src/glpspx01.c
author Alpar Juttner <alpar@cs.elte.hu>
Sun, 05 Dec 2010 17:35:23 +0100
changeset 2 4c8956a7bdf4
permissions -rw-r--r--
Set up CMAKE build environment
     1 /* glpspx01.c (primal simplex method) */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpspx.h"
    26 
    27 struct csa
    28 {     /* common storage area */
    29       /*--------------------------------------------------------------*/
    30       /* LP data */
    31       int m;
    32       /* number of rows (auxiliary variables), m > 0 */
    33       int n;
    34       /* number of columns (structural variables), n > 0 */
    35       char *type; /* char type[1+m+n]; */
    36       /* type[0] is not used;
    37          type[k], 1 <= k <= m+n, is the type of variable x[k]:
    38          GLP_FR - free variable
    39          GLP_LO - variable with lower bound
    40          GLP_UP - variable with upper bound
    41          GLP_DB - double-bounded variable
    42          GLP_FX - fixed variable */
    43       double *lb; /* double lb[1+m+n]; */
    44       /* lb[0] is not used;
    45          lb[k], 1 <= k <= m+n, is an lower bound of variable x[k];
    46          if x[k] has no lower bound, lb[k] is zero */
    47       double *ub; /* double ub[1+m+n]; */
    48       /* ub[0] is not used;
    49          ub[k], 1 <= k <= m+n, is an upper bound of variable x[k];
    50          if x[k] has no upper bound, ub[k] is zero;
    51          if x[k] is of fixed type, ub[k] is the same as lb[k] */
    52       double *coef; /* double coef[1+m+n]; */
    53       /* coef[0] is not used;
    54          coef[k], 1 <= k <= m+n, is an objective coefficient at
    55          variable x[k] (note that on phase I auxiliary variables also
    56          may have non-zero objective coefficients) */
    57       /*--------------------------------------------------------------*/
    58       /* original objective function */
    59       double *obj; /* double obj[1+n]; */
    60       /* obj[0] is a constant term of the original objective function;
    61          obj[j], 1 <= j <= n, is an original objective coefficient at
    62          structural variable x[m+j] */
    63       double zeta;
    64       /* factor used to scale original objective coefficients; its
    65          sign defines original optimization direction: zeta > 0 means
    66          minimization, zeta < 0 means maximization */
    67       /*--------------------------------------------------------------*/
    68       /* constraint matrix A; it has m rows and n columns and is stored
    69          by columns */
    70       int *A_ptr; /* int A_ptr[1+n+1]; */
    71       /* A_ptr[0] is not used;
    72          A_ptr[j], 1 <= j <= n, is starting position of j-th column in
    73          arrays A_ind and A_val; note that A_ptr[1] is always 1;
    74          A_ptr[n+1] indicates the position after the last element in
    75          arrays A_ind and A_val */
    76       int *A_ind; /* int A_ind[A_ptr[n+1]]; */
    77       /* row indices */
    78       double *A_val; /* double A_val[A_ptr[n+1]]; */
    79       /* non-zero element values */
    80       /*--------------------------------------------------------------*/
    81       /* basis header */
    82       int *head; /* int head[1+m+n]; */
    83       /* head[0] is not used;
    84          head[i], 1 <= i <= m, is the ordinal number of basic variable
    85          xB[i]; head[i] = k means that xB[i] = x[k] and i-th column of
    86          matrix B is k-th column of matrix (I|-A);
    87          head[m+j], 1 <= j <= n, is the ordinal number of non-basic
    88          variable xN[j]; head[m+j] = k means that xN[j] = x[k] and j-th
    89          column of matrix N is k-th column of matrix (I|-A) */
    90       char *stat; /* char stat[1+n]; */
    91       /* stat[0] is not used;
    92          stat[j], 1 <= j <= n, is the status of non-basic variable
    93          xN[j], which defines its active bound:
    94          GLP_NL - lower bound is active
    95          GLP_NU - upper bound is active
    96          GLP_NF - free variable
    97          GLP_NS - fixed variable */
    98       /*--------------------------------------------------------------*/
    99       /* matrix B is the basis matrix; it is composed from columns of
   100          the augmented constraint matrix (I|-A) corresponding to basic
   101          variables and stored in a factorized (invertable) form */
   102       int valid;
   103       /* factorization is valid only if this flag is set */
   104       BFD *bfd; /* BFD bfd[1:m,1:m]; */
   105       /* factorized (invertable) form of the basis matrix */
   106       /*--------------------------------------------------------------*/
   107       /* matrix N is a matrix composed from columns of the augmented
   108          constraint matrix (I|-A) corresponding to non-basic variables
   109          except fixed ones; it is stored by rows and changes every time
   110          the basis changes */
   111       int *N_ptr; /* int N_ptr[1+m+1]; */
   112       /* N_ptr[0] is not used;
   113          N_ptr[i], 1 <= i <= m, is starting position of i-th row in
   114          arrays N_ind and N_val; note that N_ptr[1] is always 1;
   115          N_ptr[m+1] indicates the position after the last element in
   116          arrays N_ind and N_val */
   117       int *N_len; /* int N_len[1+m]; */
   118       /* N_len[0] is not used;
   119          N_len[i], 1 <= i <= m, is length of i-th row (0 to n) */
   120       int *N_ind; /* int N_ind[N_ptr[m+1]]; */
   121       /* column indices */
   122       double *N_val; /* double N_val[N_ptr[m+1]]; */
   123       /* non-zero element values */
   124       /*--------------------------------------------------------------*/
   125       /* working parameters */
   126       int phase;
   127       /* search phase:
   128          0 - not determined yet
   129          1 - search for primal feasible solution
   130          2 - search for optimal solution */
   131       glp_long tm_beg;
   132       /* time value at the beginning of the search */
   133       int it_beg;
   134       /* simplex iteration count at the beginning of the search */
   135       int it_cnt;
   136       /* simplex iteration count; it increases by one every time the
   137          basis changes (including the case when a non-basic variable
   138          jumps to its opposite bound) */
   139       int it_dpy;
   140       /* simplex iteration count at the most recent display output */
   141       /*--------------------------------------------------------------*/
   142       /* basic solution components */
   143       double *bbar; /* double bbar[1+m]; */
   144       /* bbar[0] is not used;
   145          bbar[i], 1 <= i <= m, is primal value of basic variable xB[i]
   146          (if xB[i] is free, its primal value is not updated) */
   147       double *cbar; /* double cbar[1+n]; */
   148       /* cbar[0] is not used;
   149          cbar[j], 1 <= j <= n, is reduced cost of non-basic variable
   150          xN[j] (if xN[j] is fixed, its reduced cost is not updated) */
   151       /*--------------------------------------------------------------*/
   152       /* the following pricing technique options may be used:
   153          GLP_PT_STD - standard ("textbook") pricing;
   154          GLP_PT_PSE - projected steepest edge;
   155          GLP_PT_DVX - Devex pricing (not implemented yet);
   156          in case of GLP_PT_STD the reference space is not used, and all
   157          steepest edge coefficients are set to 1 */
   158       int refct;
   159       /* this count is set to an initial value when the reference space
   160          is defined and decreases by one every time the basis changes;
   161          once this count reaches zero, the reference space is redefined
   162          again */
   163       char *refsp; /* char refsp[1+m+n]; */
   164       /* refsp[0] is not used;
   165          refsp[k], 1 <= k <= m+n, is the flag which means that variable
   166          x[k] belongs to the current reference space */
   167       double *gamma; /* double gamma[1+n]; */
   168       /* gamma[0] is not used;
   169          gamma[j], 1 <= j <= n, is the steepest edge coefficient for
   170          non-basic variable xN[j]; if xN[j] is fixed, gamma[j] is not
   171          used and just set to 1 */
   172       /*--------------------------------------------------------------*/
   173       /* non-basic variable xN[q] chosen to enter the basis */
   174       int q;
   175       /* index of the non-basic variable xN[q] chosen, 1 <= q <= n;
   176          if the set of eligible non-basic variables is empty and thus
   177          no variable has been chosen, q is set to 0 */
   178       /*--------------------------------------------------------------*/
   179       /* pivot column of the simplex table corresponding to non-basic
   180          variable xN[q] chosen is the following vector:
   181             T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
   182          where B is the current basis matrix, N[q] is a column of the
   183          matrix (I|-A) corresponding to xN[q] */
   184       int tcol_nnz;
   185       /* number of non-zero components, 0 <= nnz <= m */
   186       int *tcol_ind; /* int tcol_ind[1+m]; */
   187       /* tcol_ind[0] is not used;
   188          tcol_ind[t], 1 <= t <= nnz, is an index of non-zero component,
   189          i.e. tcol_ind[t] = i means that tcol_vec[i] != 0 */
   190       double *tcol_vec; /* double tcol_vec[1+m]; */
   191       /* tcol_vec[0] is not used;
   192          tcol_vec[i], 1 <= i <= m, is a numeric value of i-th component
   193          of the column */
   194       double tcol_max;
   195       /* infinity (maximum) norm of the column (max |tcol_vec[i]|) */
   196       int tcol_num;
   197       /* number of significant non-zero components, which means that:
   198          |tcol_vec[i]| >= eps for i in tcol_ind[1,...,num],
   199          |tcol_vec[i]| <  eps for i in tcol_ind[num+1,...,nnz],
   200          where eps is a pivot tolerance */
   201       /*--------------------------------------------------------------*/
   202       /* basic variable xB[p] chosen to leave the basis */
   203       int p;
   204       /* index of the basic variable xB[p] chosen, 1 <= p <= m;
   205          p = 0 means that no basic variable reaches its bound;
   206          p < 0 means that non-basic variable xN[q] reaches its opposite
   207          bound before any basic variable */
   208       int p_stat;
   209       /* new status (GLP_NL, GLP_NU, or GLP_NS) to be assigned to xB[p]
   210          once it has left the basis */
   211       double teta;
   212       /* change of non-basic variable xN[q] (see above), on which xB[p]
   213          (or, if p < 0, xN[q] itself) reaches its bound */
   214       /*--------------------------------------------------------------*/
   215       /* pivot row of the simplex table corresponding to basic variable
   216          xB[p] chosen is the following vector:
   217             T' * e[p] = - N' * inv(B') * e[p] = - N' * rho,
   218          where B' is a matrix transposed to the current basis matrix,
   219          N' is a matrix, whose rows are columns of the matrix (I|-A)
   220          corresponding to non-basic non-fixed variables */
   221       int trow_nnz;
   222       /* number of non-zero components, 0 <= nnz <= n */
   223       int *trow_ind; /* int trow_ind[1+n]; */
   224       /* trow_ind[0] is not used;
   225          trow_ind[t], 1 <= t <= nnz, is an index of non-zero component,
   226          i.e. trow_ind[t] = j means that trow_vec[j] != 0 */
   227       double *trow_vec; /* int trow_vec[1+n]; */
   228       /* trow_vec[0] is not used;
   229          trow_vec[j], 1 <= j <= n, is a numeric value of j-th component
   230          of the row */
   231       /*--------------------------------------------------------------*/
   232       /* working arrays */
   233       double *work1; /* double work1[1+m]; */
   234       double *work2; /* double work2[1+m]; */
   235       double *work3; /* double work3[1+m]; */
   236       double *work4; /* double work4[1+m]; */
   237 };
   238 
   239 static const double kappa = 0.10;
   240 
   241 /***********************************************************************
   242 *  alloc_csa - allocate common storage area
   243 *
   244 *  This routine allocates all arrays in the common storage area (CSA)
   245 *  and returns a pointer to the CSA. */
   246 
   247 static struct csa *alloc_csa(glp_prob *lp)
   248 {     struct csa *csa;
   249       int m = lp->m;
   250       int n = lp->n;
   251       int nnz = lp->nnz;
   252       csa = xmalloc(sizeof(struct csa));
   253       xassert(m > 0 && n > 0);
   254       csa->m = m;
   255       csa->n = n;
   256       csa->type = xcalloc(1+m+n, sizeof(char));
   257       csa->lb = xcalloc(1+m+n, sizeof(double));
   258       csa->ub = xcalloc(1+m+n, sizeof(double));
   259       csa->coef = xcalloc(1+m+n, sizeof(double));
   260       csa->obj = xcalloc(1+n, sizeof(double));
   261       csa->A_ptr = xcalloc(1+n+1, sizeof(int));
   262       csa->A_ind = xcalloc(1+nnz, sizeof(int));
   263       csa->A_val = xcalloc(1+nnz, sizeof(double));
   264       csa->head = xcalloc(1+m+n, sizeof(int));
   265       csa->stat = xcalloc(1+n, sizeof(char));
   266       csa->N_ptr = xcalloc(1+m+1, sizeof(int));
   267       csa->N_len = xcalloc(1+m, sizeof(int));
   268       csa->N_ind = NULL; /* will be allocated later */
   269       csa->N_val = NULL; /* will be allocated later */
   270       csa->bbar = xcalloc(1+m, sizeof(double));
   271       csa->cbar = xcalloc(1+n, sizeof(double));
   272       csa->refsp = xcalloc(1+m+n, sizeof(char));
   273       csa->gamma = xcalloc(1+n, sizeof(double));
   274       csa->tcol_ind = xcalloc(1+m, sizeof(int));
   275       csa->tcol_vec = xcalloc(1+m, sizeof(double));
   276       csa->trow_ind = xcalloc(1+n, sizeof(int));
   277       csa->trow_vec = xcalloc(1+n, sizeof(double));
   278       csa->work1 = xcalloc(1+m, sizeof(double));
   279       csa->work2 = xcalloc(1+m, sizeof(double));
   280       csa->work3 = xcalloc(1+m, sizeof(double));
   281       csa->work4 = xcalloc(1+m, sizeof(double));
   282       return csa;
   283 }
   284 
   285 /***********************************************************************
   286 *  init_csa - initialize common storage area
   287 *
   288 *  This routine initializes all data structures in the common storage
   289 *  area (CSA). */
   290 
   291 static void alloc_N(struct csa *csa);
   292 static void build_N(struct csa *csa);
   293 
   294 static void init_csa(struct csa *csa, glp_prob *lp)
   295 {     int m = csa->m;
   296       int n = csa->n;
   297       char *type = csa->type;
   298       double *lb = csa->lb;
   299       double *ub = csa->ub;
   300       double *coef = csa->coef;
   301       double *obj = csa->obj;
   302       int *A_ptr = csa->A_ptr;
   303       int *A_ind = csa->A_ind;
   304       double *A_val = csa->A_val;
   305       int *head = csa->head;
   306       char *stat = csa->stat;
   307       char *refsp = csa->refsp;
   308       double *gamma = csa->gamma;
   309       int i, j, k, loc;
   310       double cmax;
   311       /* auxiliary variables */
   312       for (i = 1; i <= m; i++)
   313       {  GLPROW *row = lp->row[i];
   314          type[i] = (char)row->type;
   315          lb[i] = row->lb * row->rii;
   316          ub[i] = row->ub * row->rii;
   317          coef[i] = 0.0;
   318       }
   319       /* structural variables */
   320       for (j = 1; j <= n; j++)
   321       {  GLPCOL *col = lp->col[j];
   322          type[m+j] = (char)col->type;
   323          lb[m+j] = col->lb / col->sjj;
   324          ub[m+j] = col->ub / col->sjj;
   325          coef[m+j] = col->coef * col->sjj;
   326       }
   327       /* original objective function */
   328       obj[0] = lp->c0;
   329       memcpy(&obj[1], &coef[m+1], n * sizeof(double));
   330       /* factor used to scale original objective coefficients */
   331       cmax = 0.0;
   332       for (j = 1; j <= n; j++)
   333          if (cmax < fabs(obj[j])) cmax = fabs(obj[j]);
   334       if (cmax == 0.0) cmax = 1.0;
   335       switch (lp->dir)
   336       {  case GLP_MIN:
   337             csa->zeta = + 1.0 / cmax;
   338             break;
   339          case GLP_MAX:
   340             csa->zeta = - 1.0 / cmax;
   341             break;
   342          default:
   343             xassert(lp != lp);
   344       }
   345 #if 1
   346       if (fabs(csa->zeta) < 1.0) csa->zeta *= 1000.0;
   347 #endif
   348       /* matrix A (by columns) */
   349       loc = 1;
   350       for (j = 1; j <= n; j++)
   351       {  GLPAIJ *aij;
   352          A_ptr[j] = loc;
   353          for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)
   354          {  A_ind[loc] = aij->row->i;
   355             A_val[loc] = aij->row->rii * aij->val * aij->col->sjj;
   356             loc++;
   357          }
   358       }
   359       A_ptr[n+1] = loc;
   360       xassert(loc == lp->nnz+1);
   361       /* basis header */
   362       xassert(lp->valid);
   363       memcpy(&head[1], &lp->head[1], m * sizeof(int));
   364       k = 0;
   365       for (i = 1; i <= m; i++)
   366       {  GLPROW *row = lp->row[i];
   367          if (row->stat != GLP_BS)
   368          {  k++;
   369             xassert(k <= n);
   370             head[m+k] = i;
   371             stat[k] = (char)row->stat;
   372          }
   373       }
   374       for (j = 1; j <= n; j++)
   375       {  GLPCOL *col = lp->col[j];
   376          if (col->stat != GLP_BS)
   377          {  k++;
   378             xassert(k <= n);
   379             head[m+k] = m + j;
   380             stat[k] = (char)col->stat;
   381          }
   382       }
   383       xassert(k == n);
   384       /* factorization of matrix B */
   385       csa->valid = 1, lp->valid = 0;
   386       csa->bfd = lp->bfd, lp->bfd = NULL;
   387       /* matrix N (by rows) */
   388       alloc_N(csa);
   389       build_N(csa);
   390       /* working parameters */
   391       csa->phase = 0;
   392       csa->tm_beg = xtime();
   393       csa->it_beg = csa->it_cnt = lp->it_cnt;
   394       csa->it_dpy = -1;
   395       /* reference space and steepest edge coefficients */
   396       csa->refct = 0;
   397       memset(&refsp[1], 0, (m+n) * sizeof(char));
   398       for (j = 1; j <= n; j++) gamma[j] = 1.0;
   399       return;
   400 }
   401 
   402 /***********************************************************************
   403 *  invert_B - compute factorization of the basis matrix
   404 *
   405 *  This routine computes factorization of the current basis matrix B.
