|
1 /* glpapi01.c (problem creating and modifying routines) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpios.h" |
|
26 |
|
27 /* CAUTION: DO NOT CHANGE THE LIMITS BELOW */ |
|
28 |
|
29 #define M_MAX 100000000 /* = 100*10^6 */ |
|
30 /* maximal number of rows in the problem object */ |
|
31 |
|
32 #define N_MAX 100000000 /* = 100*10^6 */ |
|
33 /* maximal number of columns in the problem object */ |
|
34 |
|
35 #define NNZ_MAX 500000000 /* = 500*10^6 */ |
|
36 /* maximal number of constraint coefficients in the problem object */ |
|
37 |
|
38 /*********************************************************************** |
|
39 * NAME |
|
40 * |
|
41 * glp_create_prob - create problem object |
|
42 * |
|
43 * SYNOPSIS |
|
44 * |
|
45 * glp_prob *glp_create_prob(void); |
|
46 * |
|
47 * DESCRIPTION |
|
48 * |
|
49 * The routine glp_create_prob creates a new problem object, which is |
|
50 * initially "empty", i.e. has no rows and columns. |
|
51 * |
|
52 * RETURNS |
|
53 * |
|
54 * The routine returns a pointer to the object created, which should be |
|
55 * used in any subsequent operations on this object. */ |
|
56 |
|
57 static void create_prob(glp_prob *lp) |
|
58 { lp->magic = GLP_PROB_MAGIC; |
|
59 lp->pool = dmp_create_pool(); |
|
60 #if 0 /* 17/XI-2009 */ |
|
61 lp->cps = xmalloc(sizeof(struct LPXCPS)); |
|
62 lpx_reset_parms(lp); |
|
63 #else |
|
64 lp->parms = NULL; |
|
65 #endif |
|
66 lp->tree = NULL; |
|
67 #if 0 |
|
68 lp->lwa = 0; |
|
69 lp->cwa = NULL; |
|
70 #endif |
|
71 /* LP/MIP data */ |
|
72 lp->name = NULL; |
|
73 lp->obj = NULL; |
|
74 lp->dir = GLP_MIN; |
|
75 lp->c0 = 0.0; |
|
76 lp->m_max = 100; |
|
77 lp->n_max = 200; |
|
78 lp->m = lp->n = 0; |
|
79 lp->nnz = 0; |
|
80 lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *)); |
|
81 lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *)); |
|
82 lp->r_tree = lp->c_tree = NULL; |
|
83 /* basis factorization */ |
|
84 lp->valid = 0; |
|
85 lp->head = xcalloc(1+lp->m_max, sizeof(int)); |
|
86 lp->bfcp = NULL; |
|
87 lp->bfd = NULL; |
|
88 /* basic solution (LP) */ |
|
89 lp->pbs_stat = lp->dbs_stat = GLP_UNDEF; |
|
90 lp->obj_val = 0.0; |
|
91 lp->it_cnt = 0; |
|
92 lp->some = 0; |
|
93 /* interior-point solution (LP) */ |
|
94 lp->ipt_stat = GLP_UNDEF; |
|
95 lp->ipt_obj = 0.0; |
|
96 /* integer solution (MIP) */ |
|
97 lp->mip_stat = GLP_UNDEF; |
|
98 lp->mip_obj = 0.0; |
|
99 return; |
|
100 } |
|
101 |
|
102 glp_prob *glp_create_prob(void) |
|
103 { glp_prob *lp; |
|
104 lp = xmalloc(sizeof(glp_prob)); |
|
105 create_prob(lp); |
|
106 return lp; |
|
107 } |
|
108 |
|
109 /*********************************************************************** |
|
110 * NAME |
|
111 * |
|
112 * glp_set_prob_name - assign (change) problem name |
|
113 * |
|
114 * SYNOPSIS |
|
115 * |
|
116 * void glp_set_prob_name(glp_prob *lp, const char *name); |
|
117 * |
|
118 * DESCRIPTION |
|
119 * |
|
120 * The routine glp_set_prob_name assigns a given symbolic name (1 up to |
|
121 * 255 characters) to the specified problem object. |
|
122 * |
|
123 * If the parameter name is NULL or empty string, the routine erases an |
|
124 * existing symbolic name of the problem object. */ |
|
125 |
|
126 void glp_set_prob_name(glp_prob *lp, const char *name) |
|
127 { glp_tree *tree = lp->tree; |
|
128 if (tree != NULL && tree->reason != 0) |
|
129 xerror("glp_set_prob_name: operation not allowed\n"); |
|
130 if (lp->name != NULL) |
|
131 { dmp_free_atom(lp->pool, lp->name, strlen(lp->name)+1); |
|
132 lp->name = NULL; |
|
133 } |
|
134 if (!(name == NULL || name[0] == '\0')) |
|
135 { int k; |
|
136 for (k = 0; name[k] != '\0'; k++) |
|
137 { if (k == 256) |
|
138 xerror("glp_set_prob_name: problem name too long\n"); |
|
139 if (iscntrl((unsigned char)name[k])) |
|
140 xerror("glp_set_prob_name: problem name contains invalid" |
|
141 " character(s)\n"); |
|
142 } |
|
143 lp->name = dmp_get_atom(lp->pool, strlen(name)+1); |
|
144 strcpy(lp->name, name); |
|
145 } |
|
146 return; |
|
147 } |
|
148 |
|
149 /*********************************************************************** |
|
150 * NAME |
|
151 * |
|
152 * glp_set_obj_name - assign (change) objective function name |
|
153 * |
|
154 * SYNOPSIS |
|
155 * |
|
156 * void glp_set_obj_name(glp_prob *lp, const char *name); |
|
157 * |
|
158 * DESCRIPTION |
|
159 * |
|
160 * The routine glp_set_obj_name assigns a given symbolic name (1 up to |
|
161 * 255 characters) to the objective function of the specified problem |
|
162 * object. |
|
163 * |
|
164 * If the parameter name is NULL or empty string, the routine erases an |
|
165 * existing name of the objective function. */ |
|
166 |
|
167 void glp_set_obj_name(glp_prob *lp, const char *name) |
|
168 { glp_tree *tree = lp->tree; |
|
169 if (tree != NULL && tree->reason != 0) |
|
170 xerror("glp_set_obj_name: operation not allowed\n"); |
|
171 if (lp->obj != NULL) |
|
172 { dmp_free_atom(lp->pool, lp->obj, strlen(lp->obj)+1); |
|
173 lp->obj = NULL; |
|
174 } |
|
175 if (!(name == NULL || name[0] == '\0')) |
|
176 { int k; |
|
177 for (k = 0; name[k] != '\0'; k++) |
|
178 { if (k == 256) |
|
179 xerror("glp_set_obj_name: objective name too long\n"); |
|
180 if (iscntrl((unsigned char)name[k])) |
|
181 xerror("glp_set_obj_name: objective name contains invali" |
|
182 "d character(s)\n"); |
|
183 } |
|
184 lp->obj = dmp_get_atom(lp->pool, strlen(name)+1); |
|
185 strcpy(lp->obj, name); |
|
186 } |
|
187 return; |
|
188 } |
|
189 |
|
190 /*********************************************************************** |
|
191 * NAME |
|
192 * |
|
193 * glp_set_obj_dir - set (change) optimization direction flag |
|
194 * |
|
195 * SYNOPSIS |
|
196 * |
|
197 * void glp_set_obj_dir(glp_prob *lp, int dir); |
|
198 * |
|
199 * DESCRIPTION |
|
200 * |
|
201 * The routine glp_set_obj_dir sets (changes) optimization direction |
|
202 * flag (i.e. "sense" of the objective function) as specified by the |
|
203 * parameter dir: |
|
204 * |
|
205 * GLP_MIN - minimization; |
|
206 * GLP_MAX - maximization. */ |
|
207 |
|
208 void glp_set_obj_dir(glp_prob *lp, int dir) |
|
209 { glp_tree *tree = lp->tree; |
|
210 if (tree != NULL && tree->reason != 0) |
|
211 xerror("glp_set_obj_dir: operation not allowed\n"); |
|
212 if (!(dir == GLP_MIN || dir == GLP_MAX)) |
|
213 xerror("glp_set_obj_dir: dir = %d; invalid direction flag\n", |
|
214 dir); |
|
215 lp->dir = dir; |
|
216 return; |
|
217 } |
|
218 |
|
219 /*********************************************************************** |
|
220 * NAME |
|
221 * |
|
222 * glp_add_rows - add new rows to problem object |
|
223 * |
|
224 * SYNOPSIS |
|
225 * |
|
226 * int glp_add_rows(glp_prob *lp, int nrs); |
|
227 * |
|
228 * DESCRIPTION |
|
229 * |
|
230 * The routine glp_add_rows adds nrs rows (constraints) to the specified |
|
231 * problem object. New rows are always added to the end of the row list, |
|
232 * so the ordinal numbers of existing rows remain unchanged. |
