src/glpipm.c
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 06 Dec 2010 13:09:21 +0100
changeset 1 c445c931472f
permissions -rw-r--r--
Import glpk-4.45

- Generated files and doc/notes are removed
     1 /* glpipm.c */
     2 
     3 /***********************************************************************
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
     5 *
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
     9 *  E-mail: <mao@gnu.org>.
    10 *
    11 *  GLPK is free software: you can redistribute it and/or modify it
    12 *  under the terms of the GNU General Public License as published by
    13 *  the Free Software Foundation, either version 3 of the License, or
    14 *  (at your option) any later version.
    15 *
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
    19 *  License for more details.
    20 *
    21 *  You should have received a copy of the GNU General Public License
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
    23 ***********************************************************************/
    24 
    25 #include "glpipm.h"
    26 #include "glpmat.h"
    27 
    28 #define ITER_MAX 100
    29 /* maximal number of iterations */
    30 
    31 struct csa
    32 {     /* common storage area */
    33       /*--------------------------------------------------------------*/
    34       /* LP data */
    35       int m;
    36       /* number of rows (equality constraints) */
    37       int n;
    38       /* number of columns (structural variables) */
    39       int *A_ptr; /* int A_ptr[1+m+1]; */
    40       int *A_ind; /* int A_ind[A_ptr[m+1]]; */
    41       double *A_val; /* double A_val[A_ptr[m+1]]; */
    42       /* mxn-matrix A in storage-by-rows format */
    43       double *b; /* double b[1+m]; */
    44       /* m-vector b of right-hand sides */
    45       double *c; /* double c[1+n]; */
    46       /* n-vector c of objective coefficients; c[0] is constant term of
    47          the objective function */
    48       /*--------------------------------------------------------------*/
    49       /* LP solution */
    50       double *x; /* double x[1+n]; */
    51       double *y; /* double y[1+m]; */
    52       double *z; /* double z[1+n]; */
    53       /* current point in primal-dual space; the best point on exit */
    54       /*--------------------------------------------------------------*/
    55       /* control parameters */
    56       const glp_iptcp *parm;
    57       /*--------------------------------------------------------------*/
    58       /* working arrays and variables */
    59       double *D; /* double D[1+n]; */
    60       /* diagonal nxn-matrix D = X*inv(Z), where X = diag(x[j]) and
    61          Z = diag(z[j]) */
    62       int *P; /* int P[1+m+m]; */
    63       /* permutation mxm-matrix P used to minimize fill-in in Cholesky
    64          factorization */
    65       int *S_ptr; /* int S_ptr[1+m+1]; */
    66       int *S_ind; /* int S_ind[S_ptr[m+1]]; */
    67       double *S_val; /* double S_val[S_ptr[m+1]]; */
    68       double *S_diag; /* double S_diag[1+m]; */
    69       /* symmetric mxm-matrix S = P*A*D*A'*P' whose upper triangular
    70          part without diagonal elements is stored in S_ptr, S_ind, and
    71          S_val in storage-by-rows format, diagonal elements are stored
    72          in S_diag */
    73       int *U_ptr; /* int U_ptr[1+m+1]; */
    74       int *U_ind; /* int U_ind[U_ptr[m+1]]; */
    75       double *U_val; /* double U_val[U_ptr[m+1]]; */
    76       double *U_diag; /* double U_diag[1+m]; */
    77       /* upper triangular mxm-matrix U defining Cholesky factorization
    78          S = U'*U; its non-diagonal elements are stored in U_ptr, U_ind,
    79          U_val in storage-by-rows format, diagonal elements are stored
    80          in U_diag */
    81       int iter;
    82       /* iteration number (0, 1, 2, ...); iter = 0 corresponds to the
    83          initial point */
    84       double obj;
    85       /* current value of the objective function */
    86       double rpi;
    87       /* relative primal infeasibility rpi = ||A*x-b||/(1+||b||) */
    88       double rdi;
    89       /* relative dual infeasibility rdi = ||A'*y+z-c||/(1+||c||) */
    90       double gap;
