|
1 /* glpipm.c */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpipm.h" |
|
26 #include "glpmat.h" |
|
27 |
|
28 #define ITER_MAX 100 |
|
29 /* maximal number of iterations */ |
|
30 |
|
31 struct csa |
|
32 { /* common storage area */ |
|
33 /*--------------------------------------------------------------*/ |
|
34 /* LP data */ |
|
35 int m; |
|
36 /* number of rows (equality constraints) */ |
|
37 int n; |
|
38 /* number of columns (structural variables) */ |
|
39 int *A_ptr; /* int A_ptr[1+m+1]; */ |
|
40 int *A_ind; /* int A_ind[A_ptr[m+1]]; */ |
|
41 double *A_val; /* double A_val[A_ptr[m+1]]; */ |
|
42 /* mxn-matrix A in storage-by-rows format */ |
|
43 double *b; /* double b[1+m]; */ |
|
44 /* m-vector b of right-hand sides */ |
|
45 double *c; /* double c[1+n]; */ |
|
46 /* n-vector c of objective coefficients; c[0] is constant term of |
|
47 the objective function */ |
|
48 /*--------------------------------------------------------------*/ |
|
49 /* LP solution */ |
|
50 double *x; /* double x[1+n]; */ |
|
51 double *y; /* double y[1+m]; */ |
|
52 double *z; /* double z[1+n]; */ |
|
53 /* current point in primal-dual space; the best point on exit */ |
|
54 /*--------------------------------------------------------------*/ |
|
55 /* control parameters */ |
|
56 const glp_iptcp *parm; |
|
57 /*--------------------------------------------------------------*/ |
|
58 /* working arrays and variables */ |
|
59 double *D; /* double D[1+n]; */ |
|
60 /* diagonal nxn-matrix D = X*inv(Z), where X = diag(x[j]) and |
|
61 Z = diag(z[j]) */ |
|
62 int *P; /* int P[1+m+m]; */ |
|
63 /* permutation mxm-matrix P used to minimize fill-in in Cholesky |
|
64 factorization */ |
|
65 int *S_ptr; /* int S_ptr[1+m+1]; */ |
|
66 int *S_ind; /* int S_ind[S_ptr[m+1]]; */ |
|
67 double *S_val; /* double S_val[S_ptr[m+1]]; */ |
|
68 double *S_diag; /* double S_diag[1+m]; */ |
|
69 /* symmetric mxm-matrix S = P*A*D*A'*P' whose upper triangular |
|
70 part without diagonal elements is stored in S_ptr, S_ind, and |
|
71 S_val in storage-by-rows format, diagonal elements are stored |
|
72 in S_diag */ |
|
73 int *U_ptr; /* int U_ptr[1+m+1]; */ |
|
74 int *U_ind; /* int U_ind[U_ptr[m+1]]; */ |
|
75 double *U_val; /* double U_val[U_ptr[m+1]]; */ |
|
76 double *U_diag; /* double U_diag[1+m]; */ |
|
77 /* upper triangular mxm-matrix U defining Cholesky factorization |
|
78 S = U'*U; its non-diagonal elements are stored in U_ptr, U_ind, |
|
79 U_val in storage-by-rows format, diagonal elements are stored |
|
80 in U_diag */ |
|
81 int iter; |
|
82 /* iteration number (0, 1, 2, ...); iter = 0 corresponds to the |
|
83 initial point */ |
|
84 double obj; |
|
85 /* current value of the objective function */ |
|
86 double rpi; |
|
87 /* relative primal infeasibility rpi = ||A*x-b||/(1+||b||) */ |
|
88 double rdi; |
|
89 /* relative dual infeasibility rdi = ||A'*y+z-c||/(1+||c||) */ |
|
90 double gap; |
|
91 /* primal-dual gap = |c'*x-b'*y|/(1+|c'*x|) which is a relative |
|
92 difference between primal and dual objective functions */ |
|
93 double phi; |
|
94 /* merit function phi = ||A*x-b||/max(1,||b||) + |
|
95 + ||A'*y+z-c||/max(1,||c||) + |
|
96 + |c'*x-b'*y|/max(1,||b||,||c||) */ |
|
97 double mu; |
|
98 /* duality measure mu = x'*z/n (used as barrier parameter) */ |
|
99 double rmu; |
|
100 /* rmu = max(||A*x-b||,||A'*y+z-c||)/mu */ |
|
101 double rmu0; |
|
102 /* the initial value of rmu on iteration 0 */ |
|
103 double *phi_min; /* double phi_min[1+ITER_MAX]; */ |
|
104 /* phi_min[k] = min(phi[k]), where phi[k] is the value of phi on |
|
105 k-th iteration, 0 <= k <= iter */ |
|
106 int best_iter; |
|
107 /* iteration number, on which the value of phi reached its best |
|
108 (minimal) value */ |
|
109 double *best_x; /* double best_x[1+n]; */ |
|
110 double *best_y; /* double best_y[1+m]; */ |
|
111 double *best_z; /* double best_z[1+n]; */ |
|
112 /* best point (in the sense of the merit function phi) which has |
|
113 been reached on iteration iter_best */ |
|
114 double best_obj; |
|
115 /* objective value at the best point */ |
|
116 double *dx_aff; /* double dx_aff[1+n]; */ |
|
117 double *dy_aff; /* double dy_aff[1+m]; */ |
|
118 double *dz_aff; /* double dz_aff[1+n]; */ |
|
119 /* affine scaling direction */ |
|
120 double alfa_aff_p, alfa_aff_d; |
|
121 /* maximal primal and dual stepsizes in affine scaling direction, |
|
122 on which x and z are still non-negative */ |
|
123 double mu_aff; |
|
124 /* duality measure mu_aff = x_aff'*z_aff/n in the boundary point |
|
125 x_aff' = x+alfa_aff_p*dx_aff, z_aff' = z+alfa_aff_d*dz_aff */ |
|
126 double sigma; |
|
127 /* Mehrotra's heuristic parameter (0 <= sigma <= 1) */ |
|
128 double *dx_cc; /* double dx_cc[1+n]; */ |
|
129 double *dy_cc; /* double dy_cc[1+m]; */ |
|
130 double *dz_cc; /* double dz_cc[1+n]; */ |
|
131 /* centering corrector direction */ |
|
132 double *dx; /* double dx[1+n]; */ |
|
133 double *dy; /* double dy[1+m]; */ |
|
134 double *dz; /* double dz[1+n]; */ |
|
135 /* final combined direction dx = dx_aff+dx_cc, dy = dy_aff+dy_cc, |
|
136 dz = dz_aff+dz_cc */ |
|
137 double alfa_max_p; |
|