|
233 * |
|
234 * Being added each new row is initially free (unbounded) and has empty |
|
235 * list of the constraint coefficients. |
|
236 * |
|
237 * RETURNS |
|
238 * |
|
239 * The routine glp_add_rows returns the ordinal number of the first new |
|
240 * row added to the problem object. */ |
|
241 |
|
242 int glp_add_rows(glp_prob *lp, int nrs) |
|
243 { glp_tree *tree = lp->tree; |
|
244 GLPROW *row; |
|
245 int m_new, i; |
|
246 /* determine new number of rows */ |
|
247 if (nrs < 1) |
|
248 xerror("glp_add_rows: nrs = %d; invalid number of rows\n", |
|
249 nrs); |
|
250 if (nrs > M_MAX - lp->m) |
|
251 xerror("glp_add_rows: nrs = %d; too many rows\n", nrs); |
|
252 m_new = lp->m + nrs; |
|
253 /* increase the room, if necessary */ |
|
254 if (lp->m_max < m_new) |
|
255 { GLPROW **save = lp->row; |
|
256 while (lp->m_max < m_new) |
|
257 { lp->m_max += lp->m_max; |
|
258 xassert(lp->m_max > 0); |
|
259 } |
|
260 lp->row = xcalloc(1+lp->m_max, sizeof(GLPROW *)); |
|
261 memcpy(&lp->row[1], &save[1], lp->m * sizeof(GLPROW *)); |
|
262 xfree(save); |
|
263 /* do not forget about the basis header */ |
|
264 xfree(lp->head); |
|
265 lp->head = xcalloc(1+lp->m_max, sizeof(int)); |
|
266 } |
|
267 /* add new rows to the end of the row list */ |
|
268 for (i = lp->m+1; i <= m_new; i++) |
|
269 { /* create row descriptor */ |
|
270 lp->row[i] = row = dmp_get_atom(lp->pool, sizeof(GLPROW)); |
|
271 row->i = i; |
|
272 row->name = NULL; |
|
273 row->node = NULL; |
|
274 #if 1 /* 20/IX-2008 */ |
|
275 row->level = 0; |
|
276 row->origin = 0; |
|
277 row->klass = 0; |
|
278 if (tree != NULL) |
|
279 { switch (tree->reason) |
|
280 { case 0: |
|
281 break; |
|
282 case GLP_IROWGEN: |
|
283 xassert(tree->curr != NULL); |
|
284 row->level = tree->curr->level; |
|
285 row->origin = GLP_RF_LAZY; |
|
286 break; |
|
287 case GLP_ICUTGEN: |
|
288 xassert(tree->curr != NULL); |
|
289 row->level = tree->curr->level; |
|
290 row->origin = GLP_RF_CUT; |
|
291 break; |
|
292 default: |
|
293 xassert(tree != tree); |
|
294 } |
|
295 } |
|
296 #endif |
|
297 row->type = GLP_FR; |
|
298 row->lb = row->ub = 0.0; |
|
299 row->ptr = NULL; |
|
300 row->rii = 1.0; |
|
301 row->stat = GLP_BS; |
|
302 #if 0 |
|
303 row->bind = -1; |
|
304 #else |
|
305 row->bind = 0; |
|
306 #endif |
|
307 row->prim = row->dual = 0.0; |
|
308 row->pval = row->dval = 0.0; |
|
309 row->mipx = 0.0; |
|
310 } |
|
311 /* set new number of rows */ |
|
312 lp->m = m_new; |
|
313 /* invalidate the basis factorization */ |
|
314 lp->valid = 0; |
|
315 #if 1 |
|
316 if (tree != NULL && tree->reason != 0) tree->reopt = 1; |
|
317 #endif |
|
318 /* return the ordinal number of the first row added */ |
|
319 return m_new - nrs + 1; |
|
320 } |
|
321 |
|
322 /*********************************************************************** |
|
323 * NAME |
|
324 * |
|
325 * glp_add_cols - add new columns to problem object |
|
326 * |
|
327 * SYNOPSIS |
|
328 * |
|
329 * int glp_add_cols(glp_prob *lp, int ncs); |
|
330 * |
|
331 * DESCRIPTION |
|
332 * |
|
333 * The routine glp_add_cols adds ncs columns (structural variables) to |
|
334 * the specified problem object. New columns are always added to the end |
|
335 * of the column list, so the ordinal numbers of existing columns remain |
|
336 * unchanged. |
|
337 * |
|
338 * Being added each new column is initially fixed at zero and has empty |
|
339 * list of the constraint coefficients. |
|
340 * |
|
341 * RETURNS |
|
342 * |
|
343 * The routine glp_add_cols returns the ordinal number of the first new |
|
344 * column added to the problem object. */ |
|
345 |
|
346 int glp_add_cols(glp_prob *lp, int ncs) |
|
347 { glp_tree *tree = lp->tree; |
|
348 GLPCOL *col; |
|
349 int n_new, j; |
|
350 if (tree != NULL && tree->reason != 0) |
|
351 xerror("glp_add_cols: operation not allowed\n"); |
|
352 /* determine new number of columns */ |
|
353 if (ncs < 1) |
|
354 xerror("glp_add_cols: ncs = %d; invalid number of columns\n", |
|
355 ncs); |
|
356 if (ncs > N_MAX - lp->n) |
|
357 xerror("glp_add_cols: ncs = %d; too many columns\n", ncs); |
|
358 n_new = lp->n + ncs; |
|
359 /* increase the room, if necessary */ |
|
360 if (lp->n_max < n_new) |
|
361 { GLPCOL **save = lp->col; |
|
362 while (lp->n_max < n_new) |
|
363 { lp->n_max += lp->n_max; |
|
364 xassert(lp->n_max > 0); |
|
365 } |
|
366 lp->col = xcalloc(1+lp->n_max, sizeof(GLPCOL *)); |
|
367 memcpy(&lp->col[1], &save[1], lp->n * sizeof(GLPCOL *)); |
|
368 xfree(save); |
|
369 } |
|
370 /* add new columns to the end of the column list */ |
|
371 for (j = lp->n+1; j <= n_new; j++) |
|
372 { /* create column descriptor */ |
|
373 lp->col[j] = col = dmp_get_atom(lp->pool, sizeof(GLPCOL)); |
|
374 col->j = j; |
|
375 col->name = NULL; |
|
376 col->node = NULL; |
|
377 col->kind = GLP_CV; |
|
378 col->type = GLP_FX; |
|
379 col->lb = col->ub = 0.0; |
|
380 col->coef = 0.0; |
|
381 col->ptr = NULL; |
|
382 col->sjj = 1.0; |
|
383 col->stat = GLP_NS; |
|
384 #if 0 |
|
385 col->bind = -1; |
|
386 #else |
|
387 col->bind = 0; /* the basis may remain valid */ |
|
388 #endif |
|
389 col->prim = col->dual = 0.0; |
|
390 col->pval = col->dval = 0.0; |
|
391 col->mipx = 0.0; |
|
392 } |
|
393 /* set new number of columns */ |
|
394 lp->n = n_new; |
|
395 /* return the ordinal number of the first column added */ |
|
396 return n_new - ncs + 1; |
|
397 } |
|
398 |
|
399 /*********************************************************************** |
|
400 * NAME |
|
401 * |
|
402 * glp_set_row_name - assign (change) row name |
|
403 * |
|
404 * SYNOPSIS |
|
405 * |
|
406 * void glp_set_row_name(glp_prob *lp, int i, const char *name); |
|
407 * |
|
408 * DESCRIPTION |
|
409 * |
|
410 * The routine glp_set_row_name assigns a given symbolic name (1 up to |
|
411 * 255 characters) to i-th row (auxiliary variable) of the specified |
|
412 * problem object. |
|
413 * |
|
414 * If the parameter name is NULL or empty string, the routine erases an |
|
415 * existing name of i-th row. */ |
|
416 |
|
417 void glp_set_row_name(glp_prob *lp, int i, const char *name) |
|
418 { glp_tree *tree = lp->tree; |
|
419 GLPROW *row; |
|
420 if (!(1 <= i && i <= lp->m)) |
|
421 xerror("glp_set_row_name: i = %d; row number out of range\n", |
|
422 i); |
|
423 row = lp->row[i]; |
|
424 if (tree != NULL && tree->reason != 0) |
|
425 { xassert(tree->curr != NULL); |
|
426 xassert(row->level == tree->curr->level); |
|
427 } |
|
428 if (row->name != NULL) |
|
429 { if (row->node != NULL) |
|
430 { xassert(lp->r_tree != NULL); |
|
431 avl_delete_node(lp->r_tree, row->node); |
|
432 row->node = NULL; |
|
433 } |
|
434 dmp_free_atom(lp->pool, row->name, strlen(row->name)+1); |
|
435 row->name = NULL; |
|
436 } |
|
437 if (!(name == NULL || name[0] == '\0')) |
|
438 { int k; |
|
439 for (k = 0; name[k] != '\0'; k++) |
|
440 { if (k == 256) |
|
441 xerror("glp_set_row_name: i = %d; row name too long\n", |