   406 *
   407 *  If the operation is successful, the routine returns zero, otherwise
   408 *  non-zero. */
   409 
   410 static int inv_col(void *info, int i, int ind[], double val[])
   411 {     /* this auxiliary routine returns row indices and numeric values
   412          of non-zero elements of i-th column of the basis matrix */
   413       struct csa *csa = info;
   414       int m = csa->m;
   415 #ifdef GLP_DEBUG
   416       int n = csa->n;
   417 #endif
   418       int *A_ptr = csa->A_ptr;
   419       int *A_ind = csa->A_ind;
   420       double *A_val = csa->A_val;
   421       int *head = csa->head;
   422       int k, len, ptr, t;
   423 #ifdef GLP_DEBUG
   424       xassert(1 <= i && i <= m);
   425 #endif
   426       k = head[i]; /* B[i] is k-th column of (I|-A) */
   427 #ifdef GLP_DEBUG
   428       xassert(1 <= k && k <= m+n);
   429 #endif
   430       if (k <= m)
   431       {  /* B[i] is k-th column of submatrix I */
   432          len = 1;
   433          ind[1] = k;
   434          val[1] = 1.0;
   435       }
   436       else
   437       {  /* B[i] is (k-m)-th column of submatrix (-A) */
   438          ptr = A_ptr[k-m];
   439          len = A_ptr[k-m+1] - ptr;
   440          memcpy(&ind[1], &A_ind[ptr], len * sizeof(int));
   441          memcpy(&val[1], &A_val[ptr], len * sizeof(double));
   442          for (t = 1; t <= len; t++) val[t] = - val[t];
   443       }
   444       return len;
   445 }
   446 
   447 static int invert_B(struct csa *csa)
   448 {     int ret;
   449       ret = bfd_factorize(csa->bfd, csa->m, NULL, inv_col, csa);
   450       csa->valid = (ret == 0);
   451       return ret;
   452 }
   453 
   454 /***********************************************************************
   455 *  update_B - update factorization of the basis matrix
   456 *
   457 *  This routine replaces i-th column of the basis matrix B by k-th
   458 *  column of the augmented constraint matrix (I|-A) and then updates
   459 *  the factorization of B.
   460 *
   461 *  If the factorization has been successfully updated, the routine
   462 *  returns zero, otherwise non-zero. */
   463 
   464 static int update_B(struct csa *csa, int i, int k)
   465 {     int m = csa->m;
   466 #ifdef GLP_DEBUG
   467       int n = csa->n;
   468 #endif
   469       int ret;
   470 #ifdef GLP_DEBUG
   471       xassert(1 <= i && i <= m);
   472       xassert(1 <= k && k <= m+n);
   473 #endif
   474       if (k <= m)
   475       {  /* new i-th column of B is k-th column of I */
   476          int ind[1+1];
   477          double val[1+1];
   478          ind[1] = k;
   479          val[1] = 1.0;
   480          xassert(csa->valid);
   481          ret = bfd_update_it(csa->bfd, i, 0, 1, ind, val);
   482       }
   483       else
   484       {  /* new i-th column of B is (k-m)-th column of (-A) */
   485          int *A_ptr = csa->A_ptr;
   486          int *A_ind = csa->A_ind;
   487          double *A_val = csa->A_val;
   488          double *val = csa->work1;
   489          int beg, end, ptr, len;
   490          beg = A_ptr[k-m];
   491          end = A_ptr[k-m+1];
   492          len = 0;
   493          for (ptr = beg; ptr < end; ptr++)
   494             val[++len] = - A_val[ptr];
   495          xassert(csa->valid);
   496          ret = bfd_update_it(csa->bfd, i, 0, len, &A_ind[beg-1], val);
   497       }
   498       csa->valid = (ret == 0);
   499       return ret;
   500 }
   501 
   502 /***********************************************************************
   503 *  error_ftran - compute residual vector r = h - B * x
   504 *
   505 *  This routine computes the residual vector r = h - B * x, where B is
   506 *  the current basis matrix, h is the vector of right-hand sides, x is
   507 *  the solution vector. */
   508 
   509 static void error_ftran(struct csa *csa, double h[], double x[],
   510       double r[])
   511 {     int m = csa->m;
   512 #ifdef GLP_DEBUG
   513       int n = csa->n;
   514 #endif
   515       int *A_ptr = csa->A_ptr;
   516       int *A_ind = csa->A_ind;
   517       double *A_val = csa->A_val;
   518       int *head = csa->head;
   519       int i, k, beg, end, ptr;
   520       double temp;
   521       /* compute the residual vector:
   522          r = h - B * x = h - B[1] * x[1] - ... - B[m] * x[m],
   523          where B[1], ..., B[m] are columns of matrix B */
   524       memcpy(&r[1], &h[1], m * sizeof(double));
   525       for (i = 1; i <= m; i++)
   526       {  temp = x[i];
   527          if (temp == 0.0) continue;
   528          k = head[i]; /* B[i] is k-th column of (I|-A) */
   529 #ifdef GLP_DEBUG
   530          xassert(1 <= k && k <= m+n);
   531 #endif
   532          if (k <= m)
   533          {  /* B[i] is k-th column of submatrix I */
   534             r[k] -= temp;
   535          }
   536          else
   537          {  /* B[i] is (k-m)-th column of submatrix (-A) */
   538             beg = A_ptr[k-m];
   539             end = A_ptr[k-m+1];
   540             for (ptr = beg; ptr < end; ptr++)
   541                r[A_ind[ptr]] += A_val[ptr] * temp;
   542          }
   543       }
   544       return;
   545 }
   546 
   547 /***********************************************************************
   548 *  refine_ftran - refine solution of B * x = h
   549 *
   550 *  This routine performs one iteration to refine the solution of
   551 *  the system B * x = h, where B is the current basis matrix, h is the
   552 *  vector of right-hand sides, x is the solution vector. */
   553 
   554 static void refine_ftran(struct csa *csa, double h[], double x[])
   555 {     int m = csa->m;
   556       double *r = csa->work1;
   557       double *d = csa->work1;
   558       int i;
   559       /* compute the residual vector r = h - B * x */
   560       error_ftran(csa, h, x, r);
   561       /* compute the correction vector d = inv(B) * r */
   562       xassert(csa->valid);
   563       bfd_ftran(csa->bfd, d);
   564       /* refine the solution vector (new x) = (old x) + d */
   565       for (i = 1; i <= m; i++) x[i] += d[i];
   566       return;
   567 }
   568 
   569 /***********************************************************************
   570 *  error_btran - compute residual vector r = h - B'* x
   571 *
   572 *  This routine computes the residual vector r = h - B'* x, where B'
   573 *  is a matrix transposed to the current basis matrix, h is the vector
   574 *  of right-hand sides, x is the solution vector. */
   575 
   576 static void error_btran(struct csa *csa, double h[], double x[],
   577       double r[])
   578 {     int m = csa->m;
   579 #ifdef GLP_DEBUG
   580       int n = csa->n;
   581 #endif
   582       int *A_ptr = csa->A_ptr;
   583       int *A_ind = csa->A_ind;
   584       double *A_val = csa->A_val;
   585       int *head = csa->head;
   586       int i, k, beg, end, ptr;
   587       double temp;
   588       /* compute the residual vector r = b - B'* x */
   589       for (i = 1; i <= m; i++)
   590       {  /* r[i] := b[i] - (i-th column of B)'* x */
   591          k = head[i]; /* B[i] is k-th column of (I|-A) */
   592 #ifdef GLP_DEBUG
   593          xassert(1 <= k && k <= m+n);
   594 #endif
   595          temp = h[i];
   596          if (k <= m)
   597          {  /* B[i] is k-th column of submatrix I */
   598             temp -= x[k];
   599          }
   600          else
   601          {  /* B[i] is (k-m)-th column of submatrix (-A) */
   602             beg = A_ptr[k-m];
   603             end = A_ptr[k-m+1];
   604             for (ptr = beg; ptr < end; ptr++)
   605                temp += A_val[ptr] * x[A_ind[ptr]];
   606          }
   607          r[i] = temp;
   608       }
   609       return;
   610 }
   611 
   612 /***********************************************************************
   613 *  refine_btran - refine solution of B'* x = h
   614 *
   615 *  This routine performs one iteration to refine the solution of the
   616 *  system B'* x = h, where B' is a matrix transposed to the current
   617 *  basis matrix, h is the vector of right-hand sides, x is the solution
   618 *  vector. */
   619 
   620 static void refine_btran(struct csa *csa, double h[], double x[])
   621 {     int m = csa->m;
   622       double *r = csa->work1;
   623       double *d = csa->work1;
   624       int i;
   625       /* compute the residual vector r = h - B'* x */
   626       error_btran(csa, h, x, r);
   627       /* compute the correction vector d = inv(B') * r */
   628       xassert(csa->valid);
   629       bfd_btran(csa->bfd, d);
   630       /* refine the solution vector (new x) = (old x) + d */
   631       for (i = 1; i <= m; i++) x[i] += d[i];
   632       return;
   633 }
   634 
   635 /***********************************************************************
   636 *  alloc_N - allocate matrix N
   637 *
   638 *  This routine determines maximal row lengths of matrix N, sets its
   639 *  row pointers, and then allocates arrays N_ind and N_val.