138 double alfa_max_d; |
|
139 /* maximal primal and dual stepsizes in combined direction, on |
|
140 which x and z are still non-negative */ |
|
141 }; |
|
142 |
|
143 /*********************************************************************** |
|
144 * initialize - allocate and initialize common storage area |
|
145 * |
|
146 * This routine allocates and initializes the common storage area (CSA) |
|
147 * used by interior-point method routines. */ |
|
148 |
|
149 static void initialize(struct csa *csa) |
|
150 { int m = csa->m; |
|
151 int n = csa->n; |
|
152 int i; |
|
153 if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
154 xprintf("Matrix A has %d non-zeros\n", csa->A_ptr[m+1]-1); |
|
155 csa->D = xcalloc(1+n, sizeof(double)); |
|
156 /* P := I */ |
|
157 csa->P = xcalloc(1+m+m, sizeof(int)); |
|
158 for (i = 1; i <= m; i++) csa->P[i] = csa->P[m+i] = i; |
|
159 /* S := A*A', symbolically */ |
|
160 csa->S_ptr = xcalloc(1+m+1, sizeof(int)); |
|
161 csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind, |
|
162 csa->S_ptr); |
|
163 if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
164 xprintf("Matrix S = A*A' has %d non-zeros (upper triangle)\n", |
|
165 csa->S_ptr[m+1]-1 + m); |
|
166 /* determine P using specified ordering algorithm */ |
|
167 if (csa->parm->ord_alg == GLP_ORD_NONE) |
|
168 { if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
169 xprintf("Original ordering is being used\n"); |
|
170 for (i = 1; i <= m; i++) |
|
171 csa->P[i] = csa->P[m+i] = i; |
|
172 } |
|
173 else if (csa->parm->ord_alg == GLP_ORD_QMD) |
|
174 { if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
175 xprintf("Minimum degree ordering (QMD)...\n"); |
|
176 min_degree(m, csa->S_ptr, csa->S_ind, csa->P); |
|
177 } |
|
178 else if (csa->parm->ord_alg == GLP_ORD_AMD) |
|
179 { if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
180 xprintf("Approximate minimum degree ordering (AMD)...\n"); |
|
181 amd_order1(m, csa->S_ptr, csa->S_ind, csa->P); |
|
182 } |
|
183 else if (csa->parm->ord_alg == GLP_ORD_SYMAMD) |
|
184 { if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
185 xprintf("Approximate minimum degree ordering (SYMAMD)...\n") |
|
186 ; |
|
187 symamd_ord(m, csa->S_ptr, csa->S_ind, csa->P); |
|
188 } |
|
189 else |
|
190 xassert(csa != csa); |
|
191 /* S := P*A*A'*P', symbolically */ |
|
192 xfree(csa->S_ind); |
|
193 csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind, |
|
194 csa->S_ptr); |
|
195 csa->S_val = xcalloc(csa->S_ptr[m+1], sizeof(double)); |
|
196 csa->S_diag = xcalloc(1+m, sizeof(double)); |
|
197 /* compute Cholesky factorization S = U'*U, symbolically */ |
|
198 if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
199 xprintf("Computing Cholesky factorization S = L*L'...\n"); |
|
200 csa->U_ptr = xcalloc(1+m+1, sizeof(int)); |
|
201 csa->U_ind = chol_symbolic(m, csa->S_ptr, csa->S_ind, csa->U_ptr); |
|
202 if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
203 xprintf("Matrix L has %d non-zeros\n", csa->U_ptr[m+1]-1 + m); |
|
204 csa->U_val = xcalloc(csa->U_ptr[m+1], sizeof(double)); |
|
205 csa->U_diag = xcalloc(1+m, sizeof(double)); |
|
206 csa->iter = 0; |
|
207 csa->obj = 0.0; |
|
208 csa->rpi = 0.0; |
|
209 csa->rdi = 0.0; |
|
210 csa->gap = 0.0; |
|
211 csa->phi = 0.0; |
|
212 csa->mu = 0.0; |
|
213 csa->rmu = 0.0; |
|
214 csa->rmu0 = 0.0; |
|
215 csa->phi_min = xcalloc(1+ITER_MAX, sizeof(double)); |
|
216 csa->best_iter = 0; |
|
217 csa->best_x = xcalloc(1+n, sizeof(double)); |
|
218 csa->best_y = xcalloc(1+m, sizeof(double)); |
|
219 csa->best_z = xcalloc(1+n, sizeof(double)); |
|
220 csa->best_obj = 0.0; |
|
221 csa->dx_aff = xcalloc(1+n, sizeof(double)); |
|
222 csa->dy_aff = xcalloc(1+m, sizeof(double)); |
|
223 csa->dz_aff = xcalloc(1+n, sizeof(double)); |
|
224 csa->alfa_aff_p = 0.0; |
|
225 csa->alfa_aff_d = 0.0; |
|
226 csa->mu_aff = 0.0; |
|
227 csa->sigma = 0.0; |
|
228 csa->dx_cc = xcalloc(1+n, sizeof(double)); |
|
229 csa->dy_cc = xcalloc(1+m, sizeof(double)); |
|
230 csa->dz_cc = xcalloc(1+n, sizeof(double)); |
|
231 csa->dx = csa->dx_aff; |
|
232 csa->dy = csa->dy_aff; |
|
233 csa->dz = csa->dz_aff; |
|
234 csa->alfa_max_p = 0.0; |
|
235 csa->alfa_max_d = 0.0; |
|
236 return; |
|
237 } |
|
238 |
|
239 /*********************************************************************** |
|
240 * A_by_vec - compute y = A*x |
|
241 * |
|
242 * This routine computes matrix-vector product y = A*x, where A is the |
|
243 * constraint matrix. */ |
|
244 |
|
245 static void A_by_vec(struct csa *csa, double x[], double y[]) |
|
246 { /* compute y = A*x */ |
|
247 int m = csa->m; |
|
248 int *A_ptr = csa->A_ptr; |
|
249 int *A_ind = csa->A_ind; |
|
250 double *A_val = csa->A_val; |
|
251 int i, t, beg, end; |
|
252 double temp; |
|
253 for (i = 1; i <= m; i++) |
|
254 { temp = 0.0; |
|
255 beg = A_ptr[i], end = A_ptr[i+1]; |
|
256 for (t = beg; t < end; t++) temp += A_val[t] * x[A_ind[t]]; |
|
257 y[i] = temp; |
|
258 } |
|
259 return; |
|
260 } |
|
261 |
|
262 /*********************************************************************** |
|
263 * AT_by_vec - compute y = A'*x |
|
264 * |
|