|
442 i); |
|
443 if (iscntrl((unsigned char)name[k])) |
|
444 xerror("glp_set_row_name: i = %d: row name contains inva" |
|
445 "lid character(s)\n", i); |
|
446 } |
|
447 row->name = dmp_get_atom(lp->pool, strlen(name)+1); |
|
448 strcpy(row->name, name); |
|
449 if (lp->r_tree != NULL) |
|
450 { xassert(row->node == NULL); |
|
451 row->node = avl_insert_node(lp->r_tree, row->name); |
|
452 avl_set_node_link(row->node, row); |
|
453 } |
|
454 } |
|
455 return; |
|
456 } |
|
457 |
|
458 /*********************************************************************** |
|
459 * NAME |
|
460 * |
|
461 * glp_set_col_name - assign (change) column name |
|
462 * |
|
463 * SYNOPSIS |
|
464 * |
|
465 * void glp_set_col_name(glp_prob *lp, int j, const char *name); |
|
466 * |
|
467 * DESCRIPTION |
|
468 * |
|
469 * The routine glp_set_col_name assigns a given symbolic name (1 up to |
|
470 * 255 characters) to j-th column (structural variable) of the specified |
|
471 * problem object. |
|
472 * |
|
473 * If the parameter name is NULL or empty string, the routine erases an |
|
474 * existing name of j-th column. */ |
|
475 |
|
476 void glp_set_col_name(glp_prob *lp, int j, const char *name) |
|
477 { glp_tree *tree = lp->tree; |
|
478 GLPCOL *col; |
|
479 if (tree != NULL && tree->reason != 0) |
|
480 xerror("glp_set_col_name: operation not allowed\n"); |
|
481 if (!(1 <= j && j <= lp->n)) |
|
482 xerror("glp_set_col_name: j = %d; column number out of range\n" |
|
483 , j); |
|
484 col = lp->col[j]; |
|
485 if (col->name != NULL) |
|
486 { if (col->node != NULL) |
|
487 { xassert(lp->c_tree != NULL); |
|
488 avl_delete_node(lp->c_tree, col->node); |
|
489 col->node = NULL; |
|
490 } |
|
491 dmp_free_atom(lp->pool, col->name, strlen(col->name)+1); |
|
492 col->name = NULL; |
|
493 } |
|
494 if (!(name == NULL || name[0] == '\0')) |
|
495 { int k; |
|
496 for (k = 0; name[k] != '\0'; k++) |
|
497 { if (k == 256) |
|
498 xerror("glp_set_col_name: j = %d; column name too long\n" |
|
499 , j); |
|
500 if (iscntrl((unsigned char)name[k])) |
|
501 xerror("glp_set_col_name: j = %d: column name contains i" |
|
502 "nvalid character(s)\n", j); |
|
503 } |
|
504 col->name = dmp_get_atom(lp->pool, strlen(name)+1); |
|
505 strcpy(col->name, name); |
|
506 if (lp->c_tree != NULL && col->name != NULL) |
|
507 { xassert(col->node == NULL); |
|
508 col->node = avl_insert_node(lp->c_tree, col->name); |
|
509 avl_set_node_link(col->node, col); |
|
510 } |
|
511 } |
|
512 return; |
|
513 } |
|
514 |
|
515 /*********************************************************************** |
|
516 * NAME |
|
517 * |
|
518 * glp_set_row_bnds - set (change) row bounds |
|
519 * |
|
520 * SYNOPSIS |
|
521 * |
|
522 * void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb, |
|
523 * double ub); |
|
524 * |
|
525 * DESCRIPTION |
|
526 * |
|
527 * The routine glp_set_row_bnds sets (changes) the type and bounds of |
|
528 * i-th row (auxiliary variable) of the specified problem object. |
|
529 * |
|
530 * Parameters type, lb, and ub specify the type, lower bound, and upper |
|
531 * bound, respectively, as follows: |
|
532 * |
|
533 * Type Bounds Comments |
|
534 * ------------------------------------------------------ |
|
535 * GLP_FR -inf < x < +inf Free variable |
|
536 * GLP_LO lb <= x < +inf Variable with lower bound |
|
537 * GLP_UP -inf < x <= ub Variable with upper bound |
|
538 * GLP_DB lb <= x <= ub Double-bounded variable |
|
539 * GLP_FX x = lb Fixed variable |
|
540 * |
|
541 * where x is the auxiliary variable associated with i-th row. |
|
542 * |
|
543 * If the row has no lower bound, the parameter lb is ignored. If the |
|
544 * row has no upper bound, the parameter ub is ignored. If the row is |
|
545 * an equality constraint (i.e. the corresponding auxiliary variable is |
|
546 * of fixed type), only the parameter lb is used while the parameter ub |
|
547 * is ignored. */ |
|
548 |
|
549 void glp_set_row_bnds(glp_prob *lp, int i, int type, double lb, |
|
550 double ub) |
|
551 { GLPROW *row; |
|
552 if (!(1 <= i && i <= lp->m)) |
|
553 xerror("glp_set_row_bnds: i = %d; row number out of range\n", |
|
554 i); |
|
555 row = lp->row[i]; |
|
556 row->type = type; |
|
557 switch (type) |
|
558 { case GLP_FR: |
|
559 row->lb = row->ub = 0.0; |
|
560 if (row->stat != GLP_BS) row->stat = GLP_NF; |
|
561 break; |
|
562 case GLP_LO: |
|
563 row->lb = lb, row->ub = 0.0; |
|
564 if (row->stat != GLP_BS) row->stat = GLP_NL; |
|
565 break; |
|
566 case GLP_UP: |
|
567 row->lb = 0.0, row->ub = ub; |
|
568 if (row->stat != GLP_BS) row->stat = GLP_NU; |
|
569 break; |
|
570 case GLP_DB: |
|
571 row->lb = lb, row->ub = ub; |
|
572 if (!(row->stat == GLP_BS || |
|
573 row->stat == GLP_NL || row->stat == GLP_NU)) |
|
574 row->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU); |
|
575 break; |
|
576 case GLP_FX: |
|
577 row->lb = row->ub = lb; |
|
578 if (row->stat != GLP_BS) row->stat = GLP_NS; |
|
579 break; |
|
580 default: |
|
581 xerror("glp_set_row_bnds: i = %d; type = %d; invalid row ty" |
|
582 "pe\n", i, type); |
|
583 } |
|
584 return; |
|
585 } |
|
586 |
|
587 /*********************************************************************** |
|
588 * NAME |
|
589 * |
|
590 * glp_set_col_bnds - set (change) column bounds |
|
591 * |
|
592 * SYNOPSIS |
|
593 * |
|
594 * void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb, |
|
595 * double ub); |
|
596 * |
|
597 * DESCRIPTION |
|
598 * |
|
599 * The routine glp_set_col_bnds sets (changes) the type and bounds of |
|
600 * j-th column (structural variable) of the specified problem object. |
|
601 * |
|
602 * Parameters type, lb, and ub specify the type, lower bound, and upper |
|
603 * bound, respectively, as follows: |
|
604 * |
|
605 * Type Bounds Comments |
|
606 * ------------------------------------------------------ |
|
607 * GLP_FR -inf < x < +inf Free variable |
|
608 * GLP_LO lb <= x < +inf Variable with lower bound |
|
609 * GLP_UP -inf < x <= ub Variable with upper bound |
|
610 * GLP_DB lb <= x <= ub Double-bounded variable |
|
611 * GLP_FX x = lb Fixed variable |
|
612 * |
|
613 * where x is the structural variable associated with j-th column. |
|
614 * |
|
615 * If the column has no lower bound, the parameter lb is ignored. If the |
|
616 * column has no upper bound, the parameter ub is ignored. If the column |
|
617 * is of fixed type, only the parameter lb is used while the parameter |
|
618 * ub is ignored. */ |
|
619 |
|
620 void glp_set_col_bnds(glp_prob *lp, int j, int type, double lb, |
|
621 double ub) |
|
622 { GLPCOL *col; |
|
623 if (!(1 <= j && j <= lp->n)) |
|
624 xerror("glp_set_col_bnds: j = %d; column number out of range\n" |
|
625 , j); |
|
626 col = lp->col[j]; |
|
627 col->type = type; |
|
628 switch (type) |
|
629 { case GLP_FR: |
|
630 col->lb = col->ub = 0.0; |
|
631 if (col->stat != GLP_BS) col->stat = GLP_NF; |
|
632 break; |
|
633 case GLP_LO: |
|