    91       /* primal-dual gap = |c'*x-b'*y|/(1+|c'*x|) which is a relative
    92          difference between primal and dual objective functions */
    93       double phi;
    94       /* merit function phi = ||A*x-b||/max(1,||b||) +
    95                             + ||A'*y+z-c||/max(1,||c||) +
    96                             + |c'*x-b'*y|/max(1,||b||,||c||) */
    97       double mu;
    98       /* duality measure mu = x'*z/n (used as barrier parameter) */
    99       double rmu;
   100       /* rmu = max(||A*x-b||,||A'*y+z-c||)/mu */
   101       double rmu0;
   102       /* the initial value of rmu on iteration 0 */
   103       double *phi_min; /* double phi_min[1+ITER_MAX]; */
   104       /* phi_min[k] = min(phi[k]), where phi[k] is the value of phi on
   105          k-th iteration, 0 <= k <= iter */
   106       int best_iter;
   107       /* iteration number, on which the value of phi reached its best
   108          (minimal) value */
   109       double *best_x; /* double best_x[1+n]; */
   110       double *best_y; /* double best_y[1+m]; */
   111       double *best_z; /* double best_z[1+n]; */
   112       /* best point (in the sense of the merit function phi) which has
   113          been reached on iteration iter_best */
   114       double best_obj;
   115       /* objective value at the best point */
   116       double *dx_aff; /* double dx_aff[1+n]; */
   117       double *dy_aff; /* double dy_aff[1+m]; */
   118       double *dz_aff; /* double dz_aff[1+n]; */
   119       /* affine scaling direction */
   120       double alfa_aff_p, alfa_aff_d;
   121       /* maximal primal and dual stepsizes in affine scaling direction,
   122          on which x and z are still non-negative */
   123       double mu_aff;
   124       /* duality measure mu_aff = x_aff'*z_aff/n in the boundary point
   125          x_aff' = x+alfa_aff_p*dx_aff, z_aff' = z+alfa_aff_d*dz_aff */
   126       double sigma;
   127       /* Mehrotra's heuristic parameter (0 <= sigma <= 1) */
   128       double *dx_cc; /* double dx_cc[1+n]; */
   129       double *dy_cc; /* double dy_cc[1+m]; */
   130       double *dz_cc; /* double dz_cc[1+n]; */
   131       /* centering corrector direction */
   132       double *dx; /* double dx[1+n]; */
   133       double *dy; /* double dy[1+m]; */
   134       double *dz; /* double dz[1+n]; */
   135       /* final combined direction dx = dx_aff+dx_cc, dy = dy_aff+dy_cc,
   136          dz = dz_aff+dz_cc */
   137       double alfa_max_p;
   138       double alfa_max_d;
   139       /* maximal primal and dual stepsizes in combined direction, on
   140          which x and z are still non-negative */
   141 };
   142 
   143 /***********************************************************************
   144 *  initialize - allocate and initialize common storage area
   145 *
   146 *  This routine allocates and initializes the common storage area (CSA)
   147 *  used by interior-point method routines. */
   148 
   149 static void initialize(struct csa *csa)
   150 {     int m = csa->m;
   151       int n = csa->n;
   152       int i;
   153       if (csa->parm->msg_lev >= GLP_MSG_ALL)
   154          xprintf("Matrix A has %d non-zeros\n", csa->A_ptr[m+1]-1);
   155       csa->D = xcalloc(1+n, sizeof(double));
   156       /* P := I */
   157       csa->P = xcalloc(1+m+m, sizeof(int));
   158       for (i = 1; i <= m; i++) csa->P[i] = csa->P[m+i] = i;
   159       /* S := A*A', symbolically */
   160       csa->S_ptr = xcalloc(1+m+1, sizeof(int));
   161       csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind,
   162          csa->S_ptr);
   163       if (csa->parm->msg_lev >= GLP_MSG_ALL)
   164          xprintf("Matrix S = A*A' has %d non-zeros (upper triangle)\n",
   165             csa->S_ptr[m+1]-1 + m);
   166       /* determine P using specified ordering algorithm */
   167       if (csa->parm->ord_alg == GLP_ORD_NONE)
   168       {  if (csa->parm->msg_lev >= GLP_MSG_ALL)
   169             xprintf("Original ordering is being used\n");
   170          for (i = 1; i <= m; i++)
   171             csa->P[i] = csa->P[m+i] = i;
   172       }
   173       else if (csa->parm->ord_alg == GLP_ORD_QMD)
   174       {  if (csa->parm->msg_lev >= GLP_MSG_ALL)
   175             xprintf("Minimum degree ordering (QMD)...\n");