265 * This routine computes matrix-vector product y = A'*x, where A' is a |
|
266 * matrix transposed to the constraint matrix A. */ |
|
267 |
|
268 static void AT_by_vec(struct csa *csa, double x[], double y[]) |
|
269 { /* compute y = A'*x, where A' is transposed to A */ |
|
270 int m = csa->m; |
|
271 int n = csa->n; |
|
272 int *A_ptr = csa->A_ptr; |
|
273 int *A_ind = csa->A_ind; |
|
274 double *A_val = csa->A_val; |
|
275 int i, j, t, beg, end; |
|
276 double temp; |
|
277 for (j = 1; j <= n; j++) y[j] = 0.0; |
|
278 for (i = 1; i <= m; i++) |
|
279 { temp = x[i]; |
|
280 if (temp == 0.0) continue; |
|
281 beg = A_ptr[i], end = A_ptr[i+1]; |
|
282 for (t = beg; t < end; t++) y[A_ind[t]] += A_val[t] * temp; |
|
283 } |
|
284 return; |
|
285 } |
|
286 |
|
287 /*********************************************************************** |
|
288 * decomp_NE - numeric factorization of matrix S = P*A*D*A'*P' |
|
289 * |
|
290 * This routine implements numeric phase of Cholesky factorization of |
|
291 * the matrix S = P*A*D*A'*P', which is a permuted matrix of the normal |
|
292 * equation system. Matrix D is assumed to be already computed. */ |
|
293 |
|
294 static void decomp_NE(struct csa *csa) |
|
295 { adat_numeric(csa->m, csa->n, csa->P, csa->A_ptr, csa->A_ind, |
|
296 csa->A_val, csa->D, csa->S_ptr, csa->S_ind, csa->S_val, |
|
297 csa->S_diag); |
|
298 chol_numeric(csa->m, csa->S_ptr, csa->S_ind, csa->S_val, |
|
299 csa->S_diag, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag); |
|
300 return; |
|
301 } |
|
302 |
|
303 /*********************************************************************** |
|
304 * solve_NE - solve normal equation system |
|
305 * |
|
306 * This routine solves the normal equation system: |
|
307 * |
|
308 * A*D*A'*y = h. |
|
309 * |
|
310 * It is assumed that the matrix A*D*A' has been previously factorized |
|
311 * by the routine decomp_NE. |
|
312 * |
|
313 * On entry the array y contains the vector of right-hand sides h. On |
|
314 * exit this array contains the computed vector of unknowns y. |
|
315 * |
|
316 * Once the vector y has been computed the routine checks for numeric |
|
317 * stability. If the residual vector: |
|
318 * |
|
319 * r = A*D*A'*y - h |
|
320 * |
|
321 * is relatively small, the routine returns zero, otherwise non-zero is |
|
322 * returned. */ |
|
323 |
|
324 static int solve_NE(struct csa *csa, double y[]) |
|
325 { int m = csa->m; |
|
326 int n = csa->n; |
|
327 int *P = csa->P; |
|
328 int i, j, ret = 0; |
|
329 double *h, *r, *w; |
|
330 /* save vector of right-hand sides h */ |
|
331 h = xcalloc(1+m, sizeof(double)); |
|
332 for (i = 1; i <= m; i++) h[i] = y[i]; |
|
333 /* solve normal equation system (A*D*A')*y = h */ |
|
334 /* since S = P*A*D*A'*P' = U'*U, then A*D*A' = P'*U'*U*P, so we |
|
335 have inv(A*D*A') = P'*inv(U)*inv(U')*P */ |
|
336 /* w := P*h */ |
|
337 w = xcalloc(1+m, sizeof(double)); |
|
338 for (i = 1; i <= m; i++) w[i] = y[P[i]]; |
|
339 /* w := inv(U')*w */ |
|
340 ut_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w); |
|
341 /* w := inv(U)*w */ |
|
342 u_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w); |
|
343 /* y := P'*w */ |
|
344 for (i = 1; i <= m; i++) y[i] = w[P[m+i]]; |
|
345 xfree(w); |
|
346 /* compute residual vector r = A*D*A'*y - h */ |
|
347 r = xcalloc(1+m, sizeof(double)); |
|
348 /* w := A'*y */ |
|
349 w = xcalloc(1+n, sizeof(double)); |
|
350 AT_by_vec(csa, y, w); |
|
351 /* w := D*w */ |
|
352 for (j = 1; j <= n; j++) w[j] *= csa->D[j]; |
|
353 /* r := A*w */ |
|
354 A_by_vec(csa, w, r); |
|
355 xfree(w); |
|
356 /* r := r - h */ |
|
357 for (i = 1; i <= m; i++) r[i] -= h[i]; |
|
358 /* check for numeric stability */ |
|
359 for (i = 1; i <= m; i++) |
|
360 { if (fabs(r[i]) / (1.0 + fabs(h[i])) > 1e-4) |
|
361 { ret = 1; |
|
362 break; |
|
363 } |
|
364 } |
|
365 xfree(h); |
|
366 xfree(r); |
|
367 return ret; |
|
368 } |
|
369 |
|
370 /*********************************************************************** |
|
371 * solve_NS - solve Newtonian system |
|
372 * |
|
373 * This routine solves the Newtonian system: |
|
374 * |
|
375 * A*dx = p |
|
376 * |
|
377 * A'*dy + dz = q |
|
378 * |
|
379 * Z*dx + X*dz = r |
|
380 * |
|
381 * where X = diag(x[j]), Z = diag(z[j]), by reducing it to the normal |
|
382 * equation system: |
|
383 * |
|
384 * (A*inv(Z)*X*A')*dy = A*inv(Z)*(X*q-r)+p |
|
385 * |
|
386 * (it is assumed that the matrix A*inv(Z)*X*A' has been factorized by |
|
387 * the routine decomp_NE). |
|
388 * |
|
389 * Once vector dy has been computed the routine computes vectors dx and |
|
390 * dz as follows: |
|
391 * |
|
392 * dx = inv(Z)*(X*(A'*dy-q)+r) |
|
393 * |
|
394 * dz = inv(X)*(r-Z*dx) |
|
395 * |
|
396 * The routine solve_NS returns the same code which was reported by the |
|
397 * routine solve_NE (see above). */ |
|
398 |
|
399 static int solve_NS(struct csa *csa, double p[], double q[], double r[], |
|
400 double dx[], double dy[], double dz[]) |
|
401 { int m = csa->m; |
|
402 int n = csa->n; |
|
403 double *x = csa->x; |
|
404 double *z = csa->z; |
|
405 int i, j, ret; |
|
406 double *w = dx; |
|
407 /* compute the vector of right-hand sides A*inv(Z)*(X*q-r)+p for |
