lp);
       
  2591       if (parm->msg_lev >= GLP_MSG_DBG)
       
  2592          xprintf("Objective scale factor = %g\n", csa->zeta);
       
  2593 loop: /* main loop starts here */
       
  2594       /* compute factorization of the basis matrix */
       
  2595       if (binv_st == 0)
       
  2596       {  ret = invert_B(csa);
       
  2597          if (ret != 0)
       
  2598          {  if (parm->msg_lev >= GLP_MSG_ERR)
       
  2599             {  xprintf("Error: unable to factorize the basis matrix (%d"
       
  2600                   ")\n", ret);
       
  2601                xprintf("Sorry, basis recovery procedure not implemented"
       
  2602                   " yet\n");
       
  2603             }
       
  2604             xassert(!lp->valid && lp->bfd == NULL);
       
  2605             lp->bfd = csa->bfd, csa->bfd = NULL;
       
  2606             lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
       
  2607             lp->obj_val = 0.0;
       
  2608             lp->it_cnt = csa->it_cnt;
       
  2609             lp->some = 0;
       
  2610             ret = GLP_EFAIL;
       
  2611             goto done;
       
  2612          }
       
  2613          csa->valid = 1;
       
  2614          binv_st = 1; /* just computed */
       
  2615          /* invalidate basic solution components */
       
  2616          bbar_st = cbar_st = 0;
       
  2617       }
       
  2618       /* compute primal values of basic variables */
       
  2619       if (bbar_st == 0)
       
  2620       {  eval_bbar(csa);
       
  2621          bbar_st = 1; /* just computed */
       
  2622          /* determine the search phase, if not determined yet */
       
  2623          if (csa->phase == 0)
       
  2624          {  if (set_aux_obj(csa, parm->tol_bnd) > 0)
       
  2625             {  /* current basic solution is primal infeasible */
       
  2626                /* start to minimize the sum of infeasibilities */
       
  2627                csa->phase = 1;
       
  2628             }
       
  2629             else
       
  2630             {  /* current basic solution is primal feasible */
       
  2631                /* start to minimize the original objective function */
       
  2632                set_orig_obj(csa);
       
  2633                csa->phase = 2;
       
  2634             }
       
  2635             xassert(check_stab(csa, parm->tol_bnd) == 0);
       
  2636             /* working objective coefficients have been changed, so
       
  2637                invalidate reduced costs */
       
  2638             cbar_st = 0;
       
  2639             display(csa, parm, 1);
       
  2640          }
       
  2641          /* make sure that the current basic solution remains primal
       
  2642             feasible (or pseudo feasible on phase I) */
       
  2643          if (check_stab(csa, parm->tol_bnd))
       
  2644          {  /* there are excessive bound violations due to round-off
       
  2645                errors */
       
  2646             if (parm->msg_lev >= GLP_MSG_ERR)
       
  2647                xprintf("Warning: numerical instability (primal simplex,"
       
  2648                   " phase %s)\n", csa->phase == 1 ? "I" : "II");
       
  2649             /* restart the search */
       
  2650             csa->phase = 0;
       
  2651             binv_st = 0;
       
  2652             rigorous = 5;
       
  2653             goto loop;
       
  2654          }
       
  2655       }
       
  2656       xassert(csa->phase == 1 || csa->phase == 2);
       
  2657       /* on phase I we do not need to wait until the current basic
       
  2658          solution becomes dual feasible; it is sufficient to make sure
       
  2659          that no basic variable violates its bounds */
       
  2660       if (csa->phase == 1 && !check_feas(csa, parm->tol_bnd))
       
  2661       {  /* the current basis is primal feasible; switch to phase II */
       
  2662          csa->phase = 2;
       
  2663          set_orig_obj(csa);
       
  2664          cbar_st = 0;
       
  2665          display(csa, parm, 1);
       
  2666       }
       
  2667       /* compute reduced costs of non-basic variables */
       
  2668       if (cbar_st == 0)
       
  2669       {  eval_cbar(csa);
       
  2670          cbar_st = 1; /* just computed */
       
  2671       }
       
  2672       /* redefine the reference space, if required */
       
  2673       switch (parm->pricing)
       
  2674       {  case GLP_PT_STD:
       
  2675             break;
       
  2676          case GLP_PT_PSE:
       
  2677             if (csa->refct == 0) reset_refsp(csa);
       
  2678             break;
       
  2679          default:
       
  2680             xassert(parm != parm);
       