   176          min_degree(m, csa->S_ptr, csa->S_ind, csa->P);
   177       }
   178       else if (csa->parm->ord_alg == GLP_ORD_AMD)
   179       {  if (csa->parm->msg_lev >= GLP_MSG_ALL)
   180             xprintf("Approximate minimum degree ordering (AMD)...\n");
   181          amd_order1(m, csa->S_ptr, csa->S_ind, csa->P);
   182       }
   183       else if (csa->parm->ord_alg == GLP_ORD_SYMAMD)
   184       {  if (csa->parm->msg_lev >= GLP_MSG_ALL)
   185             xprintf("Approximate minimum degree ordering (SYMAMD)...\n")
   186                ;
   187          symamd_ord(m, csa->S_ptr, csa->S_ind, csa->P);
   188       }
   189       else
   190          xassert(csa != csa);
   191       /* S := P*A*A'*P', symbolically */
   192       xfree(csa->S_ind);
   193       csa->S_ind = adat_symbolic(m, n, csa->P, csa->A_ptr, csa->A_ind,
   194          csa->S_ptr);
   195       csa->S_val = xcalloc(csa->S_ptr[m+1], sizeof(double));
   196       csa->S_diag = xcalloc(1+m, sizeof(double));
   197       /* compute Cholesky factorization S = U'*U, symbolically */
   198       if (csa->parm->msg_lev >= GLP_MSG_ALL)
   199          xprintf("Computing Cholesky factorization S = L*L'...\n");
   200       csa->U_ptr = xcalloc(1+m+1, sizeof(int));
   201       csa->U_ind = chol_symbolic(m, csa->S_ptr, csa->S_ind, csa->U_ptr);
   202       if (csa->parm->msg_lev >= GLP_MSG_ALL)
   203          xprintf("Matrix L has %d non-zeros\n", csa->U_ptr[m+1]-1 + m);
   204       csa->U_val = xcalloc(csa->U_ptr[m+1], sizeof(double));
   205       csa->U_diag = xcalloc(1+m, sizeof(double));
   206       csa->iter = 0;
   207       csa->obj = 0.0;
   208       csa->rpi = 0.0;
   209       csa->rdi = 0.0;
   210       csa->gap = 0.0;
   211       csa->phi = 0.0;
   212       csa->mu = 0.0;
   213       csa->rmu = 0.0;
   214       csa->rmu0 = 0.0;
   215       csa->phi_min = xcalloc(1+ITER_MAX, sizeof(double));
   216       csa->best_iter = 0;
   217       csa->best_x = xcalloc(1+n, sizeof(double));
   218       csa->best_y = xcalloc(1+m, sizeof(double));
   219       csa->best_z = xcalloc(1+n, sizeof(double));
   220       csa->best_obj = 0.0;
   221       csa->dx_aff = xcalloc(1+n, sizeof(double));
   222       csa->dy_aff = xcalloc(1+m, sizeof(double));
   223       csa->dz_aff = xcalloc(1+n, sizeof(double));
   224       csa->alfa_aff_p = 0.0;
   225       csa->alfa_aff_d = 0.0;
   226       csa->mu_aff = 0.0;
   227       csa->sigma = 0.0;
   228       csa->dx_cc = xcalloc(1+n, sizeof(double));
   229       csa->dy_cc = xcalloc(1+m, sizeof(double));
   230       csa->dz_cc = xcalloc(1+n, sizeof(double));
   231       csa->dx = csa->dx_aff;
   232       csa->dy = csa->dy_aff;
   233       csa->dz = csa->dz_aff;
   234       csa->alfa_max_p = 0.0;
   235       csa->alfa_max_d = 0.0;
   236       return;
   237 }
   238 
   239 /***********************************************************************
   240 *  A_by_vec - compute y = A*x
   241 *
   242 *  This routine computes matrix-vector product y = A*x, where A is the
   243 *  constraint matrix. */
   244 
   245 static void A_by_vec(struct csa *csa, double x[], double y[])
   246 {     /* compute y = A*x */
   247       int m = csa->m;
   248       int *A_ptr = csa->A_ptr;
   249       int *A_ind = csa->A_ind;
   250       double *A_val = csa->A_val;
   251       int i, t, beg, end;
   252       double temp;
   253       for (i = 1; i <= m; i++)
   254       {  temp = 0.0;
   255          beg = A_ptr[i], end = A_ptr[i+1];
   256          for (t = beg; t < end; t++) temp += A_val[t] * x[A_ind[t]];
   257          y[i] = temp;
   258       }
   259       return;
   260 }
   261 
   262 /***********************************************************************
   263 *  AT_by_vec - compute y = A'*x
   264 *
   265 *  This routine computes matrix-vector product y = A'*x, where A' is a
   266 *  matrix transposed to the constraint matrix A. */
   267 
   268 static void AT_by_vec(struct csa *csa, double x[], double y[])
   269 {     /* compute y = A'*x, where A' is transposed to A */
   270       int m = csa->m;
   271       int n = csa->n;
   272       int *A_ptr = csa->A_ptr;
   273       int *A_ind = csa->A_ind;
   274       double *A_val = csa->A_val;
   275       int i, j, t, beg, end;
   276       double temp;
   277       for (j = 1; j <= n; j++) y[j] = 0.0;