|
408 the normal equation system */ |
|
409 for (j = 1; j <= n; j++) |
|
410 w[j] = (x[j] * q[j] - r[j]) / z[j]; |
|
411 A_by_vec(csa, w, dy); |
|
412 for (i = 1; i <= m; i++) dy[i] += p[i]; |
|
413 /* solve the normal equation system to compute vector dy */ |
|
414 ret = solve_NE(csa, dy); |
|
415 /* compute vectors dx and dz */ |
|
416 AT_by_vec(csa, dy, dx); |
|
417 for (j = 1; j <= n; j++) |
|
418 { dx[j] = (x[j] * (dx[j] - q[j]) + r[j]) / z[j]; |
|
419 dz[j] = (r[j] - z[j] * dx[j]) / x[j]; |
|
420 } |
|
421 return ret; |
|
422 } |
|
423 |
|
424 /*********************************************************************** |
|
425 * initial_point - choose initial point using Mehrotra's heuristic |
|
426 * |
|
427 * This routine chooses a starting point using a heuristic proposed in |
|
428 * the paper: |
|
429 * |
|
430 * S. Mehrotra. On the implementation of a primal-dual interior point |
|
431 * method. SIAM J. on Optim., 2(4), pp. 575-601, 1992. |
|
432 * |
|
433 * The starting point x in the primal space is chosen as a solution of |
|
434 * the following least squares problem: |
|
435 * |
|
436 * minimize ||x|| |
|
437 * |
|
438 * subject to A*x = b |
|
439 * |
|
440 * which can be computed explicitly as follows: |
|
441 * |
|
442 * x = A'*inv(A*A')*b |
|
443 * |
|
444 * Similarly, the starting point (y, z) in the dual space is chosen as |
|
445 * a solution of the following least squares problem: |
|
446 * |
|
447 * minimize ||z|| |
|
448 * |
|
449 * subject to A'*y + z = c |
|
450 * |
|
451 * which can be computed explicitly as follows: |
|
452 * |
|
453 * y = inv(A*A')*A*c |
|
454 * |
|
455 * z = c - A'*y |
|
456 * |
|
457 * However, some components of the vectors x and z may be non-positive |
|
458 * or close to zero, so the routine uses a Mehrotra's heuristic to find |
|
459 * a more appropriate starting point. */ |
|
460 |
|
461 static void initial_point(struct csa *csa) |
|
462 { int m = csa->m; |
|
463 int n = csa->n; |
|
464 double *b = csa->b; |
|
465 double *c = csa->c; |
|
466 double *x = csa->x; |
|
467 double *y = csa->y; |
|
468 double *z = csa->z; |
|
469 double *D = csa->D; |
|
470 int i, j; |
|
471 double dp, dd, ex, ez, xz; |
|
472 /* factorize A*A' */ |
|
473 for (j = 1; j <= n; j++) D[j] = 1.0; |
|
474 decomp_NE(csa); |
|
475 /* x~ = A'*inv(A*A')*b */ |
|
476 for (i = 1; i <= m; i++) y[i] = b[i]; |
|
477 solve_NE(csa, y); |
|
478 AT_by_vec(csa, y, x); |
|
479 /* y~ = inv(A*A')*A*c */ |
|
480 A_by_vec(csa, c, y); |
|
481 solve_NE(csa, y); |
|
482 /* z~ = c - A'*y~ */ |
|
483 AT_by_vec(csa, y,z); |
|
484 for (j = 1; j <= n; j++) z[j] = c[j] - z[j]; |
|
485 /* use Mehrotra's heuristic in order to choose more appropriate |
|
486 starting point with positive components of vectors x and z */ |
|
487 dp = dd = 0.0; |
|
488 for (j = 1; j <= n; j++) |
|
489 { if (dp < -1.5 * x[j]) dp = -1.5 * x[j]; |
|
490 if (dd < -1.5 * z[j]) dd = -1.5 * z[j]; |
|
491 } |
|
492 /* note that b = 0 involves x = 0, and c = 0 involves y = 0 and |
|
493 z = 0, so we need to be careful */ |
|
494 if (dp == 0.0) dp = 1.5; |
|
495 if (dd == 0.0) dd = 1.5; |
|
496 ex = ez = xz = 0.0; |
|
497 for (j = 1; j <= n; j++) |
|
498 { ex += (x[j] + dp); |
|
499 ez += (z[j] + dd); |
|
500 xz += (x[j] + dp) * (z[j] + dd); |
|
501 } |
|
502 dp += 0.5 * (xz / ez); |
|
503 dd += 0.5 * (xz / ex); |
|
504 for (j = 1; j <= n; j++) |
|
505 { x[j] += dp; |
|
506 z[j] += dd; |
|
507 xassert(x[j] > 0.0 && z[j] > 0.0); |
|
508 } |
|
509 return; |
|
510 } |
|
511 |
|
512 /*********************************************************************** |
|
513 * basic_info - perform basic computations at the current point |
|
514 * |
|
515 * This routine computes the following quantities at the current point: |
|
516 * |
|
517 * 1) value of the objective function: |
|
518 * |
|
519 * F = c'*x + c[0] |
|
520 * |
|
521 * 2) relative primal infeasibility: |
|
522 * |
|
523 * rpi = ||A*x-b|| / (1+||b||) |
|
524 * |
|
525 * 3) relative dual infeasibility: |
|
526 * |
|
527 * rdi = ||A'*y+z-c|| / (1+||c||) |
|
528 * |
|
529 * 4) primal-dual gap (relative difference between the primal and the |
|
530 * dual objective function values): |
|
531 * |
|
532 * gap = |c'*x-b'*y| / (1+|c'*x|) |
|
533 * |
|
534 * 5) merit function: |
|
535 * |
|
536 * phi = ||A*x-b|| / max(1,||b||) + ||A'*y+z-c|| / max(1,||c||) + |
|
537 * |
|
538 * + |c'*x-b'*y| / max(1,||b||,||c||) |
|
539 * |
|
540 * 6) duality measure: |
|
541 * |
|
542 * mu = x'*z / n |
|
543 * |
|
544 * 7) the ratio of infeasibility to mu: |
|
545 * |
|
546 * rmu = max(||A*x-b||,||A'*y+z-c||) / mu |
|
547 * |
|
548 * where ||*|| denotes euclidian norm, *' denotes transposition. */ |
|
549 |
|
550 static void basic_info(struct csa *csa) |
|
551 { int m = csa->m; |
|
552 int n = csa->n; |
|
553 double *b = csa->b; |
|
554 double *c = csa->c; |
|
555 double *x = csa->x; |
|
556 double *y = csa->y; |
|
557 double *z = csa->z; |
|
558 int i, j; |
|
559 double norm1, bnorm, norm2, cnorm, cx, by, *work, temp; |
|
560 /* compute value of the objective function */ |
|
561 temp = c[0]; |
|
562 for (j = 1; j <= n; j++) temp += c[j] * x[j]; |
|