   640 *
   641 *  Note that some fixed structural variables may temporarily become
   642 *  double-bounded, so corresponding columns of matrix A should not be
   643 *  ignored on calculating maximal row lengths of matrix N. */
   644 
   645 static void alloc_N(struct csa *csa)
   646 {     int m = csa->m;
   647       int n = csa->n;
   648       int *A_ptr = csa->A_ptr;
   649       int *A_ind = csa->A_ind;
   650       int *N_ptr = csa->N_ptr;
   651       int *N_len = csa->N_len;
   652       int i, j, beg, end, ptr;
   653       /* determine number of non-zeros in each row of the augmented
   654          constraint matrix (I|-A) */
   655       for (i = 1; i <= m; i++)
   656          N_len[i] = 1;
   657       for (j = 1; j <= n; j++)
   658       {  beg = A_ptr[j];
   659          end = A_ptr[j+1];
   660          for (ptr = beg; ptr < end; ptr++)
   661             N_len[A_ind[ptr]]++;
   662       }
   663       /* determine maximal row lengths of matrix N and set its row
   664          pointers */
   665       N_ptr[1] = 1;
   666       for (i = 1; i <= m; i++)
   667       {  /* row of matrix N cannot have more than n non-zeros */
   668          if (N_len[i] > n) N_len[i] = n;
   669          N_ptr[i+1] = N_ptr[i] + N_len[i];
   670       }
   671       /* now maximal number of non-zeros in matrix N is known */
   672       csa->N_ind = xcalloc(N_ptr[m+1], sizeof(int));
   673       csa->N_val = xcalloc(N_ptr[m+1], sizeof(double));
   674       return;
   675 }
   676 
   677 /***********************************************************************
   678 *  add_N_col - add column of matrix (I|-A) to matrix N
   679 *
   680 *  This routine adds j-th column to matrix N which is k-th column of
   681 *  the augmented constraint matrix (I|-A). (It is assumed that old j-th
   682 *  column was previously removed from matrix N.) */
   683 
   684 static void add_N_col(struct csa *csa, int j, int k)
   685 {     int m = csa->m;
   686 #ifdef GLP_DEBUG
   687       int n = csa->n;
   688 #endif
   689       int *N_ptr = csa->N_ptr;
   690       int *N_len = csa->N_len;
   691       int *N_ind = csa->N_ind;
   692       double *N_val = csa->N_val;
   693       int pos;
   694 #ifdef GLP_DEBUG
   695       xassert(1 <= j && j <= n);
   696       xassert(1 <= k && k <= m+n);
   697 #endif
   698       if (k <= m)
   699       {  /* N[j] is k-th column of submatrix I */
   700          pos = N_ptr[k] + (N_len[k]++);
   701 #ifdef GLP_DEBUG
   702          xassert(pos < N_ptr[k+1]);
   703 #endif
   704          N_ind[pos] = j;
   705          N_val[pos] = 1.0;
   706       }
   707       else
   708       {  /* N[j] is (k-m)-th column of submatrix (-A) */
   709          int *A_ptr = csa->A_ptr;
   710          int *A_ind = csa->A_ind;
   711          double *A_val = csa->A_val;
   712          int i, beg, end, ptr;
   713          beg = A_ptr[k-m];
   714          end = A_ptr[k-m+1];
   715          for (ptr = beg; ptr < end; ptr++)
   716          {  i = A_ind[ptr]; /* row number */
   717             pos = N_ptr[i] + (N_len[i]++);
   718 #ifdef GLP_DEBUG
   719             xassert(pos < N_ptr[i+1]);
   720 #endif
   721             N_ind[pos] = j;
   722             N_val[pos] = - A_val[ptr];
   723          }
   724       }
   725       return;
   726 }
   727 
   728 /***********************************************************************
   729 *  del_N_col - remove column of matrix (I|-A) from matrix N
   730 *
   731 *  This routine removes j-th column from matrix N which is k-th column
   732 *  of the augmented constraint matrix (I|-A). */
   733 
   734 static void del_N_col(struct csa *csa, int j, int k)
   735 {     int m = csa->m;
   736 #ifdef GLP_DEBUG
   737       int n = csa->n;
   738 #endif
   739       int *N_ptr = csa->N_ptr;
   740       int *N_len = csa->N_len;
   741       int *N_ind = csa->N_ind;
   742       double *N_val = csa->N_val;
   743       int pos, head, tail;
   744 #ifdef GLP_DEBUG
   745       xassert(1 <= j && j <= n);
   746       xassert(1 <= k && k <= m+n);
   747 #endif
   748       if (k <= m)
   749       {  /* N[j] is k-th column of submatrix I */
   750          /* find element in k-th row of N */
   751          head = N_ptr[k];
   752          for (pos = head; N_ind[pos] != j; pos++) /* nop */;
   753          /* and remove it from the row list */
   754          tail = head + (--N_len[k]);
   755 #ifdef GLP_DEBUG
   756          xassert(pos <= tail);
   757 #endif
   758          N_ind[pos] = N_ind[tail];
   759          N_val[pos] = N_val[tail];
   760       }
   761       else
   762       {  /* N[j] is (k-m)-th column of submatrix (-A) */
   763          int *A_ptr = csa->A_ptr;
   764          int *A_ind = csa->A_ind;
   765          int i, beg, end, ptr;
   766          beg = A_ptr[k-m];
   767          end = A_ptr[k-m+1];
   768          for (ptr = beg; ptr < end; ptr++)
   769          {  i = A_ind[ptr]; /* row number */
   770             /* find element in i-th row of N */
   771             head = N_ptr[i];
   772             for (pos = head; N_ind[pos] != j; pos++) /* nop */;
   773             /* and remove it from the row list */
   774             tail = head + (--N_len[i]);
   775 #ifdef GLP_DEBUG
   776             xassert(pos <= tail);
   777 #endif
   778             N_ind[pos] = N_ind[tail];
   779             N_val[pos] = N_val[tail];
   780          }
   781       }
   782       return;
   783 }
   784 
   785 /***********************************************************************
   786 *  build_N - build matrix N for current basis
   787 *
   788 *  This routine builds matrix N for the current basis from columns
   789 *  of the augmented constraint matrix (I|-A) corresponding to non-basic
   790 *  non-fixed variables. */
   791 
   792 static void build_N(struct csa *csa)
   793 {     int m = csa->m;
   794       int n = csa->n;
   795       int *head = csa->head;
   796       char *stat = csa->stat;
   797       int *N_len = csa->N_len;
   798       int j, k;
   799       /* N := empty matrix */
   800       memset(&N_len[1], 0, m * sizeof(int));
   801       /* go through non-basic columns of matrix (I|-A) */
   802       for (j = 1; j <= n; j++)
   803       {  if (stat[j] != GLP_NS)
   804          {  /* xN[j] is non-fixed; add j-th column to matrix N which is
   805                k-th column of matrix (I|-A) */
   806             k = head[m+j]; /* x[k] = xN[j] */
   807 #ifdef GLP_DEBUG
   808             xassert(1 <= k && k <= m+n);
   809 #endif
   810             add_N_col(csa, j, k);
   811          }
   812       }
   813       return;
   814 }
   815 
   816 /***********************************************************************
   817 *  get_xN - determine current value of non-basic variable xN[j]
   818 *
   819 *  This routine returns the current value of non-basic variable xN[j],
   820 *  which is a value of its active bound. */
   821 
   822 static double get_xN(struct csa *csa, int j)
   823 {     int m = csa->m;
   824 #ifdef GLP_DEBUG
   825       int n = csa->n;
   826 #endif
   827       double *lb = csa->lb;
   828       double *ub = csa->ub;
   829       int *head = csa->head;
   830       char *stat = csa->stat;
   831       int k;
   832       double xN;
   833 #ifdef GLP_DEBUG
   834       xassert(1 <= j && j <= n);
   835 #endif
   836       k = head[m+j]; /* x[k] = xN[j] */
   837 #ifdef GLP_DEBUG
   838       xassert(1 <= k && k <= m+n);
   839 #endif
   840       switch (stat[j])
   841       {  case GLP_NL:
   842             /* x[k] is on its lower bound */
   843             xN = lb[k]; break;
   844          case GLP_NU:
   845             /* x[k] is on its upper bound */
   846             xN = ub[k]; break;
   847          case GLP_NF:
   848             /* x[k] is free non-basic variable */
   849             xN = 0.0; break;
   850          case GLP_NS:
   851             /* x[k] is fixed non-basic variable */
   852             xN = lb[k]; break;
   853          default:
   854             xassert(stat != stat);
   855       }
   856       return xN;
   857 }
   858 
   859 /***********************************************************************
   860 *  eval_beta - compute primal values of basic variables
   861 *
   862 *  This routine computes current primal values of all basic variables:
   863 *
   864 *     beta = - inv(B) * N * xN,
   865 *
   866 *  where B is the current basis matrix, N is a matrix built of columns
   867 *  of matrix (I|-A) corresponding to non-basic variables, and xN is the
   868 *  vector of current values of non-basic variables. */
   869 
   870 static void eval_beta(struct csa *csa, double beta[])
   871 {     int m = csa->m;
   872       int n = csa->n;
   873       int *A_ptr = csa->A_ptr;
   874       int *A_ind = csa->A_ind;
   875       double *A_val = csa->A_val;
   876       int *head = csa->head;
   877       double *h = csa->work2;
   878       int i, j, k, beg, end, ptr;
   879       double xN;
   880       /* compute the right-hand side vector:
   881          h := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n],
   882          where N[1], ..., N[n] are columns of matrix N */
   883       for (i = 1; i <= m; i++)
   884          h[i] = 0.0;
   885       for (j = 1; j <= n; j++)
   886       {  k = head[m+j]; /* x[k] = xN[j] */
   887 #ifdef GLP_DEBUG
   888          xassert(1 <= k && k <= m+n);
   889 #endif
   890          /* determine current value of xN[j] */
   891          xN = get_xN(csa, j);
   892          if (xN == 0.0) continue;
   893          if (k <= m)
   894          {  /* N[j] is k-th column of submatrix I */
   895             h[k] -= xN;
   896          }
   897          else
   898          {  /* N[j] is (k-m)-th column of submatrix (-A) */
   899             beg = A_ptr[k-m];
   900             end = A_ptr[k-m+1];
   901             for (ptr = beg; ptr < end; ptr++)
   902                h[A_ind[ptr]] += xN * A_val[ptr];
   903          }
   904       }
   905       /* solve system B * beta = h */
   906       memcpy(&beta[1], &h[1], m * sizeof(double));
   907       xassert(csa->valid);
   908       bfd_ftran(csa->bfd, beta);
   909       /* and refine the solution */
   910       refine_ftran(csa, h, beta);
   911       return;
   912 }
   913 
   914 /***********************************************************************
   915 *  eval_pi - compute vector of simplex multipliers
   916 *
   917 *  This routine computes the vector of current simplex multipliers:
   918 *
   919 *     pi = inv(B') * cB,
   920 *
   921 *  where B' is a matrix transposed to the current basis matrix, cB is
   922 *  a subvector of objective coefficients at basic variables. */
   923 
   924 static void eval_pi(struct csa *csa, double pi[])
   925 {     int m = csa->m;
   926       double *c = csa->coef;
   927       int *head = csa->head;
   928       double *cB = csa->work2;
   929       int i;
   930       /* construct the right-hand side vector cB */
   931       for (i = 1; i <= m; i++)
   932          cB[i] = c[head[i]];
   933       /* solve system B'* pi = cB */
   934       memcpy(&pi[1], &cB[1], m * sizeof(double));
   935       xassert(csa->valid);
   936       bfd_btran(csa->bfd, pi);
   937       /* and refine the solution */
   938       refine_btran(csa, cB, pi);
   939       return;
   940 }
   941 
   942 /***********************************************************************
   943 *  eval_cost - compute reduced cost of non-basic variable xN[j]
   944 *
   945 *  This routine computes the current reduced cost of non-basic variable
   946 *  xN[j]:
   947 *
   948 *     d[j] = cN[j] - N'[j] * pi,
   949 *
   950 *  where cN[j] is the objective coefficient at variable xN[j], N[j] is
   951 *  a column of the augmented constraint matrix (I|-A) corresponding to
   952 *  xN[j], pi is the vector of simplex multipliers. */
   953 
   954 static double eval_cost(struct csa *csa, double pi[], int j)
   955 {     int m = csa->m;
   956 #ifdef GLP_DEBUG
   957       int n = csa->n;
   958 #endif
   959       double *coef = csa->coef;
   960       int *head = csa->head;
   961       int k;
   962       double dj;
   963 #ifdef GLP_DEBUG
   964       xassert(1 <= j && j <= n);
   965 #endif
   966       k = head[m+j]; /* x[k] = xN[j] */
   967 #ifdef GLP_DEBUG
   968       xassert(1 <= k && k <= m+n);
   969 #endif
   970       dj = coef[k];
   971       if (k <= m)
   972       {  /* N[j] is k-th column of submatrix I */
   973          dj -= pi[k];
   974       }
   975       else
   976       {  /* N[j] is (k-m)-th column of submatrix (-A) */
   977          int *A_ptr = csa->A_ptr;
   978          int *A_ind = csa->A_ind;
   979          double *A_val = csa->A_val;
   980          int beg, end, ptr;
   981          beg = A_ptr[k-m];
   982          end = A_ptr[k-m+1];
   983          for (ptr = beg; ptr < end; ptr++)
   984             dj += A_val[ptr] * pi[A_ind[ptr]];
   985       }
   986       return dj;
   987 }
   988 
   989 /***********************************************************************
   990 *  eval_bbar - compute and store primal values of basic variables
   991 *
   992 *  This routine computes primal values of all basic variables and then
   993 *  stores them in the solution array. */
   994 
   995 static void eval_bbar(struct csa *csa)
   996 {     eval_beta(csa, csa->bbar);
   997       return;
   998 }
   999 
  1000 /***********************************************************************
  1001 *  eval_cbar - compute and store reduced costs of non-basic variables
  1002 *
  1003 *  This routine computes reduced costs of all non-basic variables and
  1004 *  then stores them in the solution array. */
  1005 
  1006 static void eval_cbar(struct csa *csa)
  1007 {
  1008 #ifdef GLP_DEBUG
  1009       int m = csa->m;
  1010 #endif
  1011       int n = csa->n;
  1012 #ifdef GLP_DEBUG
  1013       int *head = csa->head;
  1014 #endif
  1015       double *cbar = csa->cbar;
  1016       double *pi = csa->work3;
  1017       int j;
  1018 #ifdef GLP_DEBUG
  1019       int k;
  1020 #endif
  1021       /* compute simplex multipliers */
  1022       eval_pi(csa, pi);
  1023       /* compute and store reduced costs */
  1024       for (j = 1; j <= n; j++)
  1025       {
  1026 #ifdef GLP_DEBUG
  1027          k = head[m+j]; /* x[k] = xN[j] */
  1028          xassert(1 <= k && k <= m+n);
  1029 #endif
  1030          cbar[j] = eval_cost(csa, pi, j);
  1031       }
  1032       return;
  1033 }
  1034 
  1035 /***********************************************************************
  1036 *  reset_refsp - reset the reference space
  1037 *
  1038 *  This routine resets (redefines) the reference space used in the
  1039 *  projected steepest edge pricing algorithm. */
  1040 
  1041 static void reset_refsp(struct csa *csa)
  1042 {     int m = csa->m;
  1043       int n = csa->n;
  1044       int *head = csa->head;
  1045       char *refsp = csa->refsp;
  1046       double *gamma = csa->gamma;
  1047       int j, k;
  1048       xassert(csa->refct == 0);
  1049       csa->refct = 1000;
  1050       memset(&refsp[1], 0, (m+n) * sizeof(char));
  1051       for (j = 1; j <= n; j++)
  1052       {  k = head[m+j]; /* x[k] = xN[j] */
  1053          refsp[k] = 1;
  1054          gamma[j] = 1.0;
  1055       }
  1056       return;
  1057 }
  1058 
  1059 /***********************************************************************
  1060 *  eval_gamma - compute steepest edge coefficient
  1061 *
  1062 *  This routine computes the steepest edge coefficient for non-basic
  1063 *  variable xN[j] using its direct definition:
  1064 *
  1065 *     gamma[j] = delta[j] +  sum   alfa[i,j]^2,
  1066 *                           i in R
  1067 *
  1068 *  where delta[j] = 1, if xN[j] is in the current reference space,
  1069 *  and 0 otherwise; R is a set of basic variables xB[i], which are in
  1070 *  the current reference space; alfa[i,j] are elements of the current
  1071 *  simplex table.
  1072 *
  1073 *  NOTE: The routine is intended only for debugginig purposes. */
  1074 
  1075 static double eval_gamma(struct csa *csa, int j)
  1076 {     int m = csa->m;
  1077 #ifdef GLP_DEBUG
  1078       int n = csa->n;
  1079 #endif
  1080       int *head = csa->head;
  1081       char *refsp = csa->refsp;
  1082       double *alfa = csa->work3;
  1083       double *h = csa->work3;
  1084       int i, k;
  1085       double gamma;
  1086 #ifdef GLP_DEBUG
  1087       xassert(1 <= j && j <= n);
  1088 #endif
  1089       k = head[m+j]; /* x[k] = xN[j] */
  1090 #ifdef GLP_DEBUG
  1091       xassert(1 <= k && k <= m+n);
  1092 #endif
  1093       /* construct the right-hand side vector h = - N[j] */
  1094       for (i = 1; i <= m; i++)
  1095          h[i] = 0.0;
  1096       if (k <= m)
  1097       {  /* N[j] is k-th column of submatrix I */
  1098          h[k] = -1.0;
  1099       }
  1100       else
  1101       {  /* N[j] is (k-m)-th column of submatrix (-A) */
  1102          int *A_ptr = csa->A_ptr;
  1103          int *A_ind = csa->A_ind;
  1104          double *A_val = csa->A_val;
  1105          int beg, end, ptr;
  1106          beg = A_ptr[k-m];
  1107          end = A_ptr[k-m+1];
  1108          for (ptr = beg; ptr < end; ptr++)
  1109             h[A_ind[ptr]] = A_val[ptr];
  1110       }
  1111       /* solve system B * alfa = h */
  1112       xassert(csa->valid);
  1113       bfd_ftran(csa->bfd, alfa);
  1114       /* compute gamma */
  1115       gamma = (refsp[k] ? 1.0 : 0.0);
  1116       for (i = 1; i <= m; i++)
  1117       {  k = head[i];
  1118 #ifdef GLP_DEBUG
  1119          xassert(1 <= k && k <= m+n);
  1120 #endif
  1121          if (refsp[k]) gamma += alfa[i] * alfa[i];
  1122       }
  1123       return gamma;
  1124 }
  1125 
  1126 /***********************************************************************
  1127 *  chuzc - choose non-basic variable (column of the simplex table)
  1128 *
  1129 *  This routine chooses non-basic variable xN[q], which has largest
  1130 *  weighted reduced cost:
  1131 *
  1132 *     |d[q]| / sqrt(gamma[q]) = max  |d[j]| / sqrt(gamma[j]),
  1133 *                              j in J
  1134 *
  1135 *  where J is a subset of eligible non-basic variables xN[j], d[j] is
  1136 *  reduced cost of xN[j], gamma[j] is the steepest edge coefficient.