634 col->lb = lb, col->ub = 0.0; |
|
635 if (col->stat != GLP_BS) col->stat = GLP_NL; |
|
636 break; |
|
637 case GLP_UP: |
|
638 col->lb = 0.0, col->ub = ub; |
|
639 if (col->stat != GLP_BS) col->stat = GLP_NU; |
|
640 break; |
|
641 case GLP_DB: |
|
642 col->lb = lb, col->ub = ub; |
|
643 if (!(col->stat == GLP_BS || |
|
644 col->stat == GLP_NL || col->stat == GLP_NU)) |
|
645 col->stat = (fabs(lb) <= fabs(ub) ? GLP_NL : GLP_NU); |
|
646 break; |
|
647 case GLP_FX: |
|
648 col->lb = col->ub = lb; |
|
649 if (col->stat != GLP_BS) col->stat = GLP_NS; |
|
650 break; |
|
651 default: |
|
652 xerror("glp_set_col_bnds: j = %d; type = %d; invalid column" |
|
653 " type\n", j, type); |
|
654 } |
|
655 return; |
|
656 } |
|
657 |
|
658 /*********************************************************************** |
|
659 * NAME |
|
660 * |
|
661 * glp_set_obj_coef - set (change) obj. coefficient or constant term |
|
662 * |
|
663 * SYNOPSIS |
|
664 * |
|
665 * void glp_set_obj_coef(glp_prob *lp, int j, double coef); |
|
666 * |
|
667 * DESCRIPTION |
|
668 * |
|
669 * The routine glp_set_obj_coef sets (changes) objective coefficient at |
|
670 * j-th column (structural variable) of the specified problem object. |
|
671 * |
|
672 * If the parameter j is 0, the routine sets (changes) the constant term |
|
673 * ("shift") of the objective function. */ |
|
674 |
|
675 void glp_set_obj_coef(glp_prob *lp, int j, double coef) |
|
676 { glp_tree *tree = lp->tree; |
|
677 if (tree != NULL && tree->reason != 0) |
|
678 xerror("glp_set_obj_coef: operation not allowed\n"); |
|
679 if (!(0 <= j && j <= lp->n)) |
|
680 xerror("glp_set_obj_coef: j = %d; column number out of range\n" |
|
681 , j); |
|
682 if (j == 0) |
|
683 lp->c0 = coef; |
|
684 else |
|
685 lp->col[j]->coef = coef; |
|
686 return; |
|
687 } |
|
688 |
|
689 /*********************************************************************** |
|
690 * NAME |
|
691 * |
|
692 * glp_set_mat_row - set (replace) row of the constraint matrix |
|
693 * |
|
694 * SYNOPSIS |
|
695 * |
|
696 * void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[], |
|
697 * const double val[]); |
|
698 * |
|
699 * DESCRIPTION |
|
700 * |
|
701 * The routine glp_set_mat_row stores (replaces) the contents of i-th |
|
702 * row of the constraint matrix of the specified problem object. |
|
703 * |
|
704 * Column indices and numeric values of new row elements must be placed |
|
705 * in locations ind[1], ..., ind[len] and val[1], ..., val[len], where |
|
706 * 0 <= len <= n is the new length of i-th row, n is the current number |
|
707 * of columns in the problem object. Elements with identical column |
|
708 * indices are not allowed. Zero elements are allowed, but they are not |
|
709 * stored in the constraint matrix. |
|
710 * |
|
711 * If the parameter len is zero, the parameters ind and/or val can be |
|
712 * specified as NULL. */ |
|
713 |
|
714 void glp_set_mat_row(glp_prob *lp, int i, int len, const int ind[], |
|
715 const double val[]) |
|
716 { glp_tree *tree = lp->tree; |
|
717 GLPROW *row; |
|
718 GLPCOL *col; |
|
719 GLPAIJ *aij, *next; |
|
720 int j, k; |
|
721 /* obtain pointer to i-th row */ |
|
722 if (!(1 <= i && i <= lp->m)) |
|
723 xerror("glp_set_mat_row: i = %d; row number out of range\n", |
|
724 i); |
|
725 row = lp->row[i]; |
|
726 if (tree != NULL && tree->reason != 0) |
|
727 { xassert(tree->curr != NULL); |
|
728 xassert(row->level == tree->curr->level); |
|
729 } |
|
730 /* remove all existing elements from i-th row */ |
|
731 while (row->ptr != NULL) |
|
732 { /* take next element in the row */ |
|
733 aij = row->ptr; |
|
734 /* remove the element from the row list */ |
|
735 row->ptr = aij->r_next; |
|
736 /* obtain pointer to corresponding column */ |
|
737 col = aij->col; |
|
738 /* remove the element from the column list */ |
|
739 if (aij->c_prev == NULL) |
|
740 col->ptr = aij->c_next; |
|
741 else |
|
742 aij->c_prev->c_next = aij->c_next; |
|
743 if (aij->c_next == NULL) |
|
744 ; |
|
745 else |
|
746 aij->c_next->c_prev = aij->c_prev; |
|
747 /* return the element to the memory pool */ |
|
748 dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
|
749 /* if the corresponding column is basic, invalidate the basis |
|
750 factorization */ |
|
751 if (col->stat == GLP_BS) lp->valid = 0; |
|
752 } |
|
753 /* store new contents of i-th row */ |
|
754 if (!(0 <= len && len <= lp->n)) |
|
755 xerror("glp_set_mat_row: i = %d; len = %d; invalid row length " |
|
756 "\n", i, len); |
|
757 if (len > NNZ_MAX - lp->nnz) |
|
758 xerror("glp_set_mat_row: i = %d; len = %d; too many constraint" |
|
759 " coefficients\n", i, len); |
|
760 for (k = 1; k <= len; k++) |
|
761 { /* take number j of corresponding column */ |
|
762 j = ind[k]; |
|
763 /* obtain pointer to j-th column */ |
|
764 if (!(1 <= j && j <= lp->n)) |
|
765 xerror("glp_set_mat_row: i = %d; ind[%d] = %d; column index" |
|
766 " out of range\n", i, k, j); |
|
767 col = lp->col[j]; |
|
768 /* if there is element with the same column index, it can only |
|
769 be found in the beginning of j-th column list */ |
|
770 if (col->ptr != NULL && col->ptr->row->i == i) |
|
771 xerror("glp_set_mat_row: i = %d; ind[%d] = %d; duplicate co" |
|
772 "lumn indices not allowed\n", i, k, j); |
|
773 /* create new element */ |
|
774 aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++; |
|
775 aij->row = row; |
|
776 aij->col = col; |
|
777 aij->val = val[k]; |
|
778 /* add the new element to the beginning of i-th row and j-th |
|
779 column lists */ |
|
780 aij->r_prev = NULL; |
|
781 aij->r_next = row->ptr; |
|
782 aij->c_prev = NULL; |
|
783 aij->c_next = col->ptr; |
|
784 if (aij->r_next != NULL) aij->r_next->r_prev = aij; |
|
785 if (aij->c_next != NULL) aij->c_next->c_prev = aij; |
|
786 row->ptr = col->ptr = aij; |
|
787 /* if the corresponding column is basic, invalidate the basis |
|
788 factorization */ |
|
789 if (col->stat == GLP_BS && aij->val != 0.0) lp->valid = 0; |
|
790 } |
|
791 /* remove zero elements from i-th row */ |
|
792 for (aij = row->ptr; aij != NULL; aij = next) |
|
793 { next = aij->r_next; |
|
794 if (aij->val == 0.0) |
|
795 { /* remove the element from the row list */ |
|
796 if (aij->r_prev == NULL) |
|
797 row->ptr = next; |
|
798 else |
|
799 aij->r_prev->r_next = next; |
|
800 if (next == NULL) |
|
801 ; |
|
802 else |
|
803 next->r_prev = aij->r_prev; |
|
804 /* remove the element from the column list */ |
|
805 xassert(aij->c_prev == NULL); |
|
806 aij->col->ptr = aij->c_next; |
|
807 if (aij->c_next != NULL) aij->c_next->c_prev = NULL; |
|
808 /* return the element to the memory pool */ |
|
809 dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
|
810 } |
|
811 } |
|
812 return; |
|
813 } |
|
814 |
|
815 /*********************************************************************** |
|
816 * NAME |
|
817 * |
|
818 * glp_set_mat_col - set (replace) column of the constraint matrix |
|
819 * |