563 csa->obj = temp; |
|
564 /* norm1 = ||A*x-b|| */ |
|
565 work = xcalloc(1+m, sizeof(double)); |
|
566 A_by_vec(csa, x, work); |
|
567 norm1 = 0.0; |
|
568 for (i = 1; i <= m; i++) |
|
569 norm1 += (work[i] - b[i]) * (work[i] - b[i]); |
|
570 norm1 = sqrt(norm1); |
|
571 xfree(work); |
|
572 /* bnorm = ||b|| */ |
|
573 bnorm = 0.0; |
|
574 for (i = 1; i <= m; i++) bnorm += b[i] * b[i]; |
|
575 bnorm = sqrt(bnorm); |
|
576 /* compute relative primal infeasibility */ |
|
577 csa->rpi = norm1 / (1.0 + bnorm); |
|
578 /* norm2 = ||A'*y+z-c|| */ |
|
579 work = xcalloc(1+n, sizeof(double)); |
|
580 AT_by_vec(csa, y, work); |
|
581 norm2 = 0.0; |
|
582 for (j = 1; j <= n; j++) |
|
583 norm2 += (work[j] + z[j] - c[j]) * (work[j] + z[j] - c[j]); |
|
584 norm2 = sqrt(norm2); |
|
585 xfree(work); |
|
586 /* cnorm = ||c|| */ |
|
587 cnorm = 0.0; |
|
588 for (j = 1; j <= n; j++) cnorm += c[j] * c[j]; |
|
589 cnorm = sqrt(cnorm); |
|
590 /* compute relative dual infeasibility */ |
|
591 csa->rdi = norm2 / (1.0 + cnorm); |
|
592 /* by = b'*y */ |
|
593 by = 0.0; |
|
594 for (i = 1; i <= m; i++) by += b[i] * y[i]; |
|
595 /* cx = c'*x */ |
|
596 cx = 0.0; |
|
597 for (j = 1; j <= n; j++) cx += c[j] * x[j]; |
|
598 /* compute primal-dual gap */ |
|
599 csa->gap = fabs(cx - by) / (1.0 + fabs(cx)); |
|
600 /* compute merit function */ |
|
601 csa->phi = 0.0; |
|
602 csa->phi += norm1 / (bnorm > 1.0 ? bnorm : 1.0); |
|
603 csa->phi += norm2 / (cnorm > 1.0 ? cnorm : 1.0); |
|
604 temp = 1.0; |
|
605 if (temp < bnorm) temp = bnorm; |
|
606 if (temp < cnorm) temp = cnorm; |
|
607 csa->phi += fabs(cx - by) / temp; |
|
608 /* compute duality measure */ |
|
609 temp = 0.0; |
|
610 for (j = 1; j <= n; j++) temp += x[j] * z[j]; |
|
611 csa->mu = temp / (double)n; |
|
612 /* compute the ratio of infeasibility to mu */ |
|
613 csa->rmu = (norm1 > norm2 ? norm1 : norm2) / csa->mu; |
|
614 return; |
|
615 } |
|
616 |
|
617 /*********************************************************************** |
|
618 * make_step - compute next point using Mehrotra's technique |
|
619 * |
|
620 * This routine computes the next point using the predictor-corrector |
|
621 * technique proposed in the paper: |
|
622 * |
|
623 * S. Mehrotra. On the implementation of a primal-dual interior point |
|
624 * method. SIAM J. on Optim., 2(4), pp. 575-601, 1992. |
|
625 * |
|
626 * At first, the routine computes so called affine scaling (predictor) |
|
627 * direction (dx_aff,dy_aff,dz_aff) which is a solution of the system: |
|
628 * |
|
629 * A*dx_aff = b - A*x |
|
630 * |
|
631 * A'*dy_aff + dz_aff = c - A'*y - z |
|
632 * |
|
633 * Z*dx_aff + X*dz_aff = - X*Z*e |
|
634 * |
|
635 * where (x,y,z) is the current point, X = diag(x[j]), Z = diag(z[j]), |
|
636 * e = (1,...,1)'. |
|
637 * |
|
638 * Then, the routine computes the centering parameter sigma, using the |
|
639 * following Mehrotra's heuristic: |
|
640 * |
|
641 * alfa_aff_p = inf{0 <= alfa <= 1 | x+alfa*dx_aff >= 0} |
|
642 * |
|
643 * alfa_aff_d = inf{0 <= alfa <= 1 | z+alfa*dz_aff >= 0} |
|
644 * |
|
645 * mu_aff = (x+alfa_aff_p*dx_aff)'*(z+alfa_aff_d*dz_aff)/n |
|
646 * |
|
647 * sigma = (mu_aff/mu)^3 |
|
648 * |
|
649 * where alfa_aff_p is the maximal stepsize along the affine scaling |
|
650 * direction in the primal space, alfa_aff_d is the maximal stepsize |
|
651 * along the same direction in the dual space. |
|
652 * |
|
653 * After determining sigma the routine computes so called centering |
|
654 * (corrector) direction (dx_cc,dy_cc,dz_cc) which is the solution of |
|
655 * the system: |
|
656 * |
|
657 * A*dx_cc = 0 |
|
658 * |
|
659 * A'*dy_cc + dz_cc = 0 |
|
660 * |
|
661 * Z*dx_cc + X*dz_cc = sigma*mu*e - X*Z*e |
|
662 * |
|
663 * Finally, the routine computes the combined direction |
|
664 * |
|
665 * (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc) |
|
666 * |
|
667 * and determines maximal primal and dual stepsizes along the combined |
|
668 * direction: |
|
669 * |
|
670 * alfa_max_p = inf{0 <= alfa <= 1 | x+alfa*dx >= 0} |
|
671 * |
|
672 * alfa_max_d = inf{0 <= alfa <= 1 | z+alfa*dz >= 0} |
|
673 * |
|
674 * In order to prevent the next point to be too close to the boundary |
|
675 * of the positive ortant, the routine decreases maximal stepsizes: |
|
676 * |
|
677 * alfa_p = gamma_p * alfa_max_p |
|
678 * |
|
679 * alfa_d = gamma_d * alfa_max_d |
|
680 * |
|
681 * where gamma_p and gamma_d are scaling factors, and computes the next |
|
682 * point: |
|
683 * |
|
684 * x_new = x + alfa_p * dx |
|
685 * |
|
686 * y_new = y + alfa_d * dy |
|
687 * |
|
688 * z_new = z + alfa_d * dz |
|
689 * |
|
690 * which becomes the current point on the next iteration. */ |
|
691 |
|
692 static int make_step(struct csa *csa) |
|
693 { int m = csa->m; |
|
694 int n = csa->n; |
|
695 double *b = csa->b; |
|
696 double *c = csa->c; |
|
697 double *x = csa->x; |
|
698 double *y = csa->y; |
|
699 double *z = csa->z; |
|
700 double *dx_aff = csa->dx_aff; |
|
701 double *dy_aff = csa->dy_aff; |
|
702 double *dz_aff = csa->dz_aff; |
|
703 double *dx_cc = csa->dx_cc; |
|
704 double *dy_cc = csa->dy_cc; |
|
705 double *dz_cc = csa->dz_cc; |
|