   278       for (i = 1; i <= m; i++)
   279       {  temp = x[i];
   280          if (temp == 0.0) continue;
   281          beg = A_ptr[i], end = A_ptr[i+1];
   282          for (t = beg; t < end; t++) y[A_ind[t]] += A_val[t] * temp;
   283       }
   284       return;
   285 }
   286 
   287 /***********************************************************************
   288 *  decomp_NE - numeric factorization of matrix S = P*A*D*A'*P'
   289 *
   290 *  This routine implements numeric phase of Cholesky factorization of
   291 *  the matrix S = P*A*D*A'*P', which is a permuted matrix of the normal
   292 *  equation system. Matrix D is assumed to be already computed. */
   293 
   294 static void decomp_NE(struct csa *csa)
   295 {     adat_numeric(csa->m, csa->n, csa->P, csa->A_ptr, csa->A_ind,
   296          csa->A_val, csa->D, csa->S_ptr, csa->S_ind, csa->S_val,
   297          csa->S_diag);
   298       chol_numeric(csa->m, csa->S_ptr, csa->S_ind, csa->S_val,
   299          csa->S_diag, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag);
   300       return;
   301 }
   302 
   303 /***********************************************************************
   304 *  solve_NE - solve normal equation system
   305 *
   306 *  This routine solves the normal equation system:
   307 *
   308 *     A*D*A'*y = h.
   309 *
   310 *  It is assumed that the matrix A*D*A' has been previously factorized
   311 *  by the routine decomp_NE.
   312 *
   313 *  On entry the array y contains the vector of right-hand sides h. On
   314 *  exit this array contains the computed vector of unknowns y.
   315 *
   316 *  Once the vector y has been computed the routine checks for numeric
   317 *  stability. If the residual vector:
   318 *
   319 *     r = A*D*A'*y - h
   320 *
   321 *  is relatively small, the routine returns zero, otherwise non-zero is
   322 *  returned. */
   323 
   324 static int solve_NE(struct csa *csa, double y[])
   325 {     int m = csa->m;
   326       int n = csa->n;
   327       int *P = csa->P;
   328       int i, j, ret = 0;
   329       double *h, *r, *w;
   330       /* save vector of right-hand sides h */
   331       h = xcalloc(1+m, sizeof(double));
   332       for (i = 1; i <= m; i++) h[i] = y[i];
   333       /* solve normal equation system (A*D*A')*y = h */
   334       /* since S = P*A*D*A'*P' = U'*U, then A*D*A' = P'*U'*U*P, so we
   335          have inv(A*D*A') = P'*inv(U)*inv(U')*P */
   336       /* w := P*h */
   337       w = xcalloc(1+m, sizeof(double));
   338       for (i = 1; i <= m; i++) w[i] = y[P[i]];
   339       /* w := inv(U')*w */
   340       ut_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w);
   341       /* w := inv(U)*w */
   342       u_solve(m, csa->U_ptr, csa->U_ind, csa->U_val, csa->U_diag, w);
   343       /* y := P'*w */
   344       for (i = 1; i <= m; i++) y[i] = w[P[m+i]];
   345       xfree(w);
   346       /* compute residual vector r = A*D*A'*y - h */
   347       r = xcalloc(1+m, sizeof(double));
   348       /* w := A'*y */
   349       w = xcalloc(1+n, sizeof(double));
   350       AT_by_vec(csa, y, w);
   351       /* w := D*w */
   352       for (j = 1; j <= n; j++) w[j] *= csa->D[j];
   353       /* r := A*w */
   354       A_by_vec(csa, w, r);
   355       xfree(w);
   356       /* r := r - h */
   357       for (i = 1; i <= m; i++) r[i] -= h[i];
   358       /* check for numeric stability */
   359       for (i = 1; i <= m; i++)
   360       {  if (fabs(r[i]) / (1.0 + fabs(h[i])) > 1e-4)
   361          {  ret = 1;
   362             break;
   363          }
   364       }
   365       xfree(h);
   366       xfree(r);
   367       return ret;
   368 }
   369 
   370 /***********************************************************************
   371 *  solve_NS - solve Newtonian system
   372 *
   373 *  This routine solves the Newtonian system:
   374 *
   375 *     A*dx               = p
   376 *
   377 *           A'*dy +   dz = q
   378 *
   379 *     Z*dx        + X*dz = r
   380 *
   381 *  where X = diag(x[j]), Z = diag(z[j]), by reducing it to the normal
   382 *  equation system:
   383 *
   384 *     (A*inv(Z)*X*A')*dy = A*inv(Z)*(X*q-r)+p
   385 *
   386 *  (it is assumed that the matrix A*inv(Z)*X*A' has been factorized by
   387 *  the routine decomp_NE).