|
820 * SYNOPSIS |
|
821 * |
|
822 * void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[], |
|
823 * const double val[]); |
|
824 * |
|
825 * DESCRIPTION |
|
826 * |
|
827 * The routine glp_set_mat_col stores (replaces) the contents of j-th |
|
828 * column of the constraint matrix of the specified problem object. |
|
829 * |
|
830 * Row indices and numeric values of new column elements must be placed |
|
831 * in locations ind[1], ..., ind[len] and val[1], ..., val[len], where |
|
832 * 0 <= len <= m is the new length of j-th column, m is the current |
|
833 * number of rows in the problem object. Elements with identical column |
|
834 * indices are not allowed. Zero elements are allowed, but they are not |
|
835 * stored in the constraint matrix. |
|
836 * |
|
837 * If the parameter len is zero, the parameters ind and/or val can be |
|
838 * specified as NULL. */ |
|
839 |
|
840 void glp_set_mat_col(glp_prob *lp, int j, int len, const int ind[], |
|
841 const double val[]) |
|
842 { glp_tree *tree = lp->tree; |
|
843 GLPROW *row; |
|
844 GLPCOL *col; |
|
845 GLPAIJ *aij, *next; |
|
846 int i, k; |
|
847 if (tree != NULL && tree->reason != 0) |
|
848 xerror("glp_set_mat_col: operation not allowed\n"); |
|
849 /* obtain pointer to j-th column */ |
|
850 if (!(1 <= j && j <= lp->n)) |
|
851 xerror("glp_set_mat_col: j = %d; column number out of range\n", |
|
852 j); |
|
853 col = lp->col[j]; |
|
854 /* remove all existing elements from j-th column */ |
|
855 while (col->ptr != NULL) |
|
856 { /* take next element in the column */ |
|
857 aij = col->ptr; |
|
858 /* remove the element from the column list */ |
|
859 col->ptr = aij->c_next; |
|
860 /* obtain pointer to corresponding row */ |
|
861 row = aij->row; |
|
862 /* remove the element from the row list */ |
|
863 if (aij->r_prev == NULL) |
|
864 row->ptr = aij->r_next; |
|
865 else |
|
866 aij->r_prev->r_next = aij->r_next; |
|
867 if (aij->r_next == NULL) |
|
868 ; |
|
869 else |
|
870 aij->r_next->r_prev = aij->r_prev; |
|
871 /* return the element to the memory pool */ |
|
872 dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
|
873 } |
|
874 /* store new contents of j-th column */ |
|
875 if (!(0 <= len && len <= lp->m)) |
|
876 xerror("glp_set_mat_col: j = %d; len = %d; invalid column leng" |
|
877 "th\n", j, len); |
|
878 if (len > NNZ_MAX - lp->nnz) |
|
879 xerror("glp_set_mat_col: j = %d; len = %d; too many constraint" |
|
880 " coefficients\n", j, len); |
|
881 for (k = 1; k <= len; k++) |
|
882 { /* take number i of corresponding row */ |
|
883 i = ind[k]; |
|
884 /* obtain pointer to i-th row */ |
|
885 if (!(1 <= i && i <= lp->m)) |
|
886 xerror("glp_set_mat_col: j = %d; ind[%d] = %d; row index ou" |
|
887 "t of range\n", j, k, i); |
|
888 row = lp->row[i]; |
|
889 /* if there is element with the same row index, it can only be |
|
890 found in the beginning of i-th row list */ |
|
891 if (row->ptr != NULL && row->ptr->col->j == j) |
|
892 xerror("glp_set_mat_col: j = %d; ind[%d] = %d; duplicate ro" |
|
893 "w indices not allowed\n", j, k, i); |
|
894 /* create new element */ |
|
895 aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++; |
|
896 aij->row = row; |
|
897 aij->col = col; |
|
898 aij->val = val[k]; |
|
899 /* add the new element to the beginning of i-th row and j-th |
|
900 column lists */ |
|
901 aij->r_prev = NULL; |
|
902 aij->r_next = row->ptr; |
|
903 aij->c_prev = NULL; |
|
904 aij->c_next = col->ptr; |
|
905 if (aij->r_next != NULL) aij->r_next->r_prev = aij; |
|
906 if (aij->c_next != NULL) aij->c_next->c_prev = aij; |
|
907 row->ptr = col->ptr = aij; |
|
908 } |
|
909 /* remove zero elements from j-th column */ |
|
910 for (aij = col->ptr; aij != NULL; aij = next) |
|
911 { next = aij->c_next; |
|
912 if (aij->val == 0.0) |
|
913 { /* remove the element from the row list */ |
|
914 xassert(aij->r_prev == NULL); |
|
915 aij->row->ptr = aij->r_next; |
|
916 if (aij->r_next != NULL) aij->r_next->r_prev = NULL; |
|
917 /* remove the element from the column list */ |
|
918 if (aij->c_prev == NULL) |
|
919 col->ptr = next; |
|
920 else |
|
921 aij->c_prev->c_next = next; |
|
922 if (next == NULL) |
|
923 ; |
|
924 else |
|
925 next->c_prev = aij->c_prev; |
|
926 /* return the element to the memory pool */ |
|
927 dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
|
928 } |
|
929 } |
|
930 /* if j-th column is basic, invalidate the basis factorization */ |
|
931 if (col->stat == GLP_BS) lp->valid = 0; |
|
932 return; |
|
933 } |
|
934 |
|
935 /*********************************************************************** |
|
936 * NAME |
|
937 * |
|
938 * glp_load_matrix - load (replace) the whole constraint matrix |
|
939 * |
|
940 * SYNOPSIS |
|
941 * |
|
942 * void glp_load_matrix(glp_prob *lp, int ne, const int ia[], |
|
943 * const int ja[], const double ar[]); |
|
944 * |
|
945 * DESCRIPTION |
|
946 * |
|
947 * The routine glp_load_matrix loads the constraint matrix passed in |
|
948 * the arrays ia, ja, and ar into the specified problem object. Before |
|
949 * loading the current contents of the constraint matrix is destroyed. |
|
950 * |
|
951 * Constraint coefficients (elements of the constraint matrix) must be |
|
952 * specified as triplets (ia[k], ja[k], ar[k]) for k = 1, ..., ne, |
|
953 * where ia[k] is the row index, ja[k] is the column index, ar[k] is a |
|
954 * numeric value of corresponding constraint coefficient. The parameter |
|
955 * ne specifies the total number of (non-zero) elements in the matrix |
|
956 * to be loaded. Coefficients with identical indices are not allowed. |
|
957 * Zero coefficients are allowed, however, they are not stored in the |
|
958 * constraint matrix. |
|
959 * |
|
960 * If the parameter ne is zero, the parameters ia, ja, and ar can be |
|
961 * specified as NULL. */ |
|
962 |
|
963 void glp_load_matrix(glp_prob *lp, int ne, const int ia[], |
|
964 const int ja[], const double ar[]) |
|
965 { glp_tree *tree = lp->tree; |
|
966 GLPROW *row; |
|
967 GLPCOL *col; |
|
968 GLPAIJ *aij, *next; |
|
969 int i, j, k; |
|
970 if (tree != NULL && tree->reason != 0) |
|
971 xerror("glp_load_matrix: operation not allowed\n"); |
|
972 /* clear the constraint matrix */ |
|
973 for (i = 1; i <= lp->m; i++) |
|
974 { row = lp->row[i]; |
|
975 while (row->ptr != NULL) |
|
976 { aij = row->ptr; |
|
977 row->ptr = aij->r_next; |
|
978 dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
|
979 } |
|
980 } |
|
981 xassert(lp->nnz == 0); |
|
982 for (j = 1; j <= lp->n; j++) lp->col[j]->ptr = NULL; |
|
983 /* load the new contents of the constraint matrix and build its |
|
984 row lists */ |
|
985 if (ne < 0) |
|
986 xerror("glp_load_matrix: ne = %d; invalid number of constraint" |
|
987 " coefficients\n", ne); |
|
988 if (ne > NNZ_MAX) |
|
989 xerror("glp_load_matrix: ne = %d; too many constraint coeffici" |
|
990 "ents\n", ne); |
|
991 for (k = 1; k <= ne; k++) |
|