706 double *dx = csa->dx; |
|
707 double *dy = csa->dy; |
|
708 double *dz = csa->dz; |
|
709 int i, j, ret = 0; |
|
710 double temp, gamma_p, gamma_d, *p, *q, *r; |
|
711 /* allocate working arrays */ |
|
712 p = xcalloc(1+m, sizeof(double)); |
|
713 q = xcalloc(1+n, sizeof(double)); |
|
714 r = xcalloc(1+n, sizeof(double)); |
|
715 /* p = b - A*x */ |
|
716 A_by_vec(csa, x, p); |
|
717 for (i = 1; i <= m; i++) p[i] = b[i] - p[i]; |
|
718 /* q = c - A'*y - z */ |
|
719 AT_by_vec(csa, y,q); |
|
720 for (j = 1; j <= n; j++) q[j] = c[j] - q[j] - z[j]; |
|
721 /* r = - X * Z * e */ |
|
722 for (j = 1; j <= n; j++) r[j] = - x[j] * z[j]; |
|
723 /* solve the first Newtonian system */ |
|
724 if (solve_NS(csa, p, q, r, dx_aff, dy_aff, dz_aff)) |
|
725 { ret = 1; |
|
726 goto done; |
|
727 } |
|
728 /* alfa_aff_p = inf{0 <= alfa <= 1 | x + alfa*dx_aff >= 0} */ |
|
729 /* alfa_aff_d = inf{0 <= alfa <= 1 | z + alfa*dz_aff >= 0} */ |
|
730 csa->alfa_aff_p = csa->alfa_aff_d = 1.0; |
|
731 for (j = 1; j <= n; j++) |
|
732 { if (dx_aff[j] < 0.0) |
|
733 { temp = - x[j] / dx_aff[j]; |
|
734 if (csa->alfa_aff_p > temp) csa->alfa_aff_p = temp; |
|
735 } |
|
736 if (dz_aff[j] < 0.0) |
|
737 { temp = - z[j] / dz_aff[j]; |
|
738 if (csa->alfa_aff_d > temp) csa->alfa_aff_d = temp; |
|
739 } |
|
740 } |
|
741 /* mu_aff = (x+alfa_aff_p*dx_aff)' * (z+alfa_aff_d*dz_aff) / n */ |
|
742 temp = 0.0; |
|
743 for (j = 1; j <= n; j++) |
|
744 temp += (x[j] + csa->alfa_aff_p * dx_aff[j]) * |
|
745 (z[j] + csa->alfa_aff_d * dz_aff[j]); |
|
746 csa->mu_aff = temp / (double)n; |
|
747 /* sigma = (mu_aff/mu)^3 */ |
|
748 temp = csa->mu_aff / csa->mu; |
|
749 csa->sigma = temp * temp * temp; |
|
750 /* p = 0 */ |
|
751 for (i = 1; i <= m; i++) p[i] = 0.0; |
|
752 /* q = 0 */ |
|
753 for (j = 1; j <= n; j++) q[j] = 0.0; |
|
754 /* r = sigma * mu * e - X * Z * e */ |
|
755 for (j = 1; j <= n; j++) |
|
756 r[j] = csa->sigma * csa->mu - dx_aff[j] * dz_aff[j]; |
|
757 /* solve the second Newtonian system with the same coefficients |
|
758 but with altered right-hand sides */ |
|
759 if (solve_NS(csa, p, q, r, dx_cc, dy_cc, dz_cc)) |
|
760 { ret = 1; |
|
761 goto done; |
|
762 } |
|
763 /* (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc) */ |
|
764 for (j = 1; j <= n; j++) dx[j] = dx_aff[j] + dx_cc[j]; |
|
765 for (i = 1; i <= m; i++) dy[i] = dy_aff[i] + dy_cc[i]; |
|
766 for (j = 1; j <= n; j++) dz[j] = dz_aff[j] + dz_cc[j]; |
|
767 /* alfa_max_p = inf{0 <= alfa <= 1 | x + alfa*dx >= 0} */ |
|
768 /* alfa_max_d = inf{0 <= alfa <= 1 | z + alfa*dz >= 0} */ |
|
769 csa->alfa_max_p = csa->alfa_max_d = 1.0; |
|
770 for (j = 1; j <= n; j++) |
|
771 { if (dx[j] < 0.0) |
|
772 { temp = - x[j] / dx[j]; |
|
773 if (csa->alfa_max_p > temp) csa->alfa_max_p = temp; |
|
774 } |
|
775 if (dz[j] < 0.0) |
|
776 { temp = - z[j] / dz[j]; |
|
777 if (csa->alfa_max_d > temp) csa->alfa_max_d = temp; |
|
778 } |
|
779 } |
|
780 /* determine scale factors (not implemented yet) */ |
|
781 gamma_p = 0.90; |
|
782 gamma_d = 0.90; |
|
783 /* compute the next point */ |
|
784 for (j = 1; j <= n; j++) |
|
785 { x[j] += gamma_p * csa->alfa_max_p * dx[j]; |
|
786 xassert(x[j] > 0.0); |
|
787 } |
|
788 for (i = 1; i <= m; i++) |
|
789 y[i] += gamma_d * csa->alfa_max_d * dy[i]; |
|
790 for (j = 1; j <= n; j++) |
|
791 { z[j] += gamma_d * csa->alfa_max_d * dz[j]; |
|
792 xassert(z[j] > 0.0); |
|
793 } |
|
794 done: /* free working arrays */ |
|
795 xfree(p); |
|
796 xfree(q); |
|
797 xfree(r); |
|
798 return ret; |
|
799 } |
|
800 |
|
801 /*********************************************************************** |
|
802 * terminate - deallocate common storage area |
|
803 * |
|
804 * This routine frees all memory allocated to the common storage area |
|
805 * used by interior-point method routines. */ |
|
806 |
|
807 static void terminate(struct csa *csa) |
|
808 { xfree(csa->D); |
|
809 xfree(csa->P); |
|
810 xfree(csa->S_ptr); |
|
811 xfree(csa->S_ind); |
|
812 xfree(csa->S_val); |
|
813 xfree(csa->S_diag); |
|
814 xfree(csa->U_ptr); |
|
815 xfree(csa->U_ind); |
|
816 xfree(csa->U_val); |
|
817 xfree(csa->U_diag); |
|
818 xfree(csa->phi_min); |
|
819 xfree(csa->best_x); |
|
820 xfree(csa->best_y); |
|
821 xfree(csa->best_z); |
|
822 xfree(csa->dx_aff); |
|
823 xfree(csa->dy_aff); |
|
824 xfree(csa->dz_aff); |
|
825 xfree(csa->dx_cc); |
|
826 xfree(csa->dy_cc); |
|
827 xfree(csa->dz_cc); |
|
828 return; |
|
829 } |
|
830 |
|
831 /*********************************************************************** |
|
832 * ipm_main - main interior-point method routine |
|
833 * |
|
834 * This is a main routine of the primal-dual interior-point method. |
|
835 * |
|
836 * The routine ipm_main returns one of the following codes: |
|
837 * |
|
838 * 0 - optimal solution found; |
|
839 * 1 - problem has no feasible (primal or dual) solution; |
|
840 * 2 - no convergence; |
|
841 * 3 - iteration limit exceeded; |
|
842 * 4 - numeric instability on solving Newtonian system. |
|
843 * |
|
844 * In case of non-zero return code the routine returns the best point, |
|
845 * which has been reached during optimization. */ |
|
846 |
|
847 static int ipm_main(struct csa *csa) |