  2681       }
       
  2682       /* at this point the basis factorization and all basic solution
       
  2683          components are valid */
       
  2684       xassert(binv_st && bbar_st && cbar_st);
       
  2685       /* check accuracy of current basic solution components (only for
       
  2686          debugging) */
       
  2687       if (check)
       
  2688       {  double e_bbar = err_in_bbar(csa);
       
  2689          double e_cbar = err_in_cbar(csa);
       
  2690          double e_gamma =
       
  2691             (parm->pricing == GLP_PT_PSE ? err_in_gamma(csa) : 0.0);
       
  2692          xprintf("e_bbar = %10.3e; e_cbar = %10.3e; e_gamma = %10.3e\n",
       
  2693             e_bbar, e_cbar, e_gamma);
       
  2694          xassert(e_bbar <= 1e-5 && e_cbar <= 1e-5 && e_gamma <= 1e-3);
       
  2695       }
       
  2696       /* check if the iteration limit has been exhausted */
       
  2697       if (parm->it_lim < INT_MAX &&
       
  2698           csa->it_cnt - csa->it_beg >= parm->it_lim)
       
  2699       {  if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
       
  2700          {  if (bbar_st != 1) bbar_st = 0;
       
  2701             if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
       
  2702             goto loop;
       
  2703          }
       
  2704          display(csa, parm, 1);
       
  2705          if (parm->msg_lev >= GLP_MSG_ALL)
       
  2706             xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
       
  2707          switch (csa->phase)
       
  2708          {  case 1:
       
  2709                p_stat = GLP_INFEAS;
       
  2710                set_orig_obj(csa);
       
  2711                eval_cbar(csa);
       
  2712                break;
       
  2713             case 2:
       
  2714                p_stat = GLP_FEAS;
       
  2715                break;
       
  2716             default:
       
  2717                xassert(csa != csa);
       
  2718          }
       
  2719          chuzc(csa, parm->tol_dj);
       
  2720          d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
       
  2721          store_sol(csa, lp, p_stat, d_stat, 0);
       
  2722          ret = GLP_EITLIM;
       
  2723          goto done;
       
  2724       }
       
  2725       /* check if the time limit has been exhausted */
       
  2726       if (parm->tm_lim < INT_MAX &&
       
  2727           1000.0 * xdifftime(xtime(), csa->tm_beg) >= parm->tm_lim)
       
  2728       {  if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
       
  2729          {  if (bbar_st != 1) bbar_st = 0;
       
  2730             if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
       
  2731             goto loop;
       
  2732          }
       
  2733          display(csa, parm, 1);
       
  2734          if (parm->msg_lev >= GLP_MSG_ALL)
       
  2735             xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
       
  2736          switch (csa->phase)
       
  2737          {  case 1:
       
  2738                p_stat = GLP_INFEAS;
       
  2739                set_orig_obj(csa);
       
  2740                eval_cbar(csa);
       
  2741                break;
       
  2742             case 2:
       
  2743                p_stat = GLP_FEAS;
       
  2744                break;
       
  2745             default:
       
  2746                xassert(csa != csa);
       
  2747          }
       
  2748          chuzc(csa, parm->tol_dj);
       
  2749          d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
       
  2750          store_sol(csa, lp, p_stat, d_stat, 0);
       
  2751          ret = GLP_ETMLIM;
       
  2752          goto done;
       
  2753       }
       
  2754       /* display the search progress */
       
  2755       display(csa, parm, 0);
       
  2756       /* choose non-basic variable xN[q] */
       
  2757       chuzc(csa, parm->tol_dj);
       
  2758       if (csa->q == 0)
       
  2759       {  if (bbar_st != 1 || cbar_st != 1)
       
  2760          {  if (bbar_st != 1) bbar_st = 0;
       
  2761             if (cbar_st != 1) cbar_st = 0;
       
  2762             goto loop;
       
  2763          }
       
  2764          display(csa, parm, 1);
       
  2765          switch (csa->phase)
       
  2766          {  case 1:
       
  2767                if (parm->msg_lev >= GLP_MSG_ALL)
       
  2768                   xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n");
       
  2769                p_stat = GLP_NOFEAS;
       
  2770                set_orig_obj(csa);
       
  2771                eval_cbar(csa);
       
  2772                chuzc(csa, parm->tol_dj);
       
  2773                d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
       
  2774                break;
       
  2775             case 2:
       
  2776                if (parm->msg_lev >= GLP_MSG_ALL)
       
  2777                   xprintf("OPTIMAL SOLUTION FOUND\n");
       