992 { /* take indices of new element */ |
|
993 i = ia[k], j = ja[k]; |
|
994 /* obtain pointer to i-th row */ |
|
995 if (!(1 <= i && i <= lp->m)) |
|
996 xerror("glp_load_matrix: ia[%d] = %d; row index out of rang" |
|
997 "e\n", k, i); |
|
998 row = lp->row[i]; |
|
999 /* obtain pointer to j-th column */ |
|
1000 if (!(1 <= j && j <= lp->n)) |
|
1001 xerror("glp_load_matrix: ja[%d] = %d; column index out of r" |
|
1002 "ange\n", k, j); |
|
1003 col = lp->col[j]; |
|
1004 /* create new element */ |
|
1005 aij = dmp_get_atom(lp->pool, sizeof(GLPAIJ)), lp->nnz++; |
|
1006 aij->row = row; |
|
1007 aij->col = col; |
|
1008 aij->val = ar[k]; |
|
1009 /* add the new element to the beginning of i-th row list */ |
|
1010 aij->r_prev = NULL; |
|
1011 aij->r_next = row->ptr; |
|
1012 if (aij->r_next != NULL) aij->r_next->r_prev = aij; |
|
1013 row->ptr = aij; |
|
1014 } |
|
1015 xassert(lp->nnz == ne); |
|
1016 /* build column lists of the constraint matrix and check elements |
|
1017 with identical indices */ |
|
1018 for (i = 1; i <= lp->m; i++) |
|
1019 { for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next) |
|
1020 { /* obtain pointer to corresponding column */ |
|
1021 col = aij->col; |
|
1022 /* if there is element with identical indices, it can only |
|
1023 be found in the beginning of j-th column list */ |
|
1024 if (col->ptr != NULL && col->ptr->row->i == i) |
|
1025 { for (k = 1; k <= ne; k++) |
|
1026 if (ia[k] == i && ja[k] == col->j) break; |
|
1027 xerror("glp_load_mat: ia[%d] = %d; ja[%d] = %d; duplicat" |
|
1028 "e indices not allowed\n", k, i, k, col->j); |
|
1029 } |
|
1030 /* add the element to the beginning of j-th column list */ |
|
1031 aij->c_prev = NULL; |
|
1032 aij->c_next = col->ptr; |
|
1033 if (aij->c_next != NULL) aij->c_next->c_prev = aij; |
|
1034 col->ptr = aij; |
|
1035 } |
|
1036 } |
|
1037 /* remove zero elements from the constraint matrix */ |
|
1038 for (i = 1; i <= lp->m; i++) |
|
1039 { row = lp->row[i]; |
|
1040 for (aij = row->ptr; aij != NULL; aij = next) |
|
1041 { next = aij->r_next; |
|
1042 if (aij->val == 0.0) |
|
1043 { /* remove the element from the row list */ |
|
1044 if (aij->r_prev == NULL) |
|
1045 row->ptr = next; |
|
1046 else |
|
1047 aij->r_prev->r_next = next; |
|
1048 if (next == NULL) |
|
1049 ; |
|
1050 else |
|
1051 next->r_prev = aij->r_prev; |
|
1052 /* remove the element from the column list */ |
|
1053 if (aij->c_prev == NULL) |
|
1054 aij->col->ptr = aij->c_next; |
|
1055 else |
|
1056 aij->c_prev->c_next = aij->c_next; |
|
1057 if (aij->c_next == NULL) |
|
1058 ; |
|
1059 else |
|
1060 aij->c_next->c_prev = aij->c_prev; |
|
1061 /* return the element to the memory pool */ |
|
1062 dmp_free_atom(lp->pool, aij, sizeof(GLPAIJ)), lp->nnz--; |
|
1063 } |
|
1064 } |
|
1065 } |
|
1066 /* invalidate the basis factorization */ |
|
1067 lp->valid = 0; |
|
1068 return; |
|
1069 } |
|
1070 |
|
1071 /*********************************************************************** |
|
1072 * NAME |
|
1073 * |
|
1074 * glp_check_dup - check for duplicate elements in sparse matrix |
|
1075 * |
|
1076 * SYNOPSIS |
|
1077 * |
|
1078 * int glp_check_dup(int m, int n, int ne, const int ia[], |
|
1079 * const int ja[]); |
|
1080 * |
|
1081 * DESCRIPTION |
|
1082 * |
|
1083 * The routine glp_check_dup checks for duplicate elements (that is, |
|
1084 * elements with identical indices) in a sparse matrix specified in the |
|
1085 * coordinate format. |
|
1086 * |
|
1087 * The parameters m and n specifies, respectively, the number of rows |
|
1088 * and columns in the matrix, m >= 0, n >= 0. |
|
1089 * |
|
1090 * The parameter ne specifies the number of (structurally) non-zero |
|
1091 * elements in the matrix, ne >= 0. |
|
1092 * |
|
1093 * Elements of the matrix are specified as doublets (ia[k],ja[k]) for |
|
1094 * k = 1,...,ne, where ia[k] is a row index, ja[k] is a column index. |
|
1095 * |
|
1096 * The routine glp_check_dup can be used prior to a call to the routine |
|
1097 * glp_load_matrix to check that the constraint matrix to be loaded has |
|
1098 * no duplicate elements. |
|
1099 * |
|
1100 * RETURNS |
|
1101 * |
|
1102 * The routine glp_check_dup returns one of the following values: |
|
1103 * |
|
1104 * 0 - the matrix has no duplicate elements; |
|
1105 * |
|
1106 * -k - indices ia[k] or/and ja[k] are out of range; |
|
1107 * |
|
1108 * +k - element (ia[k],ja[k]) is duplicate. */ |
|
1109 |
|
1110 int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[]) |
|
1111 { int i, j, k, *ptr, *next, ret; |
|
1112 char *flag; |
|
1113 if (m < 0) |
|
1114 xerror("glp_check_dup: m = %d; invalid parameter\n"); |
|
1115 if (n < 0) |
|
1116 xerror("glp_check_dup: n = %d; invalid parameter\n"); |
|
1117 if (ne < 0) |
|
1118 xerror("glp_check_dup: ne = %d; invalid parameter\n"); |
|
1119 if (ne > 0 && ia == NULL) |
|
1120 xerror("glp_check_dup: ia = %p; invalid parameter\n", ia); |
|
1121 if (ne > 0 && ja == NULL) |
|
1122 xerror("glp_check_dup: ja = %p; invalid parameter\n", ja); |
|
1123 for (k = 1; k <= ne; k++) |
|
1124 { i = ia[k], j = ja[k]; |
|
1125 if (!(1 <= i && i <= m && 1 <= j && j <= n)) |
|
1126 { ret = -k; |
|
1127 goto done; |
|
1128 } |
|
1129 } |
|
1130 if (m == 0 || n == 0) |
|
1131 { ret = 0; |
|
1132 goto done; |
|
1133 } |
|
1134 /* allocate working arrays */ |
|
1135 ptr = xcalloc(1+m, sizeof(int)); |
|
1136 next = xcalloc(1+ne, sizeof(int)); |
|
1137 flag = xcalloc(1+n, sizeof(char)); |
|
1138 /* build row lists */ |
|
1139 for (i = 1; i <= m; i++) |
|
1140 ptr[i] = 0; |
|
1141 for (k = 1; k <= ne; k++) |
|
1142 { i = ia[k]; |
|
1143 next[k] = ptr[i]; |
|
1144 ptr[i] = k; |
|
1145 } |
|
1146 /* clear column flags */ |
|
1147 for (j = 1; j <= n; j++) |
|
1148 flag[j] = 0; |
|
1149 /* check for duplicate elements */ |
|
1150 for (i = 1; i <= m; i++) |
|
1151 { for (k = ptr[i]; k != 0; k = next[k]) |
|
1152 { j = ja[k]; |
|
1153 if (flag[j]) |
|
1154 { /* find first element (i,j) */ |
|
1155 for (k = 1; k <= ne; k++) |
|
1156 if (ia[k] == i && ja[k] == j) break; |
|
1157 xassert(k <= ne); |
|
1158 /* find next (duplicate) element (i,j) */ |
|
1159 for (k++; k <= ne; k++) |
|
1160 if (ia[k] == i && ja[k] == j) break; |
|
1161 xassert(k <= ne); |
|
1162 ret = +k; |
|
1163 goto skip; |
|
1164 } |
|
1165 flag[j] = 1; |
|
1166 } |
|
1167 /* clear column flags */ |
|
1168 for (k = ptr[i]; k != 0; k = next[k]) |
|
1169 flag[ja[k]] = 0; |
|
1170 } |
|
1171 /* no duplicate element found */ |
|
1172 ret = 0; |
|
1173 skip: /* free working arrays */ |
|
1174 xfree(ptr); |
|
1175 xfree(next); |
|
1176 xfree(flag); |
|
1177 done: return ret; |
|
1178 } |
|
1179 |
|
1180 /*********************************************************************** |
|
1181 * NAME |
|
1182 * |
|
1183 * glp_sort_matrix - sort elements of the constraint matrix |
|
1184 * |
|
1185 * SYNOPSIS |
|
1186 * |
|
1187 * void glp_sort_matrix(glp_prob *P); |
|
1188 * |
|
1189 * DESCRIPTION |
|
1190 * |