|
848 { int m = csa->m; |
|
849 int n = csa->n; |
|
850 int i, j, status; |
|
851 double temp; |
|
852 /* choose initial point using Mehrotra's heuristic */ |
|
853 if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
854 xprintf("Guessing initial point...\n"); |
|
855 initial_point(csa); |
|
856 /* main loop starts here */ |
|
857 if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
858 xprintf("Optimization begins...\n"); |
|
859 for (;;) |
|
860 { /* perform basic computations at the current point */ |
|
861 basic_info(csa); |
|
862 /* save initial value of rmu */ |
|
863 if (csa->iter == 0) csa->rmu0 = csa->rmu; |
|
864 /* accumulate values of min(phi[k]) and save the best point */ |
|
865 xassert(csa->iter <= ITER_MAX); |
|
866 if (csa->iter == 0 || csa->phi_min[csa->iter-1] > csa->phi) |
|
867 { csa->phi_min[csa->iter] = csa->phi; |
|
868 csa->best_iter = csa->iter; |
|
869 for (j = 1; j <= n; j++) csa->best_x[j] = csa->x[j]; |
|
870 for (i = 1; i <= m; i++) csa->best_y[i] = csa->y[i]; |
|
871 for (j = 1; j <= n; j++) csa->best_z[j] = csa->z[j]; |
|
872 csa->best_obj = csa->obj; |
|
873 } |
|
874 else |
|
875 csa->phi_min[csa->iter] = csa->phi_min[csa->iter-1]; |
|
876 /* display information at the current point */ |
|
877 if (csa->parm->msg_lev >= GLP_MSG_ON) |
|
878 xprintf("%3d: obj = %17.9e; rpi = %8.1e; rdi = %8.1e; gap =" |
|
879 " %8.1e\n", csa->iter, csa->obj, csa->rpi, csa->rdi, |
|
880 csa->gap); |
|
881 /* check if the current point is optimal */ |
|
882 if (csa->rpi < 1e-8 && csa->rdi < 1e-8 && csa->gap < 1e-8) |
|
883 { if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
884 xprintf("OPTIMAL SOLUTION FOUND\n"); |
|
885 status = 0; |
|
886 break; |
|
887 } |
|
888 /* check if the problem has no feasible solution */ |
|
889 temp = 1e5 * csa->phi_min[csa->iter]; |
|
890 if (temp < 1e-8) temp = 1e-8; |
|
891 if (csa->phi >= temp) |
|
892 { if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
893 xprintf("PROBLEM HAS NO FEASIBLE PRIMAL/DUAL SOLUTION\n") |
|
894 ; |
|
895 status = 1; |
|
896 break; |
|
897 } |
|
898 /* check for very slow convergence or divergence */ |
|
899 if (((csa->rpi >= 1e-8 || csa->rdi >= 1e-8) && csa->rmu / |
|
900 csa->rmu0 >= 1e6) || |
|
901 (csa->iter >= 30 && csa->phi_min[csa->iter] >= 0.5 * |
|
902 csa->phi_min[csa->iter - 30])) |
|
903 { if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
904 xprintf("NO CONVERGENCE; SEARCH TERMINATED\n"); |
|
905 status = 2; |
|
906 break; |
|
907 } |
|
908 /* check for maximal number of iterations */ |
|
909 if (csa->iter == ITER_MAX) |
|
910 { if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
911 xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
|
912 status = 3; |
|
913 break; |
|
914 } |
|
915 /* start the next iteration */ |
|
916 csa->iter++; |
|
917 /* factorize normal equation system */ |
|
918 for (j = 1; j <= n; j++) csa->D[j] = csa->x[j] / csa->z[j]; |
|
919 decomp_NE(csa); |
|
920 /* compute the next point using Mehrotra's predictor-corrector |
|
921 technique */ |
|
922 if (make_step(csa)) |
|
923 { if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
924 xprintf("NUMERIC INSTABILITY; SEARCH TERMINATED\n"); |
|
925 status = 4; |
|
926 break; |
|
927 } |
|
928 } |
|
929 /* restore the best point */ |
|
930 if (status != 0) |
|
931 { for (j = 1; j <= n; j++) csa->x[j] = csa->best_x[j]; |
|
932 for (i = 1; i <= m; i++) csa->y[i] = csa->best_y[i]; |
|
933 for (j = 1; j <= n; j++) csa->z[j] = csa->best_z[j]; |
|
934 if (csa->parm->msg_lev >= GLP_MSG_ALL) |
|
935 xprintf("Best point %17.9e was reached on iteration %d\n", |
|
936 csa->best_obj, csa->best_iter); |
|
937 } |
|
938 /* return to the calling program */ |
|
939 return status; |
|
940 } |
|
941 |
|
942 /*********************************************************************** |
|
943 * NAME |
|
944 * |
|
945 * ipm_solve - core LP solver based on the interior-point method |
|
946 * |
|
947 * SYNOPSIS |
|
948 * |
|
949 * #include "glpipm.h" |
|
950 * int ipm_solve(glp_prob *P, const glp_iptcp *parm); |
|
951 * |
|
952 * DESCRIPTION |
|
953 * |
|
954 * The routine ipm_solve is a core LP solver based on the primal-dual |
|
955 * interior-point method. |
|
956 * |
|
957 * The routine assumes the following standard formulation of LP problem |
|
958 * to be solved: |
|
959 * |
|
960 * minimize |
|
961 * |
|
962 * F = c[0] + c[1]*x[1] + c[2]*x[2] + ... + c[n]*x[n] |
|
963 * |
|
964 * subject to linear constraints |
|
965 * |
|
966 * a[1,1]*x[1] + a[1,2]*x[2] + ... + a[1,n]*x[n] = b[1] |
|
967 * |
|
968 * a[2,1]*x[1] + a[2,2]*x[2] + ... + a[2,n]*x[n] = b[2] |
|
969 * |
|
970 * . . . . . . |
|
971 * |
|
972 * a[m,1]*x[1] + a[m,2]*x[2] + ... + a[m,n]*x[n] = b[m] |
|
973 * |
|
974 * and non-negative variables |
|
975 * |
|
976 * x[1] >= 0, x[2] >= 0, ..., x[n] >= 0 |
|
977 * |
|
978 * where: |
|
979 * F is the objective function; |
|
980 * x[1], ..., x[n] are (structural) variables; |
|
981 * c[0] is a constant term of the objective function; |
|
982 * c[1], ..., c[n] are objective coefficients; |
|
983 * a[1,1], ..., a[m,n] are constraint coefficients; |
|