  1137 *
  1138 *  The working objective function is always minimized, so the sign of
  1139 *  d[q] determines direction, in which xN[q] has to change:
  1140 *
  1141 *     if d[q] < 0, xN[q] has to increase;
  1142 *
  1143 *     if d[q] > 0, xN[q] has to decrease.
  1144 *
  1145 *  If |d[j]| <= tol_dj, where tol_dj is a specified tolerance, xN[j]
  1146 *  is not included in J and therefore ignored. (It is assumed that the
  1147 *  working objective row is appropriately scaled, i.e. max|c[k]| = 1.)
  1148 *
  1149 *  If J is empty and no variable has been chosen, q is set to 0. */
  1150 
  1151 static void chuzc(struct csa *csa, double tol_dj)
  1152 {     int n = csa->n;
  1153       char *stat = csa->stat;
  1154       double *cbar = csa->cbar;
  1155       double *gamma = csa->gamma;
  1156       int j, q;
  1157       double dj, best, temp;
  1158       /* nothing is chosen so far */
  1159       q = 0, best = 0.0;
  1160       /* look through the list of non-basic variables */
  1161       for (j = 1; j <= n; j++)
  1162       {  dj = cbar[j];
  1163          switch (stat[j])
  1164          {  case GLP_NL:
  1165                /* xN[j] can increase */
  1166                if (dj >= - tol_dj) continue;
  1167                break;
  1168             case GLP_NU:
  1169                /* xN[j] can decrease */
  1170                if (dj <= + tol_dj) continue;
  1171                break;
  1172             case GLP_NF:
  1173                /* xN[j] can change in any direction */
  1174                if (- tol_dj <= dj && dj <= + tol_dj) continue;
  1175                break;
  1176             case GLP_NS:
  1177                /* xN[j] cannot change at all */
  1178                continue;
  1179             default:
  1180                xassert(stat != stat);
  1181          }
  1182          /* xN[j] is eligible non-basic variable; choose one which has
  1183             largest weighted reduced cost */
  1184 #ifdef GLP_DEBUG
  1185          xassert(gamma[j] > 0.0);
  1186 #endif
  1187          temp = (dj * dj) / gamma[j];
  1188          if (best < temp)
  1189             q = j, best = temp;
  1190       }
  1191       /* store the index of non-basic variable xN[q] chosen */
  1192       csa->q = q;
  1193       return;
  1194 }
  1195 
  1196 /***********************************************************************
  1197 *  eval_tcol - compute pivot column of the simplex table
  1198 *
  1199 *  This routine computes the pivot column of the simplex table, which
  1200 *  corresponds to non-basic variable xN[q] chosen.
  1201 *
  1202 *  The pivot column is the following vector:
  1203 *
  1204 *     tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],
  1205 *
  1206 *  where B is the current basis matrix, N[q] is a column of the matrix
  1207 *  (I|-A) corresponding to variable xN[q]. */
  1208 
  1209 static void eval_tcol(struct csa *csa)
  1210 {     int m = csa->m;
  1211 #ifdef GLP_DEBUG
  1212       int n = csa->n;
  1213 #endif
  1214       int *head = csa->head;
  1215       int q = csa->q;
  1216       int *tcol_ind = csa->tcol_ind;
  1217       double *tcol_vec = csa->tcol_vec;
  1218       double *h = csa->tcol_vec;
  1219       int i, k, nnz;
  1220 #ifdef GLP_DEBUG
  1221       xassert(1 <= q && q <= n);
  1222 #endif
  1223       k = head[m+q]; /* x[k] = xN[q] */
  1224 #ifdef GLP_DEBUG
  1225       xassert(1 <= k && k <= m+n);
  1226 #endif
  1227       /* construct the right-hand side vector h = - N[q] */
  1228       for (i = 1; i <= m; i++)
  1229          h[i] = 0.0;
  1230       if (k <= m)
  1231       {  /* N[q] is k-th column of submatrix I */
  1232          h[k] = -1.0;
  1233       }
  1234       else
  1235       {  /* N[q] is (k-m)-th column of submatrix (-A) */
  1236          int *A_ptr = csa->A_ptr;
  1237          int *A_ind = csa->A_ind;
  1238          double *A_val = csa->A_val;
  1239          int beg, end, ptr;
  1240          beg = A_ptr[k-m];
  1241          end = A_ptr[k-m+1];
  1242          for (ptr = beg; ptr < end; ptr++)
  1243             h[A_ind[ptr]] = A_val[ptr];
  1244       }
  1245       /* solve system B * tcol = h */
  1246       xassert(csa->valid);
  1247       bfd_ftran(csa->bfd, tcol_vec);
  1248       /* construct sparse pattern of the pivot column */
  1249       nnz = 0;
  1250       for (i = 1; i <= m; i++)
  1251       {  if (tcol_vec[i] != 0.0)
  1252             tcol_ind[++nnz] = i;
  1253       }
  1254       csa->tcol_nnz = nnz;
  1255       return;
  1256 }
  1257 
  1258 /***********************************************************************
  1259 *  refine_tcol - refine pivot column of the simplex table
  1260 *
  1261 *  This routine refines the pivot column of the simplex table assuming
  1262 *  that it was previously computed by the routine eval_tcol. */
  1263 
  1264 static void refine_tcol(struct csa *csa)
  1265 {     int m = csa->m;
  1266 #ifdef GLP_DEBUG
  1267       int n = csa->n;
  1268 #endif
  1269       int *head = csa->head;
  1270       int q = csa->q;
  1271       int *tcol_ind = csa->tcol_ind;
  1272       double *tcol_vec = csa->tcol_vec;
  1273       double *h = csa->work3;
  1274       int i, k, nnz;
  1275 #ifdef GLP_DEBUG
  1276       xassert(1 <= q && q <= n);
  1277 #endif
  1278       k = head[m+q]; /* x[k] = xN[q] */
  1279 #ifdef GLP_DEBUG
  1280       xassert(1 <= k && k <= m+n);
  1281 #endif
  1282       /* construct the right-hand side vector h = - N[q] */
  1283       for (i = 1; i <= m; i++)
  1284          h[i] = 0.0;
  1285       if (k <= m)
  1286       {  /* N[q] is k-th column of submatrix I */
  1287          h[k] = -1.0;
  1288       }
  1289       else
  1290       {  /* N[q] is (k-m)-th column of submatrix (-A) */
  1291          int *A_ptr = csa->A_ptr;
  1292          int *A_ind = csa->A_ind;
  1293          double *A_val = csa->A_val;
  1294          int beg, end, ptr;
  1295          beg = A_ptr[k-m];
  1296          end = A_ptr[k-m+1];
  1297          for (ptr = beg; ptr < end; ptr++)
  1298             h[A_ind[ptr]] = A_val[ptr];
  1299       }
  1300       /* refine solution of B * tcol = h */
  1301       refine_ftran(csa, h, tcol_vec);
  1302       /* construct sparse pattern of the pivot column */
  1303       nnz = 0;
  1304       for (i = 1; i <= m; i++)
  1305       {  if (tcol_vec[i] != 0.0)
  1306             tcol_ind[++nnz] = i;
  1307       }
  1308       csa->tcol_nnz = nnz;
  1309       return;
  1310 }
  1311 
  1312 /***********************************************************************
  1313 *  sort_tcol - sort pivot column of the simplex table
  1314 *
  1315 *  This routine reorders the list of non-zero elements of the pivot
  1316 *  column to put significant elements, whose magnitude is not less than
  1317 *  a specified tolerance, in front of the list, and stores the number
  1318 *  of significant elements in tcol_num. */
  1319 
  1320 static void sort_tcol(struct csa *csa, double tol_piv)
  1321 {
  1322 #ifdef GLP_DEBUG
  1323       int m = csa->m;
  1324 #endif
  1325       int nnz = csa->tcol_nnz;
  1326       int *tcol_ind = csa->tcol_ind;
  1327       double *tcol_vec = csa->tcol_vec;
  1328       int i, num, pos;
  1329       double big, eps, temp;
  1330       /* compute infinity (maximum) norm of the column */
  1331       big = 0.0;
  1332       for (pos = 1; pos <= nnz; pos++)
  1333       {
  1334 #ifdef GLP_DEBUG
  1335          i = tcol_ind[pos];
  1336          xassert(1 <= i && i <= m);
  1337 #endif
  1338          temp = fabs(tcol_vec[tcol_ind[pos]]);
  1339          if (big < temp) big = temp;
  1340       }
  1341       csa->tcol_max = big;
  1342       /* determine absolute pivot tolerance */
  1343       eps = tol_piv * (1.0 + 0.01 * big);
  1344       /* move significant column components to front of the list */
  1345       for (num = 0; num < nnz; )
  1346       {  i = tcol_ind[nnz];
  1347          if (fabs(tcol_vec[i]) < eps)
  1348             nnz--;
  1349          else
  1350          {  num++;
  1351             tcol_ind[nnz] = tcol_ind[num];
  1352             tcol_ind[num] = i;
  1353          }
  1354       }
  1355       csa->tcol_num = num;
  1356       return;
  1357 }
  1358 
  1359 /***********************************************************************
  1360 *  chuzr - choose basic variable (row of the simplex table)
  1361 *
  1362 *  This routine chooses basic variable xB[p], which reaches its bound
  1363 *  first on changing non-basic variable xN[q] in valid direction.
  1364 *
  1365 *  The parameter rtol is a relative tolerance used to relax bounds of
  1366 *  basic variables. If rtol = 0, the routine implements the standard
  1367 *  ratio test. Otherwise, if rtol > 0, the routine implements Harris'
  1368 *  two-pass ratio test. In the latter case rtol should be about three
  1369 *  times less than a tolerance used to check primal feasibility. */
  1370 
  1371 static void chuzr(struct csa *csa, double rtol)
  1372 {     int m = csa->m;
  1373 #ifdef GLP_DEBUG
  1374       int n = csa->n;
  1375 #endif
  1376       char *type = csa->type;
  1377       double *lb = csa->lb;
  1378       double *ub = csa->ub;
  1379       double *coef = csa->coef;
  1380       int *head = csa->head;
  1381       int phase = csa->phase;
  1382       double *bbar = csa->bbar;
  1383       double *cbar = csa->cbar;
  1384       int q = csa->q;
  1385       int *tcol_ind = csa->tcol_ind;
  1386       double *tcol_vec = csa->tcol_vec;
  1387       int tcol_num = csa->tcol_num;
  1388       int i, i_stat, k, p, p_stat, pos;
  1389       double alfa, big, delta, s, t, teta, tmax;
  1390 #ifdef GLP_DEBUG
  1391       xassert(1 <= q && q <= n);
  1392 #endif
  1393       /* s := - sign(d[q]), where d[q] is reduced cost of xN[q] */
  1394 #ifdef GLP_DEBUG
  1395       xassert(cbar[q] != 0.0);
  1396 #endif
  1397       s = (cbar[q] > 0.0 ? -1.0 : +1.0);
  1398       /*** FIRST PASS ***/
  1399       k = head[m+q]; /* x[k] = xN[q] */
  1400 #ifdef GLP_DEBUG
  1401       xassert(1 <= k && k <= m+n);
  1402 #endif
  1403       if (type[k] == GLP_DB)
  1404       {  /* xN[q] has both lower and upper bounds */
  1405          p = -1, p_stat = 0, teta = ub[k] - lb[k], big = 1.0;
  1406       }
  1407       else
  1408       {  /* xN[q] has no opposite bound */
  1409          p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
  1410       }
  1411       /* walk through significant elements of the pivot column */
  1412       for (pos = 1; pos <= tcol_num; pos++)
  1413       {  i = tcol_ind[pos];
  1414 #ifdef GLP_DEBUG
  1415          xassert(1 <= i && i <= m);
  1416 #endif
  1417          k = head[i]; /* x[k] = xB[i] */
  1418 #ifdef GLP_DEBUG
  1419          xassert(1 <= k && k <= m+n);
  1420 #endif
  1421          alfa = s * tcol_vec[i];
  1422 #ifdef GLP_DEBUG
  1423          xassert(alfa != 0.0);
  1424 #endif
  1425          /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
  1426             consider the only case when xN[q] is increasing */
  1427          if (alfa > 0.0)
  1428          {  /* xB[i] is increasing */
  1429             if (phase == 1 && coef[k] < 0.0)
  1430             {  /* xB[i] violates its lower bound, which plays the role
  1431                   of an upper bound on phase I */
  1432                delta = rtol * (1.0 + kappa * fabs(lb[k]));
  1433                t = ((lb[k] + delta) - bbar[i]) / alfa;
  1434                i_stat = GLP_NL;
  1435             }
  1436             else if (phase == 1 && coef[k] > 0.0)
  1437             {  /* xB[i] violates its upper bound, which plays the role
  1438                   of an lower bound on phase I */
  1439                continue;
  1440             }
  1441             else if (type[k] == GLP_UP || type[k] == GLP_DB ||
  1442                      type[k] == GLP_FX)
  1443             {  /* xB[i] is within its bounds and has an upper bound */
  1444                delta = rtol * (1.0 + kappa * fabs(ub[k]));
  1445                t = ((ub[k] + delta) - bbar[i]) / alfa;
  1446                i_stat = GLP_NU;
  1447             }
  1448             else
  1449             {  /* xB[i] is within its bounds and has no upper bound */
  1450                continue;
  1451             }
  1452          }
  1453          else
  1454          {  /* xB[i] is decreasing */
  1455             if (phase == 1 && coef[k] > 0.0)
  1456             {  /* xB[i] violates its upper bound, which plays the role
  1457                   of an lower bound on phase I */
  1458                delta = rtol * (1.0 + kappa * fabs(ub[k]));
  1459                t = ((ub[k] - delta) - bbar[i]) / alfa;
  1460                i_stat = GLP_NU;
  1461             }
  1462             else if (phase == 1 && coef[k] < 0.0)
  1463             {  /* xB[i] violates its lower bound, which plays the role
  1464                   of an upper bound on phase I */
  1465                continue;
  1466             }
  1467             else if (type[k] == GLP_LO || type[k] == GLP_DB ||
  1468                      type[k] == GLP_FX)
  1469             {  /* xB[i] is within its bounds and has an lower bound */