|
1191 * The routine glp_sort_matrix sorts elements of the constraint matrix |
|
1192 * rebuilding its row and column linked lists. On exit from the routine |
|
1193 * the constraint matrix is not changed, however, elements in the row |
|
1194 * linked lists become ordered by ascending column indices, and the |
|
1195 * elements in the column linked lists become ordered by ascending row |
|
1196 * indices. */ |
|
1197 |
|
1198 void glp_sort_matrix(glp_prob *P) |
|
1199 { GLPAIJ *aij; |
|
1200 int i, j; |
|
1201 if (P == NULL || P->magic != GLP_PROB_MAGIC) |
|
1202 xerror("glp_sort_matrix: P = %p; invalid problem object\n", |
|
1203 P); |
|
1204 /* rebuild row linked lists */ |
|
1205 for (i = P->m; i >= 1; i--) |
|
1206 P->row[i]->ptr = NULL; |
|
1207 for (j = P->n; j >= 1; j--) |
|
1208 { for (aij = P->col[j]->ptr; aij != NULL; aij = aij->c_next) |
|
1209 { i = aij->row->i; |
|
1210 aij->r_prev = NULL; |
|
1211 aij->r_next = P->row[i]->ptr; |
|
1212 if (aij->r_next != NULL) aij->r_next->r_prev = aij; |
|
1213 P->row[i]->ptr = aij; |
|
1214 } |
|
1215 } |
|
1216 /* rebuild column linked lists */ |
|
1217 for (j = P->n; j >= 1; j--) |
|
1218 P->col[j]->ptr = NULL; |
|
1219 for (i = P->m; i >= 1; i--) |
|
1220 { for (aij = P->row[i]->ptr; aij != NULL; aij = aij->r_next) |
|
1221 { j = aij->col->j; |
|
1222 aij->c_prev = NULL; |
|
1223 aij->c_next = P->col[j]->ptr; |
|
1224 if (aij->c_next != NULL) aij->c_next->c_prev = aij; |
|
1225 P->col[j]->ptr = aij; |
|
1226 } |
|
1227 } |
|
1228 return; |
|
1229 } |
|
1230 |
|
1231 /*********************************************************************** |
|
1232 * NAME |
|
1233 * |
|
1234 * glp_del_rows - delete rows from problem object |
|
1235 * |
|
1236 * SYNOPSIS |
|
1237 * |
|
1238 * void glp_del_rows(glp_prob *lp, int nrs, const int num[]); |
|
1239 * |
|
1240 * DESCRIPTION |
|
1241 * |
|
1242 * The routine glp_del_rows deletes rows from the specified problem |
|
1243 * object. Ordinal numbers of rows to be deleted should be placed in |
|
1244 * locations num[1], ..., num[nrs], where nrs > 0. |
|
1245 * |
|
1246 * Note that deleting rows involves changing ordinal numbers of other |
|
1247 * rows remaining in the problem object. New ordinal numbers of the |
|
1248 * remaining rows are assigned under the assumption that the original |
|
1249 * order of rows is not changed. */ |
|
1250 |
|
1251 void glp_del_rows(glp_prob *lp, int nrs, const int num[]) |
|
1252 { glp_tree *tree = lp->tree; |
|
1253 GLPROW *row; |
|
1254 int i, k, m_new; |
|
1255 /* mark rows to be deleted */ |
|
1256 if (!(1 <= nrs && nrs <= lp->m)) |
|
1257 xerror("glp_del_rows: nrs = %d; invalid number of rows\n", |
|
1258 nrs); |
|
1259 for (k = 1; k <= nrs; k++) |
|
1260 { /* take the number of row to be deleted */ |
|
1261 i = num[k]; |
|
1262 /* obtain pointer to i-th row */ |
|
1263 if (!(1 <= i && i <= lp->m)) |
|
1264 xerror("glp_del_rows: num[%d] = %d; row number out of range" |
|
1265 "\n", k, i); |
|
1266 row = lp->row[i]; |
|
1267 if (tree != NULL && tree->reason != 0) |
|
1268 { if (!(tree->reason == GLP_IROWGEN || |
|
1269 tree->reason == GLP_ICUTGEN)) |
|
1270 xerror("glp_del_rows: operation not allowed\n"); |
|
1271 xassert(tree->curr != NULL); |
|
1272 if (row->level != tree->curr->level) |
|
1273 xerror("glp_del_rows: num[%d] = %d; invalid attempt to d" |
|
1274 "elete row created not in current subproblem\n", k,i); |
|
1275 if (row->stat != GLP_BS) |
|
1276 xerror("glp_del_rows: num[%d] = %d; invalid attempt to d" |
|
1277 "elete active row (constraint)\n", k, i); |
|
1278 tree->reinv = 1; |
|
1279 } |
|
1280 /* check that the row is not marked yet */ |
|
1281 if (row->i == 0) |
|
1282 xerror("glp_del_rows: num[%d] = %d; duplicate row numbers n" |
|
1283 "ot allowed\n", k, i); |
|
1284 /* erase symbolic name assigned to the row */ |
|
1285 glp_set_row_name(lp, i, NULL); |
|
1286 xassert(row->node == NULL); |
|
1287 /* erase corresponding row of the constraint matrix */ |
|
1288 glp_set_mat_row(lp, i, 0, NULL, NULL); |
|
1289 xassert(row->ptr == NULL); |
|
1290 /* mark the row to be deleted */ |
|
1291 row->i = 0; |
|
1292 } |
|
1293 /* delete all marked rows from the row list */ |
|
1294 m_new = 0; |
|
1295 for (i = 1; i <= lp->m; i++) |
|
1296 { /* obtain pointer to i-th row */ |
|
1297 row = lp->row[i]; |
|
1298 /* check if the row is marked */ |
|
1299 if (row->i == 0) |
|
1300 { /* it is marked, delete it */ |
|
1301 dmp_free_atom(lp->pool, row, sizeof(GLPROW)); |
|
1302 } |
|
1303 else |
|
1304 { /* it is not marked; keep it */ |
|
1305 row->i = ++m_new; |
|
1306 lp->row[row->i] = row; |
|
1307 } |
|
1308 } |
|
1309 /* set new number of rows */ |
|
1310 lp->m = m_new; |
|
1311 /* invalidate the basis factorization */ |
|
1312 lp->valid = 0; |
|
1313 return; |
|
1314 } |
|
1315 |
|
1316 /*********************************************************************** |
|
1317 * NAME |
|
1318 * |
|
1319 * glp_del_cols - delete columns from problem object |
|
1320 * |
|
1321 * SYNOPSIS |
|
1322 * |
|
1323 * void glp_del_cols(glp_prob *lp, int ncs, const int num[]); |
|
1324 * |
|
1325 * DESCRIPTION |
|
1326 * |
|
1327 * The routine glp_del_cols deletes columns from the specified problem |
|
1328 * object. Ordinal numbers of columns to be deleted should be placed in |
|
1329 * locations num[1], ..., num[ncs], where ncs > 0. |
|
1330 * |
|
1331 * Note that deleting columns involves changing ordinal numbers of |
|
1332 * other columns remaining in the problem object. New ordinal numbers |
|
1333 * of the remaining columns are assigned under the assumption that the |
|
1334 * original order of columns is not changed. */ |
|
1335 |
|
1336 void glp_del_cols(glp_prob *lp, int ncs, const int num[]) |
|
1337 { glp_tree *tree = lp->tree; |
|
1338 GLPCOL *col; |
|
1339 int j, k, n_new; |
|
1340 if (tree != NULL && tree->reason != 0) |
|
1341 xerror("glp_del_cols: operation not allowed\n"); |
|
1342 /* mark columns to be deleted */ |
|
1343 if (!(1 <= ncs && ncs <= lp->n)) |
|
1344 xerror("glp_del_cols: ncs = %d; invalid number of columns\n", |
|
1345 ncs); |
|
1346 for (k = 1; k <= ncs; k++) |
|
1347 { /* take the number of column to be deleted */ |
|
1348 j = num[k]; |
|
1349 /* obtain pointer to j-th column */ |
|
1350 if (!(1 <= j && j <= lp->n)) |
|
1351 xerror("glp_del_cols: num[%d] = %d; column number out of ra" |
|
1352 "nge", k, j); |
|
1353 col = lp->col[j]; |
|
1354 /* check that the column is not marked yet */ |
|
1355 if (col->j == 0) |
|
1356 xerror("glp_del_cols: num[%d] = %d; duplicate column number" |
|
1357 "s not allowed\n", k, j); |
|
1358 /* erase symbolic name assigned to the column */ |
|
1359 glp_set_col_name(lp, j, NULL); |
|
1360 xassert(col->node == NULL); |
|
1361 /* erase corresponding column of the constraint matrix */ |
|
1362 glp_set_mat_col(lp, j, 0, NULL, NULL); |
|
1363 xassert(col->ptr == NULL); |
|
1364 /* mark the column to be deleted */ |
|
1365 col->j = 0; |