984 * b[1], ..., b[n] are right-hand sides. |
|
985 * |
|
986 * The solution is three vectors x, y, and z, which are stored by the |
|
987 * routine in the arrays x, y, and z, respectively. These vectors |
|
988 * correspond to the best primal-dual point found during optimization. |
|
989 * They are approximate solution of the following system (which is the |
|
990 * Karush-Kuhn-Tucker optimality conditions): |
|
991 * |
|
992 * A*x = b (primal feasibility condition) |
|
993 * |
|
994 * A'*y + z = c (dual feasibility condition) |
|
995 * |
|
996 * x'*z = 0 (primal-dual complementarity condition) |
|
997 * |
|
998 * x >= 0, z >= 0 (non-negativity condition) |
|
999 * |
|
1000 * where: |
|
1001 * x[1], ..., x[n] are primal (structural) variables; |
|
1002 * y[1], ..., y[m] are dual variables (Lagrange multipliers) for |
|
1003 * equality constraints; |
|
1004 * z[1], ..., z[n] are dual variables (Lagrange multipliers) for |
|
1005 * non-negativity constraints. |
|
1006 * |
|
1007 * RETURNS |
|
1008 * |
|
1009 * 0 LP has been successfully solved. |
|
1010 * |
|
1011 * GLP_ENOCVG |
|
1012 * No convergence. |
|
1013 * |
|
1014 * GLP_EITLIM |
|
1015 * Iteration limit exceeded. |
|
1016 * |
|
1017 * GLP_EINSTAB |
|
1018 * Numeric instability on solving Newtonian system. |
|
1019 * |
|
1020 * In case of non-zero return code the routine returns the best point, |
|
1021 * which has been reached during optimization. */ |
|
1022 |
|
1023 int ipm_solve(glp_prob *P, const glp_iptcp *parm) |
|
1024 { struct csa _dsa, *csa = &_dsa; |
|
1025 int m = P->m; |
|
1026 int n = P->n; |
|
1027 int nnz = P->nnz; |
|
1028 GLPROW *row; |
|
1029 GLPCOL *col; |
|
1030 GLPAIJ *aij; |
|
1031 int i, j, loc, ret, *A_ind, *A_ptr; |
|
1032 double dir, *A_val, *b, *c, *x, *y, *z; |
|
1033 xassert(m > 0); |
|
1034 xassert(n > 0); |
|
1035 /* allocate working arrays */ |
|
1036 A_ptr = xcalloc(1+m+1, sizeof(int)); |
|
1037 A_ind = xcalloc(1+nnz, sizeof(int)); |
|
1038 A_val = xcalloc(1+nnz, sizeof(double)); |
|
1039 b = xcalloc(1+m, sizeof(double)); |
|
1040 c = xcalloc(1+n, sizeof(double)); |
|
1041 x = xcalloc(1+n, sizeof(double)); |
|
1042 y = xcalloc(1+m, sizeof(double)); |
|
1043 z = xcalloc(1+n, sizeof(double)); |
|
1044 /* prepare rows and constraint coefficients */ |
|
1045 loc = 1; |
|
1046 for (i = 1; i <= m; i++) |
|
1047 { row = P->row[i]; |
|
1048 xassert(row->type == GLP_FX); |
|
1049 b[i] = row->lb * row->rii; |
|
1050 A_ptr[i] = loc; |
|
1051 for (aij = row->ptr; aij != NULL; aij = aij->r_next) |
|
1052 { A_ind[loc] = aij->col->j; |
|
1053 A_val[loc] = row->rii * aij->val * aij->col->sjj; |
|
1054 loc++; |
|
1055 } |
|
1056 } |
|
1057 A_ptr[m+1] = loc; |
|
1058 xassert(loc-1 == nnz); |
|
1059 /* prepare columns and objective coefficients */ |
|
1060 if (P->dir == GLP_MIN) |
|
1061 dir = +1.0; |
|
1062 else if (P->dir == GLP_MAX) |
|
1063 dir = -1.0; |
|
1064 else |
|
1065 xassert(P != P); |
|
1066 c[0] = dir * P->c0; |
|
1067 for (j = 1; j <= n; j++) |
|
1068 { col = P->col[j]; |
|
1069 xassert(col->type == GLP_LO && col->lb == 0.0); |
|
1070 c[j] = dir * col->coef * col->sjj; |
|
1071 } |
|
1072 /* allocate and initialize the common storage area */ |
|
1073 csa->m = m; |
|
1074 csa->n = n; |
|
1075 csa->A_ptr = A_ptr; |
|
1076 csa->A_ind = A_ind; |
|
1077 csa->A_val = A_val; |
|
1078 csa->b = b; |
|
1079 csa->c = c; |
|
1080 csa->x = x; |
|
1081 csa->y = y; |
|
1082 csa->z = z; |
|
1083 csa->parm = parm; |
|
1084 initialize(csa); |
|
1085 /* solve LP with the interior-point method */ |
|
1086 ret = ipm_main(csa); |
|
1087 /* deallocate the common storage area */ |
|
1088 terminate(csa); |
|
1089 /* determine solution status */ |
|
1090 if (ret == 0) |
|
1091 { /* optimal solution found */ |
|
1092 P->ipt_stat = GLP_OPT; |
|
1093 ret = 0; |
|
1094 } |
|
1095 else if (ret == 1) |
|
1096 { /* problem has no feasible (primal or dual) solution */ |
|
1097 P->ipt_stat = GLP_NOFEAS; |
|
1098 ret = 0; |
|
1099 } |
|
1100 else if (ret == 2) |
|
1101 { /* no convergence */ |
|
1102 P->ipt_stat = GLP_INFEAS; |
|
1103 ret = GLP_ENOCVG; |
|
1104 } |
|
1105 else if (ret == 3) |
|
1106 { /* iteration limit exceeded */ |
|
1107 P->ipt_stat = GLP_INFEAS; |
|
1108 ret = GLP_EITLIM; |
|
1109 } |
|
1110 else if (ret == 4) |
|
1111 { /* numeric instability on solving Newtonian system */ |
|
1112 P->ipt_stat = GLP_INFEAS; |
|
1113 ret = GLP_EINSTAB; |
|
1114 } |
|
1115 else |
|
1116 xassert(ret != ret); |
|
1117 /* store row solution components */ |
|
1118 for (i = 1; i <= m; i++) |
|
1119 { row = P->row[i]; |
|
1120 row->pval = row->lb; |
|
1121 row->dval = dir * y[i] * row->rii; |
|
1122 } |
|
1123 /* store column solution components */ |
|
1124 P->ipt_obj = P->c0; |
|
1125 for (j = 1; j <= n; j++) |
|
1126 { col = P->col[j]; |
|
1127 col->pval = x[j] * col->sjj; |
|
1128 col->dval = dir * z[j] / col->sjj; |
|
1129 P->ipt_obj += col->coef * col->pval; |
|
1130 } |
|
1131 /* free working arrays */ |
|
1132 xfree(A_ptr); |
|
1133 xfree(A_ind); |
|
1134 xfree(A_val); |
|
1135 xfree(b); |
|
1136 xfree(c); |
|
1137 xfree(x); |
|
1138 xfree(y); |
|
1139 xfree(z); |
|
1140 return ret; |
|
1141 } |
|
1142 |
|
1143 /* eof */ |