  1470                delta = rtol * (1.0 + kappa * fabs(lb[k]));
  1471                t = ((lb[k] - delta) - bbar[i]) / alfa;
  1472                i_stat = GLP_NL;
  1473             }
  1474             else
  1475             {  /* xB[i] is within its bounds and has no lower bound */
  1476                continue;
  1477             }
  1478          }
  1479          /* t is a change of xN[q], on which xB[i] reaches its bound
  1480             (possibly relaxed); since the basic solution is assumed to
  1481             be primal feasible (or pseudo feasible on phase I), t has
  1482             to be non-negative by definition; however, it may happen
  1483             that xB[i] slightly (i.e. within a tolerance) violates its
  1484             bound, that leads to negative t; in the latter case, if
  1485             xB[i] is chosen, negative t means that xN[q] changes in
  1486             wrong direction; if pivot alfa[i,q] is close to zero, even
  1487             small bound violation of xB[i] may lead to a large change
  1488             of xN[q] in wrong direction; let, for example, xB[i] >= 0
  1489             and in the current basis its value be -5e-9; let also xN[q]
  1490             be on its zero bound and should increase; from the ratio
  1491             test rule it follows that the pivot alfa[i,q] < 0; however,
  1492             if alfa[i,q] is, say, -1e-9, the change of xN[q] in wrong
  1493             direction is 5e-9 / (-1e-9) = -5, and using it for updating
  1494             values of other basic variables will give absolutely wrong
  1495             results; therefore, if t is negative, we should replace it
  1496             by exact zero assuming that xB[i] is exactly on its bound,
  1497             and the violation appears due to round-off errors */
  1498          if (t < 0.0) t = 0.0;
  1499          /* apply minimal ratio test */
  1500          if (teta > t || teta == t && big < fabs(alfa))
  1501             p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
  1502       }
  1503       /* the second pass is skipped in the following cases: */
  1504       /* if the standard ratio test is used */
  1505       if (rtol == 0.0) goto done;
  1506       /* if xN[q] reaches its opposite bound or if no basic variable
  1507          has been chosen on the first pass */
  1508       if (p <= 0) goto done;
  1509       /* if xB[p] is a blocking variable, i.e. if it prevents xN[q]
  1510          from any change */
  1511       if (teta == 0.0) goto done;
  1512       /*** SECOND PASS ***/
  1513       /* here tmax is a maximal change of xN[q], on which the solution
  1514          remains primal feasible (or pseudo feasible on phase I) within
  1515          a tolerance */
  1516 #if 0
  1517       tmax = (1.0 + 10.0 * DBL_EPSILON) * teta;
  1518 #else
  1519       tmax = teta;
  1520 #endif
  1521       /* nothing is chosen so far */
  1522       p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0;
  1523       /* walk through significant elements of the pivot column */
  1524       for (pos = 1; pos <= tcol_num; pos++)
  1525       {  i = tcol_ind[pos];
  1526 #ifdef GLP_DEBUG
  1527          xassert(1 <= i && i <= m);
  1528 #endif
  1529          k = head[i]; /* x[k] = xB[i] */
  1530 #ifdef GLP_DEBUG
  1531          xassert(1 <= k && k <= m+n);
  1532 #endif
  1533          alfa = s * tcol_vec[i];
  1534 #ifdef GLP_DEBUG
  1535          xassert(alfa != 0.0);
  1536 #endif
  1537          /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
  1538             consider the only case when xN[q] is increasing */
  1539          if (alfa > 0.0)
  1540          {  /* xB[i] is increasing */
  1541             if (phase == 1 && coef[k] < 0.0)
  1542             {  /* xB[i] violates its lower bound, which plays the role
  1543                   of an upper bound on phase I */
  1544                t = (lb[k] - bbar[i]) / alfa;
  1545                i_stat = GLP_NL;
  1546             }
  1547             else if (phase == 1 && coef[k] > 0.0)
  1548             {  /* xB[i] violates its upper bound, which plays the role
  1549                   of an lower bound on phase I */
  1550                continue;
  1551             }
  1552             else if (type[k] == GLP_UP || type[k] == GLP_DB ||
  1553                      type[k] == GLP_FX)
  1554             {  /* xB[i] is within its bounds and has an upper bound */
  1555                t = (ub[k] - bbar[i]) / alfa;
  1556                i_stat = GLP_NU;
  1557             }
  1558             else
  1559             {  /* xB[i] is within its bounds and has no upper bound */
  1560                continue;
  1561             }
  1562          }
  1563          else
  1564          {  /* xB[i] is decreasing */
  1565             if (phase == 1 && coef[k] > 0.0)
  1566             {  /* xB[i] violates its upper bound, which plays the role
  1567                   of an lower bound on phase I */
  1568                t = (ub[k] - bbar[i]) / alfa;
  1569                i_stat = GLP_NU;
  1570             }
  1571             else if (phase == 1 && coef[k] < 0.0)
  1572             {  /* xB[i] violates its lower bound, which plays the role
  1573                   of an upper bound on phase I */
  1574                continue;
  1575             }
  1576             else if (type[k] == GLP_LO || type[k] == GLP_DB ||
  1577                      type[k] == GLP_FX)
  1578             {  /* xB[i] is within its bounds and has an lower bound */
  1579                t = (lb[k] - bbar[i]) / alfa;
  1580                i_stat = GLP_NL;
  1581             }
  1582             else
  1583             {  /* xB[i] is within its bounds and has no lower bound */
  1584                continue;
  1585             }
  1586          }
  1587          /* (see comments for the first pass) */
  1588          if (t < 0.0) t = 0.0;
  1589          /* t is a change of xN[q], on which xB[i] reaches its bound;
  1590             if t <= tmax, all basic variables can violate their bounds
  1591             only within relaxation tolerance delta; we can use this
  1592             freedom and choose basic variable having largest influence
  1593             coefficient to avoid possible numeric instability */
  1594          if (t <= tmax && big < fabs(alfa))
  1595             p = i, p_stat = i_stat, teta = t, big = fabs(alfa);
  1596       }
  1597       /* something must be chosen on the second pass */
  1598       xassert(p != 0);
  1599 done: /* store the index and status of basic variable xB[p] chosen */
  1600       csa->p = p;
  1601       if (p > 0 && type[head[p]] == GLP_FX)
  1602          csa->p_stat = GLP_NS;
  1603       else
  1604          csa->p_stat = p_stat;
  1605       /* store corresponding change of non-basic variable xN[q] */
  1606 #ifdef GLP_DEBUG
  1607       xassert(teta >= 0.0);
  1608 #endif
  1609       csa->teta = s * teta;
  1610       return;
  1611 }
  1612 
  1613 /***********************************************************************
  1614 *  eval_rho - compute pivot row of the inverse
  1615 *
  1616 *  This routine computes the pivot (p-th) row of the inverse inv(B),
  1617 *  which corresponds to basic variable xB[p] chosen:
  1618 *
  1619 *     rho = inv(B') * e[p],
  1620 *
  1621 *  where B' is a matrix transposed to the current basis matrix, e[p]
  1622 *  is unity vector. */
  1623 
  1624 static void eval_rho(struct csa *csa, double rho[])
  1625 {     int m = csa->m;
  1626       int p = csa->p;
  1627       double *e = rho;
  1628       int i;
  1629 #ifdef GLP_DEBUG
  1630       xassert(1 <= p && p <= m);
  1631 #endif
  1632       /* construct the right-hand side vector e[p] */
  1633       for (i = 1; i <= m; i++)
  1634          e[i] = 0.0;
  1635       e[p] = 1.0;
  1636       /* solve system B'* rho = e[p] */
  1637       xassert(csa->valid);
  1638       bfd_btran(csa->bfd, rho);
  1639       return;
  1640 }
  1641 
  1642 /***********************************************************************
  1643 *  refine_rho - refine pivot row of the inverse
  1644 *
  1645 *  This routine refines the pivot row of the inverse inv(B) assuming
  1646 *  that it was previously computed by the routine eval_rho. */
  1647 
  1648 static void refine_rho(struct csa *csa, double rho[])
  1649 {     int m = csa->m;
  1650       int p = csa->p;
  1651       double *e = csa->work3;
  1652       int i;
  1653 #ifdef GLP_DEBUG
  1654       xassert(1 <= p && p <= m);
  1655 #endif
  1656       /* construct the right-hand side vector e[p] */
  1657       for (i = 1; i <= m; i++)
  1658          e[i] = 0.0;
  1659       e[p] = 1.0;
  1660       /* refine solution of B'* rho = e[p] */
  1661       refine_btran(csa, e, rho);
  1662       return;
  1663 }
  1664 
  1665 /***********************************************************************
  1666 *  eval_trow - compute pivot row of the simplex table
  1667 *
  1668 *  This routine computes the pivot row of the simplex table, which
  1669 *  corresponds to basic variable xB[p] chosen.
  1670 *
  1671 *  The pivot row is the following vector:
  1672 *
  1673 *     trow = T'* e[p] = - N'* inv(B') * e[p] = - N' * rho,
  1674 *
  1675 *  where rho is the pivot row of the inverse inv(B) previously computed
  1676 *  by the routine eval_rho.
  1677 *
  1678 *  Note that elements of the pivot row corresponding to fixed non-basic
  1679 *  variables are not computed. */
  1680 
  1681 static void eval_trow(struct csa *csa, double rho[])
  1682 {     int m = csa->m;
  1683       int n = csa->n;
  1684 #ifdef GLP_DEBUG
  1685       char *stat = csa->stat;
  1686 #endif
  1687       int *N_ptr = csa->N_ptr;
  1688       int *N_len = csa->N_len;
  1689       int *N_ind = csa->N_ind;
  1690       double *N_val = csa->N_val;
  1691       int *trow_ind = csa->trow_ind;
  1692       double *trow_vec = csa->trow_vec;
  1693       int i, j, beg, end, ptr, nnz;
  1694       double temp;
  1695       /* clear the pivot row */
  1696       for (j = 1; j <= n; j++)
  1697          trow_vec[j] = 0.0;
  1698       /* compute the pivot row as a linear combination of rows of the
  1699          matrix N: trow = - rho[1] * N'[1] - ... - rho[m] * N'[m] */
  1700       for (i = 1; i <= m; i++)
  1701       {  temp = rho[i];
  1702          if (temp == 0.0) continue;
  1703          /* trow := trow - rho[i] * N'[i] */
  1704          beg = N_ptr[i];
  1705          end = beg + N_len[i];
  1706          for (ptr = beg; ptr < end; ptr++)
  1707          {
  1708 #ifdef GLP_DEBUG
  1709             j = N_ind[ptr];
  1710             xassert(1 <= j && j <= n);
  1711             xassert(stat[j] != GLP_NS);
  1712 #endif
  1713             trow_vec[N_ind[ptr]] -= temp * N_val[ptr];
  1714          }
  1715       }
  1716       /* construct sparse pattern of the pivot row */
  1717       nnz = 0;
  1718       for (j = 1; j <= n; j++)
  1719       {  if (trow_vec[j] != 0.0)
  1720             trow_ind[++nnz] = j;
  1721       }
  1722       csa->trow_nnz = nnz;
  1723       return;
  1724 }
  1725 
  1726 /***********************************************************************
  1727 *  update_bbar - update values of basic variables
  1728 *
  1729 *  This routine updates values of all basic variables for the adjacent
  1730 *  basis. */
  1731 
  1732 static void update_bbar(struct csa *csa)
  1733 {
  1734 #ifdef GLP_DEBUG
  1735       int m = csa->m;
  1736       int n = csa->n;
  1737 #endif
  1738       double *bbar = csa->bbar;
  1739       int q = csa->q;
  1740       int tcol_nnz = csa->tcol_nnz;
  1741       int *tcol_ind = csa->tcol_ind;
  1742       double *tcol_vec = csa->tcol_vec;
  1743       int p = csa->p;
  1744       double teta = csa->teta;
  1745       int i, pos;
  1746 #ifdef GLP_DEBUG
  1747       xassert(1 <= q && q <= n);
  1748       xassert(p < 0 || 1 <= p && p <= m);
  1749 #endif
  1750       /* if xN[q] leaves the basis, compute its value in the adjacent
  1751          basis, where it will replace xB[p] */
  1752       if (p > 0)
  1753          bbar[p] = get_xN(csa, q) + teta;
  1754       /* update values of other basic variables (except xB[p], because
  1755          it will be replaced by xN[q]) */
  1756       if (teta == 0.0) goto done;
  1757       for (pos = 1; pos <= tcol_nnz; pos++)
  1758       {  i = tcol_ind[pos];
  1759          /* skip xB[p] */
  1760          if (i == p) continue;
  1761          /* (change of xB[i]) = alfa[i,q] * (change of xN[q]) */
  1762          bbar[i] += tcol_vec[i] * teta;
  1763       }
  1764 done: return;
  1765 }
  1766 
  1767 /***********************************************************************
  1768 *  reeval_cost - recompute reduced cost of non-basic variable xN[q]
  1769 *
  1770 *  This routine recomputes reduced cost of non-basic variable xN[q] for
  1771 *  the current basis more accurately using its direct definition:
  1772 *
  1773 *     d[q] = cN[q] - N'[q] * pi =
  1774 *
  1775 *          = cN[q] - N'[q] * (inv(B') * cB) =
  1776 *
  1777 *          = cN[q] - (cB' * inv(B) * N[q]) =
  1778 *
  1779 *          = cN[q] + cB' * (pivot column).