  2778                p_stat = d_stat = GLP_FEAS;
       
  2779                break;
       
  2780             default:
       
  2781                xassert(csa != csa);
       
  2782          }
       
  2783          store_sol(csa, lp, p_stat, d_stat, 0);
       
  2784          ret = 0;
       
  2785          goto done;
       
  2786       }
       
  2787       /* compute pivot column of the simplex table */
       
  2788       eval_tcol(csa);
       
  2789       if (rigorous) refine_tcol(csa);
       
  2790       sort_tcol(csa, parm->tol_piv);
       
  2791       /* check accuracy of the reduced cost of xN[q] */
       
  2792       {  double d1 = csa->cbar[csa->q]; /* less accurate */
       
  2793          double d2 = reeval_cost(csa);  /* more accurate */
       
  2794          xassert(d1 != 0.0);
       
  2795          if (fabs(d1 - d2) > 1e-5 * (1.0 + fabs(d2)) ||
       
  2796              !(d1 < 0.0 && d2 < 0.0 || d1 > 0.0 && d2 > 0.0))
       
  2797          {  if (parm->msg_lev >= GLP_MSG_DBG)
       
  2798                xprintf("d1 = %.12g; d2 = %.12g\n", d1, d2);
       
  2799             if (cbar_st != 1 || !rigorous)
       
  2800             {  if (cbar_st != 1) cbar_st = 0;
       
  2801                rigorous = 5;
       
  2802                goto loop;
       
  2803             }
       
  2804          }
       
  2805          /* replace cbar[q] by more accurate value keeping its sign */
       
  2806          if (d1 > 0.0)
       
  2807             csa->cbar[csa->q] = (d2 > 0.0 ? d2 : +DBL_EPSILON);
       
  2808          else
       
  2809             csa->cbar[csa->q] = (d2 < 0.0 ? d2 : -DBL_EPSILON);
       
  2810       }
       
  2811       /* choose basic variable xB[p] */
       
  2812       switch (parm->r_test)
       
  2813       {  case GLP_RT_STD:
       
  2814             chuzr(csa, 0.0);
       
  2815             break;
       
  2816          case GLP_RT_HAR:
       
  2817             chuzr(csa, 0.30 * parm->tol_bnd);
       
  2818             break;
       
  2819          default:
       
  2820             xassert(parm != parm);
       
  2821       }
       
  2822       if (csa->p == 0)
       
  2823       {  if (bbar_st != 1 || cbar_st != 1 || !rigorous)
       
  2824          {  if (bbar_st != 1) bbar_st = 0;
       
  2825             if (cbar_st != 1) cbar_st = 0;
       
  2826             rigorous = 1;
       
  2827             goto loop;
       
  2828          }
       
  2829          display(csa, parm, 1);
       
  2830          switch (csa->phase)
       
  2831          {  case 1:
       
  2832                if (parm->msg_lev >= GLP_MSG_ERR)
       
  2833                   xprintf("Error: unable to choose basic variable on ph"
       
  2834                      "ase I\n");
       
  2835                xassert(!lp->valid && lp->bfd == NULL);
       
  2836                lp->bfd = csa->bfd, csa->bfd = NULL;
       
  2837                lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
       
  2838                lp->obj_val = 0.0;
       
  2839                lp->it_cnt = csa->it_cnt;
       
  2840                lp->some = 0;
       
  2841                ret = GLP_EFAIL;
       
  2842                break;
       
  2843             case 2:
       
  2844                if (parm->msg_lev >= GLP_MSG_ALL)
       
  2845                   xprintf("PROBLEM HAS UNBOUNDED SOLUTION\n");
       
  2846                store_sol(csa, lp, GLP_FEAS, GLP_NOFEAS,
       
  2847                   csa->head[csa->m+csa->q]);
       
  2848                ret = 0;
       
  2849                break;
       
  2850             default:
       
  2851                xassert(csa != csa);
       
  2852          }
       
  2853          goto done;
       
  2854       }
       
  2855       /* check if the pivot element is acceptable */
       
  2856       if (csa->p > 0)
       
  2857       {  double piv = csa->tcol_vec[csa->p];
       
  2858          double eps = 1e-5 * (1.0 + 0.01 * csa->tcol_max);
       
  2859          if (fabs(piv) < eps)
       
  2860          {  if (parm->msg_lev >= GLP_MSG_DBG)
       
  2861                xprintf("piv = %.12g; eps = %g\n", piv, eps);
       
  2862             if (!rigorous)
       