|
1366 /* if it is basic, invalidate the basis factorization */ |
|
1367 if (col->stat == GLP_BS) lp->valid = 0; |
|
1368 } |
|
1369 /* delete all marked columns from the column list */ |
|
1370 n_new = 0; |
|
1371 for (j = 1; j <= lp->n; j++) |
|
1372 { /* obtain pointer to j-th column */ |
|
1373 col = lp->col[j]; |
|
1374 /* check if the column is marked */ |
|
1375 if (col->j == 0) |
|
1376 { /* it is marked; delete it */ |
|
1377 dmp_free_atom(lp->pool, col, sizeof(GLPCOL)); |
|
1378 } |
|
1379 else |
|
1380 { /* it is not marked; keep it */ |
|
1381 col->j = ++n_new; |
|
1382 lp->col[col->j] = col; |
|
1383 } |
|
1384 } |
|
1385 /* set new number of columns */ |
|
1386 lp->n = n_new; |
|
1387 /* if the basis header is still valid, adjust it */ |
|
1388 if (lp->valid) |
|
1389 { int m = lp->m; |
|
1390 int *head = lp->head; |
|
1391 for (j = 1; j <= n_new; j++) |
|
1392 { k = lp->col[j]->bind; |
|
1393 if (k != 0) |
|
1394 { xassert(1 <= k && k <= m); |
|
1395 head[k] = m + j; |
|
1396 } |
|
1397 } |
|
1398 } |
|
1399 return; |
|
1400 } |
|
1401 |
|
1402 /*********************************************************************** |
|
1403 * NAME |
|
1404 * |
|
1405 * glp_copy_prob - copy problem object content |
|
1406 * |
|
1407 * SYNOPSIS |
|
1408 * |
|
1409 * void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names); |
|
1410 * |
|
1411 * DESCRIPTION |
|
1412 * |
|
1413 * The routine glp_copy_prob copies the content of the problem object |
|
1414 * prob to the problem object dest. |
|
1415 * |
|
1416 * The parameter names is a flag. If it is non-zero, the routine also |
|
1417 * copies all symbolic names; otherwise, if it is zero, symbolic names |
|
1418 * are not copied. */ |
|
1419 |
|
1420 void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names) |
|
1421 { glp_tree *tree = dest->tree; |
|
1422 glp_bfcp bfcp; |
|
1423 int i, j, len, *ind; |
|
1424 double *val; |
|
1425 if (tree != NULL && tree->reason != 0) |
|
1426 xerror("glp_copy_prob: operation not allowed\n"); |
|
1427 if (dest == prob) |
|
1428 xerror("glp_copy_prob: copying problem object to itself not al" |
|
1429 "lowed\n"); |
|
1430 if (!(names == GLP_ON || names == GLP_OFF)) |
|
1431 xerror("glp_copy_prob: names = %d; invalid parameter\n", |
|
1432 names); |
|
1433 glp_erase_prob(dest); |
|
1434 if (names && prob->name != NULL) |
|
1435 glp_set_prob_name(dest, prob->name); |
|
1436 if (names && prob->obj != NULL) |
|
1437 glp_set_obj_name(dest, prob->obj); |
|
1438 dest->dir = prob->dir; |
|
1439 dest->c0 = prob->c0; |
|
1440 if (prob->m > 0) |
|
1441 glp_add_rows(dest, prob->m); |
|
1442 if (prob->n > 0) |
|
1443 glp_add_cols(dest, prob->n); |
|
1444 glp_get_bfcp(prob, &bfcp); |
|
1445 glp_set_bfcp(dest, &bfcp); |
|
1446 dest->pbs_stat = prob->pbs_stat; |
|
1447 dest->dbs_stat = prob->dbs_stat; |
|
1448 dest->obj_val = prob->obj_val; |
|
1449 dest->some = prob->some; |
|
1450 dest->ipt_stat = prob->ipt_stat; |
|
1451 dest->ipt_obj = prob->ipt_obj; |
|
1452 dest->mip_stat = prob->mip_stat; |
|
1453 dest->mip_obj = prob->mip_obj; |
|
1454 for (i = 1; i <= prob->m; i++) |
|
1455 { GLPROW *to = dest->row[i]; |
|
1456 GLPROW *from = prob->row[i]; |
|
1457 if (names && from->name != NULL) |
|
1458 glp_set_row_name(dest, i, from->name); |
|
1459 to->type = from->type; |
|
1460 to->lb = from->lb; |
|
1461 to->ub = from->ub; |
|
1462 to->rii = from->rii; |
|
1463 to->stat = from->stat; |
|
1464 to->prim = from->prim; |
|
1465 to->dual = from->dual; |
|
1466 to->pval = from->pval; |
|
1467 to->dval = from->dval; |
|
1468 to->mipx = from->mipx; |
|
1469 } |
|
1470 ind = xcalloc(1+prob->m, sizeof(int)); |
|
1471 val = xcalloc(1+prob->m, sizeof(double)); |
|
1472 for (j = 1; j <= prob->n; j++) |
|
1473 { GLPCOL *to = dest->col[j]; |
|
1474 GLPCOL *from = prob->col[j]; |
|
1475 if (names && from->name != NULL) |
|
1476 glp_set_col_name(dest, j, from->name); |
|
1477 to->kind = from->kind; |
|
1478 to->type = from->type; |
|
1479 to->lb = from->lb; |
|
1480 to->ub = from->ub; |
|
1481 to->coef = from->coef; |
|
1482 len = glp_get_mat_col(prob, j, ind, val); |
|
1483 glp_set_mat_col(dest, j, len, ind, val); |
|
1484 to->sjj = from->sjj; |
|
1485 to->stat = from->stat; |
|
1486 to->prim = from->prim; |
|
1487 to->dual = from->dual; |
|
1488 to->pval = from->pval; |
|
1489 to->dval = from->dval; |
|
1490 to->mipx = from->mipx; |
|
1491 } |
|
1492 xfree(ind); |
|
1493 xfree(val); |
|
1494 return; |
|
1495 } |
|
1496 |
|
1497 /*********************************************************************** |
|
1498 * NAME |
|
1499 * |
|
1500 * glp_erase_prob - erase problem object content |
|
1501 * |
|
1502 * SYNOPSIS |
|
1503 * |
|
1504 * void glp_erase_prob(glp_prob *lp); |
|
1505 * |
|
1506 * DESCRIPTION |
|
1507 * |
|
1508 * The routine glp_erase_prob erases the content of the specified |
|
1509 * problem object. The effect of this operation is the same as if the |
|
1510 * problem object would be deleted with the routine glp_delete_prob and |
|
1511 * then created anew with the routine glp_create_prob, with exception |
|
1512 * that the handle (pointer) to the problem object remains valid. */ |
|
1513 |
|
1514 static void delete_prob(glp_prob *lp); |
|
1515 |
|
1516 void glp_erase_prob(glp_prob *lp) |
|
1517 { glp_tree *tree = lp->tree; |
|
1518 if (tree != NULL && tree->reason != 0) |
|
1519 xerror("glp_erase_prob: operation not allowed\n"); |
|
1520 delete_prob(lp); |
|
1521 create_prob(lp); |
|
1522 return; |
|
1523 } |
|
1524 |
|
1525 /*********************************************************************** |
|
1526 * NAME |
|
1527 * |
|
1528 * glp_delete_prob - delete problem object |
|
1529 * |
|
1530 * SYNOPSIS |
|
1531 * |
|
1532 * void glp_delete_prob(glp_prob *lp); |
|
1533 * |
|
1534 * DESCRIPTION |
|
1535 * |
|
1536 * The routine glp_delete_prob deletes the specified problem object and |
|
1537 * frees all the memory allocated to it. */ |
|
1538 |
|
1539 static void delete_prob(glp_prob *lp) |
|
1540 { lp->magic = 0x3F3F3F3F; |
|
1541 dmp_delete_pool(lp->pool); |
|
1542 #if 0 /* 17/XI-2009 */ |
|
1543 xfree(lp->cps); |
|
1544 #else |
|
1545 if (lp->parms != NULL) xfree(lp->parms); |
|
1546 #endif |
|
1547 xassert(lp->tree == NULL); |
|
1548 #if 0 |
|
1549 if (lp->cwa != NULL) xfree(lp->cwa); |
|
1550 #endif |
|
1551 xfree(lp->row); |
|
1552 xfree(lp->col); |
|
1553 if (lp->r_tree != NULL) avl_delete_tree(lp->r_tree); |
|
1554 if (lp->c_tree != NULL) avl_delete_tree(lp->c_tree); |
|
1555 xfree(lp->head); |
|
1556 if (lp->bfcp != NULL) xfree(lp->bfcp); |
|
1557 if (lp->bfd != NULL) bfd_delete_it(lp->bfd); |
|
1558 return; |
|
1559 } |
|
1560 |
|
1561 void glp_delete_prob(glp_prob *lp) |
|
1562 { glp_tree *tree = lp->tree; |
|
1563 if (tree != NULL && tree->reason != 0) |
|
1564 xerror("glp_delete_prob: operation not allowed\n"); |
|
1565 delete_prob(lp); |
|
1566 xfree(lp); |
|
1567 return; |
|
1568 } |
|
1569 |
|
1570 /* eof */ |