  1780 *
  1781 *  It is assumed that the pivot column of the simplex table is already
  1782 *  computed. */
  1783 
  1784 static double reeval_cost(struct csa *csa)
  1785 {     int m = csa->m;
  1786 #ifdef GLP_DEBUG
  1787       int n = csa->n;
  1788 #endif
  1789       double *coef = csa->coef;
  1790       int *head = csa->head;
  1791       int q = csa->q;
  1792       int tcol_nnz = csa->tcol_nnz;
  1793       int *tcol_ind = csa->tcol_ind;
  1794       double *tcol_vec = csa->tcol_vec;
  1795       int i, pos;
  1796       double dq;
  1797 #ifdef GLP_DEBUG
  1798       xassert(1 <= q && q <= n);
  1799 #endif
  1800       dq = coef[head[m+q]];
  1801       for (pos = 1; pos <= tcol_nnz; pos++)
  1802       {  i = tcol_ind[pos];
  1803 #ifdef GLP_DEBUG
  1804          xassert(1 <= i && i <= m);
  1805 #endif
  1806          dq += coef[head[i]] * tcol_vec[i];
  1807       }
  1808       return dq;
  1809 }
  1810 
  1811 /***********************************************************************
  1812 *  update_cbar - update reduced costs of non-basic variables
  1813 *
  1814 *  This routine updates reduced costs of all (except fixed) non-basic
  1815 *  variables for the adjacent basis. */
  1816 
  1817 static void update_cbar(struct csa *csa)
  1818 {
  1819 #ifdef GLP_DEBUG
  1820       int n = csa->n;
  1821 #endif
  1822       double *cbar = csa->cbar;
  1823       int q = csa->q;
  1824       int trow_nnz = csa->trow_nnz;
  1825       int *trow_ind = csa->trow_ind;
  1826       double *trow_vec = csa->trow_vec;
  1827       int j, pos;
  1828       double new_dq;
  1829 #ifdef GLP_DEBUG
  1830       xassert(1 <= q && q <= n);
  1831 #endif
  1832       /* compute reduced cost of xB[p] in the adjacent basis, where it
  1833          will replace xN[q] */
  1834 #ifdef GLP_DEBUG
  1835       xassert(trow_vec[q] != 0.0);
  1836 #endif
  1837       new_dq = (cbar[q] /= trow_vec[q]);
  1838       /* update reduced costs of other non-basic variables (except
  1839          xN[q], because it will be replaced by xB[p]) */
  1840       for (pos = 1; pos <= trow_nnz; pos++)
  1841       {  j = trow_ind[pos];
  1842          /* skip xN[q] */
  1843          if (j == q) continue;
  1844          cbar[j] -= trow_vec[j] * new_dq;
  1845       }
  1846       return;
  1847 }
  1848 
  1849 /***********************************************************************
  1850 *  update_gamma - update steepest edge coefficients
  1851 *
  1852 *  This routine updates steepest-edge coefficients for the adjacent
  1853 *  basis. */
  1854 
  1855 static void update_gamma(struct csa *csa)
  1856 {     int m = csa->m;
  1857 #ifdef GLP_DEBUG
  1858       int n = csa->n;
  1859 #endif
  1860       char *type = csa->type;
  1861       int *A_ptr = csa->A_ptr;
  1862       int *A_ind = csa->A_ind;
  1863       double *A_val = csa->A_val;
  1864       int *head = csa->head;
  1865       char *refsp = csa->refsp;
  1866       double *gamma = csa->gamma;
  1867       int q = csa->q;
  1868       int tcol_nnz = csa->tcol_nnz;
  1869       int *tcol_ind = csa->tcol_ind;
  1870       double *tcol_vec = csa->tcol_vec;
  1871       int p = csa->p;
  1872       int trow_nnz = csa->trow_nnz;
  1873       int *trow_ind = csa->trow_ind;
  1874       double *trow_vec = csa->trow_vec;
  1875       double *u = csa->work3;
  1876       int i, j, k, pos, beg, end, ptr;
  1877       double gamma_q, delta_q, pivot, s, t, t1, t2;
  1878 #ifdef GLP_DEBUG
  1879       xassert(1 <= p && p <= m);
  1880       xassert(1 <= q && q <= n);
  1881 #endif
  1882       /* the basis changes, so decrease the count */
  1883       xassert(csa->refct > 0);
  1884       csa->refct--;
  1885       /* recompute gamma[q] for the current basis more accurately and
  1886          compute auxiliary vector u */
  1887       gamma_q = delta_q = (refsp[head[m+q]] ? 1.0 : 0.0);
  1888       for (i = 1; i <= m; i++) u[i] = 0.0;
  1889       for (pos = 1; pos <= tcol_nnz; pos++)
  1890       {  i = tcol_ind[pos];
  1891          if (refsp[head[i]])
  1892          {  u[i] = t = tcol_vec[i];
  1893             gamma_q += t * t;
  1894          }
  1895          else
  1896             u[i] = 0.0;
  1897       }
  1898       xassert(csa->valid);
  1899       bfd_btran(csa->bfd, u);
  1900       /* update gamma[k] for other non-basic variables (except fixed
  1901          variables and xN[q], because it will be replaced by xB[p]) */
  1902       pivot = trow_vec[q];
  1903 #ifdef GLP_DEBUG
  1904       xassert(pivot != 0.0);
  1905 #endif
  1906       for (pos = 1; pos <= trow_nnz; pos++)
  1907       {  j = trow_ind[pos];
  1908          /* skip xN[q] */
  1909          if (j == q) continue;
  1910          /* compute t */
  1911          t = trow_vec[j] / pivot;
  1912          /* compute inner product s = N'[j] * u */
  1913          k = head[m+j]; /* x[k] = xN[j] */
  1914          if (k <= m)
  1915             s = u[k];
  1916          else
  1917          {  s = 0.0;
  1918             beg = A_ptr[k-m];
  1919             end = A_ptr[k-m+1];
  1920             for (ptr = beg; ptr < end; ptr++)
  1921                s -= A_val[ptr] * u[A_ind[ptr]];
  1922          }
  1923          /* compute gamma[k] for the adjacent basis */
  1924          t1 = gamma[j] + t * t * gamma_q + 2.0 * t * s;
  1925          t2 = (refsp[k] ? 1.0 : 0.0) + delta_q * t * t;
  1926          gamma[j] = (t1 >= t2 ? t1 : t2);
  1927          if (gamma[j] < DBL_EPSILON) gamma[j] = DBL_EPSILON;
  1928       }
  1929       /* compute gamma[q] for the adjacent basis */
  1930       if (type[head[p]] == GLP_FX)
  1931          gamma[q] = 1.0;
  1932       else
  1933       {  gamma[q] = gamma_q / (pivot * pivot);
  1934          if (gamma[q] < DBL_EPSILON) gamma[q] = DBL_EPSILON;
  1935       }
  1936       return;
  1937 }
  1938 
  1939 /***********************************************************************
  1940 *  err_in_bbar - compute maximal relative error in primal solution
  1941 *
  1942 *  This routine returns maximal relative error:
  1943 *
  1944 *     max |beta[i] - bbar[i]| / (1 + |beta[i]|),
  1945 *
  1946 *  where beta and bbar are, respectively, directly computed and the
  1947 *  current (updated) values of basic variables.
  1948 *
  1949 *  NOTE: The routine is intended only for debugginig purposes. */
  1950 
  1951 static double err_in_bbar(struct csa *csa)
  1952 {     int m = csa->m;
  1953       double *bbar = csa->bbar;
  1954       int i;
  1955       double e, emax, *beta;
  1956       beta = xcalloc(1+m, sizeof(double));
  1957       eval_beta(csa, beta);
  1958       emax = 0.0;
  1959       for (i = 1; i <= m; i++)
  1960       {  e = fabs(beta[i] - bbar[i]) / (1.0 + fabs(beta[i]));
  1961          if (emax < e) emax = e;
  1962       }
  1963       xfree(beta);
  1964       return emax;
  1965 }
  1966 
  1967 /***********************************************************************
  1968 *  err_in_cbar - compute maximal relative error in dual solution
  1969 *
  1970 *  This routine returns maximal relative error:
  1971 *
  1972 *     max |cost[j] - cbar[j]| / (1 + |cost[j]|),
  1973 *
  1974 *  where cost and cbar are, respectively, directly computed and the
  1975 *  current (updated) reduced costs of non-basic non-fixed variables.
  1976 *
  1977 *  NOTE: The routine is intended only for debugginig purposes. */
  1978 
  1979 static double err_in_cbar(struct csa *csa)
  1980 {     int m = csa->m;
  1981       int n = csa->n;
  1982       char *stat = csa->stat;
  1983       double *cbar = csa->cbar;
  1984       int j;
  1985       double e, emax, cost, *pi;
  1986       pi = xcalloc(1+m, sizeof(double));
  1987       eval_pi(csa, pi);
  1988       emax = 0.0;
  1989       for (j = 1; j <= n; j++)
  1990       {  if (stat[j] == GLP_NS) continue;
  1991          cost = eval_cost(csa, pi, j);
  1992          e = fabs(cost - cbar[j]) / (1.0 + fabs(cost));
  1993          if (emax < e) emax = e;
  1994       }
  1995       xfree(pi);
  1996       return emax;
  1997 }
  1998 
  1999 /***********************************************************************
  2000 *  err_in_gamma - compute maximal relative error in steepest edge cff.
  2001 *
  2002 *  This routine returns maximal relative error:
  2003 *
  2004 *     max |gamma'[j] - gamma[j]| / (1 + |gamma'[j]),
  2005 *
  2006 *  where gamma'[j] and gamma[j] are, respectively, directly computed
  2007 *  and the current (updated) steepest edge coefficients for non-basic
  2008 *  non-fixed variable x[j].
  2009 *
  2010 *  NOTE: The routine is intended only for debugginig purposes. */
  2011 
  2012 static double err_in_gamma(struct csa *csa)
  2013 {     int n = csa->n;
  2014       char *stat = csa->stat;
  2015       double *gamma = csa->gamma;
  2016       int j;
  2017       double e, emax, temp;
  2018       emax = 0.0;
  2019       for (j = 1; j <= n; j++)
  2020       {  if (stat[j] == GLP_NS)
  2021          {  xassert(gamma[j] == 1.0);
  2022             continue;
  2023          }
  2024          temp = eval_gamma(csa, j);
  2025          e = fabs(temp - gamma[j]) / (1.0 + fabs(temp));
  2026          if (emax < e) emax = e;
  2027       }
  2028       return emax;
  2029 }
  2030 
  2031 /***********************************************************************
  2032 *  change_basis - change basis header
  2033 *
  2034 *  This routine changes the basis header to make it corresponding to
  2035 *  the adjacent basis. */
  2036 
  2037 static void change_basis(struct csa *csa)
  2038 {     int m = csa->m;
  2039 #ifdef GLP_DEBUG
  2040       int n = csa->n;
  2041       char *type = csa->type;
  2042 #endif
  2043       int *head = csa->head;
  2044       char *stat = csa->stat;
  2045       int q = csa->q;
  2046       int p = csa->p;
  2047       int p_stat = csa->p_stat;
  2048       int k;
  2049 #ifdef GLP_DEBUG
  2050       xassert(1 <= q && q <= n);
  2051 #endif
  2052       if (p < 0)
  2053       {  /* xN[q] goes to its opposite bound */
  2054 #ifdef GLP_DEBUG
  2055          k = head[m+q]; /* x[k] = xN[q] */
  2056          xassert(1 <= k && k <= m+n);
  2057          xassert(type[k] == GLP_DB);
  2058 #endif
  2059          switch (stat[q])
  2060          {  case GLP_NL:
  2061                /* xN[q] increases */
  2062                stat[q] = GLP_NU;
  2063                break;
  2064             case GLP_NU:
  2065                /* xN[q] decreases */
  2066                stat[q] = GLP_NL;
  2067                break;
  2068             default:
  2069                xassert(stat != stat);
  2070          }
  2071       }
  2072       else
  2073       {  /* xB[p] leaves the basis, xN[q] enters the basis */
  2074 #ifdef GLP_DEBUG
  2075          xassert(1 <= p && p <= m);
  2076          k = head[p]; /* x[k] = xB[p] */
  2077          switch (p_stat)
  2078          {  case GLP_NL:
  2079                /* xB[p] goes to its lower bound */
  2080                xassert(type[k] == GLP_LO || type[k] == GLP_DB);
  2081                break;
  2082             case GLP_NU:
  2083                /* xB[p] goes to its upper bound */
  2084                xassert(type[k] == GLP_UP || type[k] == GLP_DB);
  2085                break;
  2086             case GLP_NS:
  2087                /* xB[p] goes to its fixed value */
  2088                xassert(type[k] == GLP_NS);
  2089                break;
  2090             default:
  2091                xassert(p_stat != p_stat);
  2092          }
  2093 #endif
  2094          /* xB[p] <-> xN[q] */
  2095          k = head[p], head[p] = head[m+q], head[m+q] = k;
  2096          stat[q] = (char)p_stat;
  2097       }
  2098       return;
  2099 }
  2100 
  2101 /***********************************************************************
  2102 *  set_aux_obj - construct auxiliary objective function
  2103 *
  2104 *  The auxiliary objective function is a separable piecewise linear
  2105 *  convex function, which is the sum of primal infeasibilities:
  2106 *
  2107 *     z = t[1] + ... + t[m+n] -> minimize,
  2108 *
  2109 *  where:
  2110 *
  2111 *            / lb[k] - x[k], if x[k] < lb[k]
  2112 *            |
  2113 *     t[k] = <  0, if lb[k] <= x[k] <= ub[k]
  2114 *            |
  2115 *            \ x[k] - ub[k], if x[k] > ub[k]
  2116 *
  2117 *  This routine computes objective coefficients for the current basis
  2118 *  and returns the number of non-zero terms t[k]. */
  2119 
  2120 static int set_aux_obj(struct csa *csa, double tol_bnd)
  2121 {     int m = csa->m;
  2122       int n = csa->n;
  2123       char *type = csa->type;
  2124       double *lb = csa->lb;
  2125       double *ub = csa->ub;
  2126       double *coef = csa->coef;
  2127       int *head = csa->head;
  2128       double *bbar = csa->bbar;
  2129       int i, k, cnt = 0;
  2130       double eps;
  2131       /* use a bit more restrictive tolerance */
  2132       tol_bnd *= 0.90;
  2133       /* clear all objective coefficients */
  2134       for (k = 1; k <= m+n; k++)
  2135          coef[k] = 0.0;
  2136       /* walk through the list of basic variables */
  2137       for (i = 1; i <= m; i++)
  2138       {  k = head[i]; /* x[k] = xB[i] */
  2139          if (type[k] == GLP_LO || type[k] == GLP_DB ||
  2140              type[k] == GLP_FX)
  2141          {  /* x[k] has lower bound */
  2142             eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
  2143             if (bbar[i] < lb[k] - eps)
  2144             {  /* and violates it */
  2145                coef[k] = -1.0;
  2146                cnt++;
  2147             }
  2148          }
  2149          if (type[k] == GLP_UP || type[k] == GLP_DB ||
  2150              type[k] == GLP_FX)
  2151          {  /* x[k] has upper bound */
  2152             eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
  2153             if (bbar[i] > ub[k] + eps)
  2154             {  /* and violates it */
  2155                coef[k] = +1.0;
  2156                cnt++;
  2157             }
  2158          }
  2159       }
  2160       return cnt;
  2161 }
  2162 
  2163 /***********************************************************************
  2164 *  set_orig_obj - restore original objective function
  2165 *
  2166 *  This routine assigns scaled original objective coefficients to the
  2167 *  working objective function. */
  2168 
  2169 static void set_orig_obj(struct csa *csa)
  2170 {     int m = csa->m;
  2171       int n = csa->n;
  2172       double *coef = csa->coef;