  2863             {  rigorous = 5;
       
  2864                goto loop;
       
  2865             }
       
  2866          }
       
  2867       }
       
  2868       /* now xN[q] and xB[p] have been chosen anyhow */
       
  2869       /* compute pivot row of the simplex table */
       
  2870       if (csa->p > 0)
       
  2871       {  double *rho = csa->work4;
       
  2872          eval_rho(csa, rho);
       
  2873          if (rigorous) refine_rho(csa, rho);
       
  2874          eval_trow(csa, rho);
       
  2875       }
       
  2876       /* accuracy check based on the pivot element */
       
  2877       if (csa->p > 0)
       
  2878       {  double piv1 = csa->tcol_vec[csa->p]; /* more accurate */
       
  2879          double piv2 = csa->trow_vec[csa->q]; /* less accurate */
       
  2880          xassert(piv1 != 0.0);
       
  2881          if (fabs(piv1 - piv2) > 1e-8 * (1.0 + fabs(piv1)) ||
       
  2882              !(piv1 > 0.0 && piv2 > 0.0 || piv1 < 0.0 && piv2 < 0.0))
       
  2883          {  if (parm->msg_lev >= GLP_MSG_DBG)
       
  2884                xprintf("piv1 = %.12g; piv2 = %.12g\n", piv1, piv2);
       
  2885             if (binv_st != 1 || !rigorous)
       
  2886             {  if (binv_st != 1) binv_st = 0;
       
  2887                rigorous = 5;
       
  2888                goto loop;
       
  2889             }
       
  2890             /* use more accurate version in the pivot row */
       
  2891             if (csa->trow_vec[csa->q] == 0.0)
       
  2892             {  csa->trow_nnz++;
       
  2893                xassert(csa->trow_nnz <= csa->n);
       
  2894                csa->trow_ind[csa->trow_nnz] = csa->q;
       
  2895             }
       
  2896             csa->trow_vec[csa->q] = piv1;
       
  2897          }
       
  2898       }
       
  2899       /* update primal values of basic variables */
       
  2900       update_bbar(csa);
       
  2901       bbar_st = 2; /* updated */
       
  2902       /* update reduced costs of non-basic variables */
       
  2903       if (csa->p > 0)
       
  2904       {  update_cbar(csa);
       
  2905          cbar_st = 2; /* updated */
       
  2906          /* on phase I objective coefficient of xB[p] in the adjacent
       
  2907             basis becomes zero */
       
  2908          if (csa->phase == 1)
       
  2909          {  int k = csa->head[csa->p]; /* x[k] = xB[p] -> xN[q] */
       
  2910             csa->cbar[csa->q] -= csa->coef[k];
       
  2911             csa->coef[k] = 0.0;
       
  2912          }
       
  2913       }
       
  2914       /* update steepest edge coefficients */
       
  2915       if (csa->p > 0)
       
  2916       {  switch (parm->pricing)
       
  2917          {  case GLP_PT_STD:
       
  2918                break;
       
  2919             case GLP_PT_PSE:
       
  2920                if (csa->refct > 0) update_gamma(csa);
       
  2921                break;
       
  2922             default:
       
  2923                xassert(parm != parm);
       
  2924          }
       
  2925       }
       
  2926       /* update factorization of the basis matrix */
       
  2927       if (csa->p > 0)
       
  2928       {  ret = update_B(csa, csa->p, csa->head[csa->m+csa->q]);
       
  2929          if (ret == 0)
       
  2930             binv_st = 2; /* updated */
       
  2931          else
       
  2932          {  csa->valid = 0;
       
  2933             binv_st = 0; /* invalid */
       
  2934          }
       
  2935       }
       
  2936       /* update matrix N */
       
  2937       if (csa->p > 0)
       
  2938       {  del_N_col(csa, csa->q, csa->head[csa->m+csa->q]);
       
  2939          if (csa->type[csa->head[csa->p]] != GLP_FX)
       
  2940             add_N_col(csa, csa->q, csa->head[csa->p]);
       
  2941       }
       
  2942       /* change the basis header */
       
  2943       change_basis(csa);
       
  2944       /* iteration complete */
       
  2945       csa->it_cnt++;
       
  2946       if (rigorous > 0) rigorous--;
       
  2947       goto loop;
       
  2948 done: /* deallocate the common storage area */
       
  2949       free_csa(csa);
       
  2950       /* return to the calling program */
       
  2951       return ret;
       
  2952 }
       
  2953 
       
  2954 /* eof */