  2173       double *obj = csa->obj;
  2174       double zeta = csa->zeta;
  2175       int i, j;
  2176       for (i = 1; i <= m; i++)
  2177          coef[i] = 0.0;
  2178       for (j = 1; j <= n; j++)
  2179          coef[m+j] = zeta * obj[j];
  2180       return;
  2181 }
  2182 
  2183 /***********************************************************************
  2184 *  check_stab - check numerical stability of basic solution
  2185 *
  2186 *  If the current basic solution is primal feasible (or pseudo feasible
  2187 *  on phase I) within a tolerance, this routine returns zero, otherwise
  2188 *  it returns non-zero. */
  2189 
  2190 static int check_stab(struct csa *csa, double tol_bnd)
  2191 {     int m = csa->m;
  2192 #ifdef GLP_DEBUG
  2193       int n = csa->n;
  2194 #endif
  2195       char *type = csa->type;
  2196       double *lb = csa->lb;
  2197       double *ub = csa->ub;
  2198       double *coef = csa->coef;
  2199       int *head = csa->head;
  2200       int phase = csa->phase;
  2201       double *bbar = csa->bbar;
  2202       int i, k;
  2203       double eps;
  2204       /* walk through the list of basic variables */
  2205       for (i = 1; i <= m; i++)
  2206       {  k = head[i]; /* x[k] = xB[i] */
  2207 #ifdef GLP_DEBUG
  2208          xassert(1 <= k && k <= m+n);
  2209 #endif
  2210          if (phase == 1 && coef[k] < 0.0)
  2211          {  /* x[k] must not be greater than its lower bound */
  2212 #ifdef GLP_DEBUG
  2213             xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
  2214                     type[k] == GLP_FX);
  2215 #endif
  2216             eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
  2217             if (bbar[i] > lb[k] + eps) return 1;
  2218          }
  2219          else if (phase == 1 && coef[k] > 0.0)
  2220          {  /* x[k] must not be less than its upper bound */
  2221 #ifdef GLP_DEBUG
  2222             xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
  2223                     type[k] == GLP_FX);
  2224 #endif
  2225             eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
  2226             if (bbar[i] < ub[k] - eps) return 1;
  2227          }
  2228          else
  2229          {  /* either phase = 1 and coef[k] = 0, or phase = 2 */
  2230             if (type[k] == GLP_LO || type[k] == GLP_DB ||
  2231                 type[k] == GLP_FX)
  2232             {  /* x[k] must not be less than its lower bound */
  2233                eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
  2234                if (bbar[i] < lb[k] - eps) return 1;
  2235             }
  2236             if (type[k] == GLP_UP || type[k] == GLP_DB ||
  2237                 type[k] == GLP_FX)
  2238             {  /* x[k] must not be greater then its upper bound */
  2239                eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
  2240                if (bbar[i] > ub[k] + eps) return 1;
  2241             }
  2242          }
  2243       }
  2244       /* basic solution is primal feasible within a tolerance */
  2245       return 0;
  2246 }
  2247 
  2248 /***********************************************************************
  2249 *  check_feas - check primal feasibility of basic solution
  2250 *
  2251 *  If the current basic solution is primal feasible within a tolerance,
  2252 *  this routine returns zero, otherwise it returns non-zero. */
  2253 
  2254 static int check_feas(struct csa *csa, double tol_bnd)
  2255 {     int m = csa->m;
  2256 #ifdef GLP_DEBUG
  2257       int n = csa->n;
  2258       char *type = csa->type;
  2259 #endif
  2260       double *lb = csa->lb;
  2261       double *ub = csa->ub;
  2262       double *coef = csa->coef;
  2263       int *head = csa->head;
  2264       double *bbar = csa->bbar;
  2265       int i, k;
  2266       double eps;
  2267       xassert(csa->phase == 1);
  2268       /* walk through the list of basic variables */
  2269       for (i = 1; i <= m; i++)
  2270       {  k = head[i]; /* x[k] = xB[i] */
  2271 #ifdef GLP_DEBUG
  2272          xassert(1 <= k && k <= m+n);
  2273 #endif
  2274          if (coef[k] < 0.0)
  2275          {  /* check if x[k] still violates its lower bound */
  2276 #ifdef GLP_DEBUG
  2277             xassert(type[k] == GLP_LO || type[k] == GLP_DB ||
  2278                     type[k] == GLP_FX);
  2279 #endif
  2280             eps = tol_bnd * (1.0 + kappa * fabs(lb[k]));
  2281             if (bbar[i] < lb[k] - eps) return 1;
  2282          }
  2283          else if (coef[k] > 0.0)
  2284          {  /* check if x[k] still violates its upper bound */
  2285 #ifdef GLP_DEBUG
  2286             xassert(type[k] == GLP_UP || type[k] == GLP_DB ||
  2287                     type[k] == GLP_FX);
  2288 #endif
  2289             eps = tol_bnd * (1.0 + kappa * fabs(ub[k]));
  2290             if (bbar[i] > ub[k] + eps) return 1;
  2291          }
  2292       }
  2293       /* basic solution is primal feasible within a tolerance */
  2294       return 0;
  2295 }
  2296 
  2297 /***********************************************************************
  2298 *  eval_obj - compute original objective function
  2299 *
  2300 *  This routine computes the current value of the original objective
  2301 *  function. */
  2302 
  2303 static double eval_obj(struct csa *csa)
  2304 {     int m = csa->m;
  2305       int n = csa->n;
  2306       double *obj = csa->obj;
  2307       int *head = csa->head;
  2308       double *bbar = csa->bbar;
  2309       int i, j, k;
  2310       double sum;
  2311       sum = obj[0];
  2312       /* walk through the list of basic variables */
  2313       for (i = 1; i <= m; i++)
  2314       {  k = head[i]; /* x[k] = xB[i] */
  2315 #ifdef GLP_DEBUG
  2316          xassert(1 <= k && k <= m+n);
  2317 #endif
  2318          if (k > m)
  2319             sum += obj[k-m] * bbar[i];
  2320       }
  2321       /* walk through the list of non-basic variables */
  2322       for (j = 1; j <= n; j++)
  2323       {  k = head[m+j]; /* x[k] = xN[j] */
  2324 #ifdef GLP_DEBUG
  2325          xassert(1 <= k && k <= m+n);
  2326 #endif
  2327          if (k > m)
  2328             sum += obj[k-m] * get_xN(csa, j);
  2329       }
  2330       return sum;
  2331 }
  2332 
  2333 /***********************************************************************
  2334 *  display - display the search progress
  2335 *
  2336 *  This routine displays some information about the search progress
  2337 *  that includes:
  2338 *
  2339 *  the search phase;
  2340 *
  2341 *  the number of simplex iterations performed by the solver;
  2342 *
  2343 *  the original objective value;
  2344 *
  2345 *  the sum of (scaled) primal infeasibilities;
  2346 *
  2347 *  the number of basic fixed variables. */
  2348 
  2349 static void display(struct csa *csa, const glp_smcp *parm, int spec)
  2350 {     int m = csa->m;
  2351 #ifdef GLP_DEBUG
  2352       int n = csa->n;
  2353 #endif
  2354       char *type = csa->type;
  2355       double *lb = csa->lb;
  2356       double *ub = csa->ub;
  2357       int phase = csa->phase;
  2358       int *head = csa->head;
  2359       double *bbar = csa->bbar;
  2360       int i, k, cnt;
  2361       double sum;
  2362       if (parm->msg_lev < GLP_MSG_ON) goto skip;
  2363       if (parm->out_dly > 0 &&
  2364          1000.0 * xdifftime(xtime(), csa->tm_beg) < parm->out_dly)
  2365          goto skip;
  2366       if (csa->it_cnt == csa->it_dpy) goto skip;
  2367       if (!spec && csa->it_cnt % parm->out_frq != 0) goto skip;
  2368       /* compute the sum of primal infeasibilities and determine the
  2369          number of basic fixed variables */
  2370       sum = 0.0, cnt = 0;
  2371       for (i = 1; i <= m; i++)
  2372       {  k = head[i]; /* x[k] = xB[i] */
  2373 #ifdef GLP_DEBUG
  2374          xassert(1 <= k && k <= m+n);
  2375 #endif
  2376          if (type[k] == GLP_LO || type[k] == GLP_DB ||
  2377              type[k] == GLP_FX)
  2378          {  /* x[k] has lower bound */
  2379             if (bbar[i] < lb[k])
  2380                sum += (lb[k] - bbar[i]);
  2381          }
  2382          if (type[k] == GLP_UP || type[k] == GLP_DB ||
  2383              type[k] == GLP_FX)
  2384          {  /* x[k] has upper bound */
  2385             if (bbar[i] > ub[k])
  2386                sum += (bbar[i] - ub[k]);
  2387          }
  2388          if (type[k] == GLP_FX) cnt++;
  2389       }
  2390       xprintf("%c%6d: obj = %17.9e  infeas = %10.3e (%d)\n",
  2391          phase == 1 ? ' ' : '*', csa->it_cnt, eval_obj(csa), sum, cnt);
  2392       csa->it_dpy = csa->it_cnt;
  2393 skip: return;
  2394 }
  2395 
  2396 /***********************************************************************
  2397 *  store_sol - store basic solution back to the problem object
  2398 *
  2399 *  This routine stores basic solution components back to the problem
  2400 *  object. */
  2401 
  2402 static void store_sol(struct csa *csa, glp_prob *lp, int p_stat,
  2403       int d_stat, int ray)
  2404 {     int m = csa->m;
  2405       int n = csa->n;
  2406       double zeta = csa->zeta;
  2407       int *head = csa->head;
  2408       char *stat = csa->stat;
  2409       double *bbar = csa->bbar;
  2410       double *cbar = csa->cbar;
  2411       int i, j, k;
  2412 #ifdef GLP_DEBUG
  2413       xassert(lp->m == m);
  2414       xassert(lp->n == n);
  2415 #endif
  2416       /* basis factorization */
  2417 #ifdef GLP_DEBUG
  2418       xassert(!lp->valid && lp->bfd == NULL);
  2419       xassert(csa->valid && csa->bfd != NULL);
  2420 #endif
  2421       lp->valid = 1, csa->valid = 0;
  2422       lp->bfd = csa->bfd, csa->bfd = NULL;
  2423       memcpy(&lp->head[1], &head[1], m * sizeof(int));
  2424       /* basic solution status */
  2425       lp->pbs_stat = p_stat;
  2426       lp->dbs_stat = d_stat;
  2427       /* objective function value */
  2428       lp->obj_val = eval_obj(csa);
  2429       /* simplex iteration count */
  2430       lp->it_cnt = csa->it_cnt;
  2431       /* unbounded ray */
  2432       lp->some = ray;
  2433       /* basic variables */
  2434       for (i = 1; i <= m; i++)
  2435       {  k = head[i]; /* x[k] = xB[i] */
  2436 #ifdef GLP_DEBUG
  2437          xassert(1 <= k && k <= m+n);
  2438 #endif
  2439          if (k <= m)
  2440          {  GLPROW *row = lp->row[k];
  2441             row->stat = GLP_BS;
  2442             row->bind = i;
  2443             row->prim = bbar[i] / row->rii;
  2444             row->dual = 0.0;
  2445          }
  2446          else
  2447          {  GLPCOL *col = lp->col[k-m];
  2448             col->stat = GLP_BS;
  2449             col->bind = i;
  2450             col->prim = bbar[i] * col->sjj;
  2451             col->dual = 0.0;
  2452          }
  2453       }
  2454       /* non-basic variables */
  2455       for (j = 1; j <= n; j++)
  2456       {  k = head[m+j]; /* x[k] = xN[j] */
  2457 #ifdef GLP_DEBUG
  2458          xassert(1 <= k && k <= m+n);
  2459 #endif
  2460          if (k <= m)
  2461          {  GLPROW *row = lp->row[k];
  2462             row->stat = stat[j];
  2463             row->bind = 0;
  2464 #if 0
  2465             row->prim = get_xN(csa, j) / row->rii;
  2466 #else
  2467             switch (stat[j])
  2468             {  case GLP_NL:
  2469                   row->prim = row->lb; break;
  2470                case GLP_NU:
  2471                   row->prim = row->ub; break;
  2472                case GLP_NF:
  2473                   row->prim = 0.0; break;
  2474                case GLP_NS:
  2475                   row->prim = row->lb; break;
  2476                default:
  2477                   xassert(stat != stat);
  2478             }
  2479 #endif
  2480             row->dual = (cbar[j] * row->rii) / zeta;
  2481          }
  2482          else
  2483          {  GLPCOL *col = lp->col[k-m];
  2484             col->stat = stat[j];
  2485             col->bind = 0;
  2486 #if 0
  2487             col->prim = get_xN(csa, j) * col->sjj;
  2488 #else
  2489             switch (stat[j])
  2490             {  case GLP_NL:
  2491                   col->prim = col->lb; break;
  2492                case GLP_NU:
  2493                   col->prim = col->ub; break;
  2494                case GLP_NF:
  2495                   col->prim = 0.0; break;
  2496                case GLP_NS:
  2497                   col->prim = col->lb; break;
  2498                default:
  2499                   xassert(stat != stat);
  2500             }
  2501 #endif
  2502             col->dual = (cbar[j] / col->sjj) / zeta;
  2503          }
  2504       }
  2505       return;
  2506 }
  2507 
  2508 /***********************************************************************
  2509 *  free_csa - deallocate common storage area
  2510 *
  2511 *  This routine frees all the memory allocated to arrays in the common
  2512 *  storage area (CSA). */
  2513 
  2514 static void free_csa(struct csa *csa)
  2515 {     xfree(csa->type);
  2516       xfree(csa->lb);
  2517       xfree(csa->ub);
  2518       xfree(csa->coef);
  2519       xfree(csa->obj);
  2520       xfree(csa->A_ptr);
  2521       xfree(csa->A_ind);
  2522       xfree(csa->A_val);
  2523       xfree(csa->head);
  2524       xfree(csa->stat);
  2525       xfree(csa->N_ptr);
  2526       xfree(csa->N_len);
  2527       xfree(csa->N_ind);
  2528       xfree(csa->N_val);
  2529       xfree(csa->bbar);
  2530       xfree(csa->cbar);
  2531       xfree(csa->refsp);
  2532       xfree(csa->gamma);
  2533       xfree(csa->tcol_ind);
  2534       xfree(csa->tcol_vec);
  2535       xfree(csa->trow_ind);
  2536       xfree(csa->trow_vec);
  2537       xfree(csa->work1);
  2538       xfree(csa->work2);
  2539       xfree(csa->work3);
  2540       xfree(csa->work4);
  2541       xfree(csa);
  2542       return;
  2543 }
  2544 
  2545 /***********************************************************************
  2546 *  spx_primal - core LP solver based on the primal simplex method
  2547 *
  2548 *  SYNOPSIS
  2549 *
  2550 *  #include "glpspx.h"
  2551 *  int spx_primal(glp_prob *lp, const glp_smcp *parm);
  2552 *
  2553 *  DESCRIPTION
  2554 *
  2555 *  The routine spx_primal is a core LP solver based on the two-phase
  2556 *  primal simplex method.
  2557 *
  2558 *  RETURNS
  2559 *
  2560 *  0  LP instance has been successfully solved.
  2561 *
  2562 *  GLP_EITLIM
  2563 *     Iteration limit has been exhausted.
  2564 *
  2565 *  GLP_ETMLIM
  2566 *     Time limit has been exhausted.
  2567 *
  2568 *  GLP_EFAIL
  2569 *     The solver failed to solve LP instance. */
  2570 
  2571 int spx_primal(glp_prob *lp, const glp_smcp *parm)
  2572 {     struct csa *csa;
  2573       int binv_st = 2;
  2574       /* status of basis matrix factorization:
  2575          0 - invalid; 1 - just computed; 2 - updated */
  2576       int bbar_st = 0;
  2577       /* status of primal values of basic variables:
  2578          0 - invalid; 1 - just computed; 2 - updated */
  2579       int cbar_st = 0;
  2580       /* status of reduced costs of non-basic variables:
  2581          0 - invalid; 1 - just computed; 2 - updated */
  2582       int rigorous = 0;
  2583       /* rigorous mode flag; this flag is used to enable iterative
  2584          refinement on computing pivot rows and columns of the simplex
  2585          table */
  2586       int check = 0;
  2587       int p_stat, d_stat, ret;
  2588       /* allocate and initialize the common storage area */
  2589       csa = alloc_csa(lp);
  2590       init_csa(csa, lp);
  2591       if (parm->msg_lev >= GLP_MSG_DBG)
  2592          xprintf("Objective scale factor = %g\n", csa->zeta);
  2593 loop: /* main loop starts here */
  2594       /* compute factorization of the basis matrix */
  2595       if (binv_st == 0)
  2596       {  ret = invert_B(csa);
  2597          if (ret != 0)
  2598          {  if (parm->msg_lev >= GLP_MSG_ERR)
  2599             {  xprintf("Error: unable to factorize the basis matrix (%d"
  2600                   ")\n", ret);
  2601                xprintf("Sorry, basis recovery procedure not implemented"
  2602                   " yet\n");
  2603             }
  2604             xassert(!lp->valid && lp->bfd == NULL);
  2605             lp->bfd = csa->bfd, csa->bfd = NULL;
  2606             lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
  2607             lp->obj_val = 0.0;
  2608             lp->it_cnt = csa->it_cnt;
  2609             lp->some = 0;
  2610             ret = GLP_EFAIL;
  2611             goto done;
  2612          }
  2613          csa->valid = 1;
  2614          binv_st = 1; /* just computed */
  2615          /* invalidate basic solution components */
  2616          bbar_st = cbar_st = 0;
  2617       }
  2618       /* compute primal values of basic variables */
  2619       if (bbar_st == 0)
  2620       {  eval_bbar(csa);
  2621          bbar_st = 1; /* just computed */
  2622          /* determine the search phase, if not determined yet */
  2623          if (csa->phase == 0)
  2624          {  if (set_aux_obj(csa, parm->tol_bnd) > 0)
  2625             {  /* current basic solution is primal infeasible */
  2626                /* start to minimize the sum of infeasibilities */
  2627                csa->phase = 1;
  2628             }
  2629             else
  2630             {  /* current basic solution is primal feasible */
  2631                /* start to minimize the original objective function */
  2632                set_orig_obj(csa);
  2633                csa->phase = 2;
  2634             }
  2635             xassert(check_stab(csa, parm->tol_bnd) == 0);
  2636             /* working objective coefficients have been changed, so
  2637                invalidate reduced costs */
  2638             cbar_st = 0;
  2639             display(csa, parm, 1);
  2640          }
  2641          /* make sure that the current basic solution remains primal
  2642             feasible (or pseudo feasible on phase I) */
  2643          if (check_stab(csa, parm->tol_bnd))
  2644          {  /* there are excessive bound violations due to round-off
  2645                errors */
  2646             if (parm->msg_lev >= GLP_MSG_ERR)
  2647                xprintf("Warning: numerical instability (primal simplex,"
  2648                   " phase %s)\n", csa->phase == 1 ? "I" : "II");
  2649             /* restart the search */
  2650             csa->phase = 0;
  2651             binv_st = 0;
  2652             rigorous = 5;
  2653             goto loop;
  2654          }
  2655       }
  2656       xassert(csa->phase == 1 || csa->phase == 2);
  2657       /* on phase I we do not need to wait until the current basic
  2658          solution becomes dual feasible; it is sufficient to make sure
  2659          that no basic variable violates its bounds */
  2660       if (csa->phase == 1 && !check_feas(csa, parm->tol_bnd))
  2661       {  /* the current basis is primal feasible; switch to phase II */
  2662          csa->phase = 2;
  2663          set_orig_obj(csa);
  2664          cbar_st = 0;
  2665          display(csa, parm, 1);
  2666       }
  2667       /* compute reduced costs of non-basic variables */
  2668       if (cbar_st == 0)
  2669       {  eval_cbar(csa);
  2670          cbar_st = 1; /* just computed */
  2671       }
  2672       /* redefine the reference space, if required */
  2673       switch (parm->pricing)
  2674       {  case GLP_PT_STD:
  2675             break;
  2676          case GLP_PT_PSE:
  2677             if (csa->refct == 0) reset_refsp(csa);
  2678             break;
  2679          default:
  2680             xassert(parm != parm);
  2681       }
  2682       /* at this point the basis factorization and all basic solution
  2683          components are valid */
  2684       xassert(binv_st && bbar_st && cbar_st);
  2685       /* check accuracy of current basic solution components (only for
  2686          debugging) */
  2687       if (check)
  2688       {  double e_bbar = err_in_bbar(csa);
  2689          double e_cbar = err_in_cbar(csa);
  2690          double e_gamma =
  2691             (parm->pricing == GLP_PT_PSE ? err_in_gamma(csa) : 0.0);
  2692          xprintf("e_bbar = %10.3e; e_cbar = %10.3e; e_gamma = %10.3e\n",
  2693             e_bbar, e_cbar, e_gamma);
  2694          xassert(e_bbar <= 1e-5 && e_cbar <= 1e-5 && e_gamma <= 1e-3);
  2695       }
  2696       /* check if the iteration limit has been exhausted */
  2697       if (parm->it_lim < INT_MAX &&
  2698           csa->it_cnt - csa->it_beg >= parm->it_lim)
  2699       {  if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
  2700          {  if (bbar_st != 1) bbar_st = 0;
  2701             if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
  2702             goto loop;
  2703          }
  2704          display(csa, parm, 1);
  2705          if (parm->msg_lev >= GLP_MSG_ALL)
  2706             xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
  2707          switch (csa->phase)
  2708          {  case 1:
  2709                p_stat = GLP_INFEAS;
  2710                set_orig_obj(csa);
  2711                eval_cbar(csa);
  2712                break;
  2713             case 2:
  2714                p_stat = GLP_FEAS;
  2715                break;
  2716             default:
  2717                xassert(csa != csa);
  2718          }
  2719          chuzc(csa, parm->tol_dj);
  2720          d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
  2721          store_sol(csa, lp, p_stat, d_stat, 0);
  2722          ret = GLP_EITLIM;
  2723          goto done;
  2724       }
  2725       /* check if the time limit has been exhausted */
  2726       if (parm->tm_lim < INT_MAX &&
  2727           1000.0 * xdifftime(xtime(), csa->tm_beg) >= parm->tm_lim)
  2728       {  if (bbar_st != 1 || csa->phase == 2 && cbar_st != 1)
  2729          {  if (bbar_st != 1) bbar_st = 0;
  2730             if (csa->phase == 2 && cbar_st != 1) cbar_st = 0;
  2731             goto loop;
  2732          }
  2733          display(csa, parm, 1);
  2734          if (parm->msg_lev >= GLP_MSG_ALL)
  2735             xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n");
  2736          switch (csa->phase)
  2737          {  case 1:
  2738                p_stat = GLP_INFEAS;
  2739                set_orig_obj(csa);
  2740                eval_cbar(csa);
  2741                break;
  2742             case 2:
  2743                p_stat = GLP_FEAS;
  2744                break;
  2745             default:
  2746                xassert(csa != csa);
  2747          }
  2748          chuzc(csa, parm->tol_dj);
  2749          d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
  2750          store_sol(csa, lp, p_stat, d_stat, 0);
  2751          ret = GLP_ETMLIM;
  2752          goto done;
  2753       }
  2754       /* display the search progress */
  2755       display(csa, parm, 0);
  2756       /* choose non-basic variable xN[q] */
  2757       chuzc(csa, parm->tol_dj);
  2758       if (csa->q == 0)
  2759       {  if (bbar_st != 1 || cbar_st != 1)
  2760          {  if (bbar_st != 1) bbar_st = 0;
  2761             if (cbar_st != 1) cbar_st = 0;
  2762             goto loop;
  2763          }
  2764          display(csa, parm, 1);
  2765          switch (csa->phase)
  2766          {  case 1:
  2767                if (parm->msg_lev >= GLP_MSG_ALL)
  2768                   xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n");
  2769                p_stat = GLP_NOFEAS;
  2770                set_orig_obj(csa);
  2771                eval_cbar(csa);
  2772                chuzc(csa, parm->tol_dj);
  2773                d_stat = (csa->q == 0 ? GLP_FEAS : GLP_INFEAS);
  2774                break;
  2775             case 2:
  2776                if (parm->msg_lev >= GLP_MSG_ALL)
  2777                   xprintf("OPTIMAL SOLUTION FOUND\n");
  2778                p_stat = d_stat = GLP_FEAS;
  2779                break;
  2780             default:
  2781                xassert(csa != csa);
  2782          }
  2783          store_sol(csa, lp, p_stat, d_stat, 0);
  2784          ret = 0;
  2785          goto done;
  2786       }
  2787       /* compute pivot column of the simplex table */
  2788       eval_tcol(csa);
  2789       if (rigorous) refine_tcol(csa);
  2790       sort_tcol(csa, parm->tol_piv);
  2791       /* check accuracy of the reduced cost of xN[q] */
  2792       {  double d1 = csa->cbar[csa->q]; /* less accurate */
  2793          double d2 = reeval_cost(csa);  /* more accurate */
  2794          xassert(d1 != 0.0);
  2795          if (fabs(d1 - d2) > 1e-5 * (1.0 + fabs(d2)) ||
  2796              !(d1 < 0.0 && d2 < 0.0 || d1 > 0.0 && d2 > 0.0))
  2797          {  if (parm->msg_lev >= GLP_MSG_DBG)
  2798                xprintf("d1 = %.12g; d2 = %.12g\n", d1, d2);
  2799             if (cbar_st != 1 || !rigorous)
  2800             {  if (cbar_st != 1) cbar_st = 0;
  2801                rigorous = 5;
  2802                goto loop;
  2803             }
  2804          }
  2805          /* replace cbar[q] by more accurate value keeping its sign */
  2806          if (d1 > 0.0)
  2807             csa->cbar[csa->q] = (d2 > 0.0 ? d2 : +DBL_EPSILON);
  2808          else
  2809             csa->cbar[csa->q] = (d2 < 0.0 ? d2 : -DBL_EPSILON);
  2810       }
  2811       /* choose basic variable xB[p] */
  2812       switch (parm->r_test)
  2813       {  case GLP_RT_STD:
  2814             chuzr(csa, 0.0);
  2815             break;
  2816          case GLP_RT_HAR:
  2817             chuzr(csa, 0.30 * parm->tol_bnd);
  2818             break;
  2819          default:
  2820             xassert(parm != parm);
  2821       }
  2822       if (csa->p == 0)
  2823       {  if (bbar_st != 1 || cbar_st != 1 || !rigorous)
  2824          {  if (bbar_st != 1) bbar_st = 0;
  2825             if (cbar_st != 1) cbar_st = 0;
  2826             rigorous = 1;
  2827             goto loop;
  2828          }
  2829          display(csa, parm, 1);
  2830          switch (csa->phase)
  2831          {  case 1:
  2832                if (parm->msg_lev >= GLP_MSG_ERR)
  2833                   xprintf("Error: unable to choose basic variable on ph"
  2834                      "ase I\n");
  2835                xassert(!lp->valid && lp->bfd == NULL);
  2836                lp->bfd = csa->bfd, csa->bfd = NULL;
  2837                lp->pbs_stat = lp->dbs_stat = GLP_UNDEF;
  2838                lp->obj_val = 0.0;
  2839                lp->it_cnt = csa->it_cnt;
  2840                lp->some = 0;
  2841                ret = GLP_EFAIL;
  2842                break;
  2843             case 2:
  2844                if (parm->msg_lev >= GLP_MSG_ALL)
  2845                   xprintf("PROBLEM HAS UNBOUNDED SOLUTION\n");
  2846                store_sol(csa, lp, GLP_FEAS, GLP_NOFEAS,
  2847                   csa->head[csa->m+csa->q]);
  2848                ret = 0;
  2849                break;
  2850             default:
  2851                xassert(csa != csa);
  2852          }
  2853          goto done;
  2854       }
  2855       /* check if the pivot element is acceptable */
  2856       if (csa->p > 0)
  2857       {  double piv = csa->tcol_vec[csa->p];
  2858          double eps = 1e-5 * (1.0 + 0.01 * csa->tcol_max);
  2859          if (fabs(piv) < eps)
  2860          {  if (parm->msg_lev >= GLP_MSG_DBG)
  2861                xprintf("piv = %.12g; eps = %g\n", piv, eps);
  2862             if (!rigorous)
  2863             {  rigorous = 5;
  2864                goto loop;
  2865             }
  2866          }
  2867       }
  2868       /* now xN[q] and xB[p] have been chosen anyhow */
  2869       /* compute pivot row of the simplex table */
  2870       if (csa->p > 0)
  2871       {  double *rho = csa->work4;
  2872          eval_rho(csa, rho);
  2873          if (rigorous) refine_rho(csa, rho);
  2874          eval_trow(csa, rho);
  2875       }
  2876       /* accuracy check based on the pivot element */
  2877       if (csa->p > 0)
  2878       {  double piv1 = csa->tcol_vec[csa->p]; /* more accurate */
  2879          double piv2 = csa->trow_vec[csa->q]; /* less accurate */
  2880          xassert(piv1 != 0.0);
  2881          if (fabs(piv1 - piv2) > 1e-8 * (1.0 + fabs(piv1)) ||
  2882              !(piv1 > 0.0 && piv2 > 0.0 || piv1 < 0.0 && piv2 < 0.0))
  2883          {  if (parm->msg_lev >= GLP_MSG_DBG)
  2884                xprintf("piv1 = %.12g; piv2 = %.12g\n", piv1, piv2);
  2885             if (binv_st != 1 || !rigorous)
  2886             {  if (binv_st != 1) binv_st = 0;
  2887                rigorous = 5;
  2888                goto loop;
  2889             }
  2890             /* use more accurate version in the pivot row */
  2891             if (csa->trow_vec[csa->q] == 0.0)
  2892             {  csa->trow_nnz++;
  2893                xassert(csa->trow_nnz <= csa->n);
  2894                csa->trow_ind[csa->trow_nnz] = csa->q;
  2895             }
  2896             csa->trow_vec[csa->q] = piv1;
  2897          }
  2898       }
  2899       /* update primal values of basic variables */
  2900       update_bbar(csa);
  2901       bbar_st = 2; /* updated */
  2902       /* update reduced costs of non-basic variables */
  2903       if (csa->p > 0)
  2904       {  update_cbar(csa);
  2905          cbar_st = 2; /* updated */
  2906          /* on phase I objective coefficient of xB[p] in the adjacent
  2907             basis becomes zero */
  2908          if (csa->phase == 1)
  2909          {  int k = csa->head[csa->p]; /* x[k] = xB[p] -> xN[q] */
  2910             csa->cbar[csa->q] -= csa->coef[k];
  2911             csa->coef[k] = 0.0;
  2912          }
  2913       }
  2914       /* update steepest edge coefficients */
  2915       if (csa->p > 0)
  2916       {  switch (parm->pricing)
  2917          {  case GLP_PT_STD:
  2918                break;
  2919             case GLP_PT_PSE:
  2920                if (csa->refct > 0) update_gamma(csa);
  2921                break;
  2922             default:
  2923                xassert(parm != parm);
  2924          }
  2925       }
  2926       /* update factorization of the basis matrix */
  2927       if (csa->p > 0)
  2928       {  ret = update_B(csa, csa->p, csa->head[csa->m+csa->q]);
  2929          if (ret == 0)
  2930             binv_st = 2; /* updated */
  2931          else
  2932          {  csa->valid = 0;
  2933             binv_st = 0; /* invalid */
  2934          }
  2935       }
  2936       /* update matrix N */
  2937       if (csa->p > 0)
  2938       {  del_N_col(csa, csa->q, csa->head[csa->m+csa->q]);
  2939          if (csa->type[csa->head[csa->p]] != GLP_FX)
  2940             add_N_col(csa, csa->q, csa->head[csa->p]);
  2941       }
  2942       /* change the basis header */
  2943       change_basis(csa);
  2944       /* iteration complete */
  2945       csa->it_cnt++;
  2946       if (rigorous > 0) rigorous--;
  2947       goto loop;
  2948 done: /* deallocate the common storage area */
  2949       free_csa(csa);
  2950       /* return to the calling program */
  2951       return ret;
  2952 }
  2953 
  2954 /* eof */