   388 *
   389 *  Once vector dy has been computed the routine computes vectors dx and
   390 *  dz as follows:
   391 *
   392 *     dx = inv(Z)*(X*(A'*dy-q)+r)
   393 *
   394 *     dz = inv(X)*(r-Z*dx)
   395 *
   396 *  The routine solve_NS returns the same code which was reported by the
   397 *  routine solve_NE (see above). */
   398 
   399 static int solve_NS(struct csa *csa, double p[], double q[], double r[],
   400       double dx[], double dy[], double dz[])
   401 {     int m = csa->m;
   402       int n = csa->n;
   403       double *x = csa->x;
   404       double *z = csa->z;
   405       int i, j, ret;
   406       double *w = dx;
   407       /* compute the vector of right-hand sides A*inv(Z)*(X*q-r)+p for
   408          the normal equation system */
   409       for (j = 1; j <= n; j++)
   410          w[j] = (x[j] * q[j] - r[j]) / z[j];
   411       A_by_vec(csa, w, dy);
   412       for (i = 1; i <= m; i++) dy[i] += p[i];
   413       /* solve the normal equation system to compute vector dy */
   414       ret = solve_NE(csa, dy);
   415       /* compute vectors dx and dz */
   416       AT_by_vec(csa, dy, dx);
   417       for (j = 1; j <= n; j++)
   418       {  dx[j] = (x[j] * (dx[j] - q[j]) + r[j]) / z[j];
   419          dz[j] = (r[j] - z[j] * dx[j]) / x[j];
   420       }
   421       return ret;
   422 }
   423 
   424 /***********************************************************************
   425 *  initial_point - choose initial point using Mehrotra's heuristic
   426 *
   427 *  This routine chooses a starting point using a heuristic proposed in
   428 *  the paper:
   429 *
   430 *  S. Mehrotra. On the implementation of a primal-dual interior point
   431 *  method. SIAM J. on Optim., 2(4), pp. 575-601, 1992.
   432 *
   433 *  The starting point x in the primal space is chosen as a solution of
   434 *  the following least squares problem:
   435 *
   436 *     minimize    ||x||
   437 *
   438 *     subject to  A*x = b
   439 *
   440 *  which can be computed explicitly as follows:
   441 *
   442 *     x = A'*inv(A*A')*b
   443 *
   444 *  Similarly, the starting point (y, z) in the dual space is chosen as
   445 *  a solution of the following least squares problem:
   446 *
   447 *     minimize    ||z||
   448 *
   449 *     subject to  A'*y + z = c
   450 *
   451 *  which can be computed explicitly as follows:
   452 *
   453 *     y = inv(A*A')*A*c
   454 *
   455 *     z = c - A'*y
   456 *
   457 *  However, some components of the vectors x and z may be non-positive
   458 *  or close to zero, so the routine uses a Mehrotra's heuristic to find
   459 *  a more appropriate starting point. */
   460 
   461 static void initial_point(struct csa *csa)
   462 {     int m = csa->m;
   463       int n = csa->n;
   464       double *b = csa->b;
   465       double *c = csa->c;
   466       double *x = csa->x;
   467       double *y = csa->y;
   468       double *z = csa->z;
   469       double *D = csa->D;
   470       int i, j;
   471       double dp, dd, ex, ez, xz;
   472       /* factorize A*A' */
   473       for (j = 1; j <= n; j++) D[j] = 1.0;
   474       decomp_NE(csa);
   475       /* x~ = A'*inv(A*A')*b */
   476       for (i = 1; i <= m; i++) y[i] = b[i];
   477       solve_NE(csa, y);
   478       AT_by_vec(csa, y, x);
   479       /* y~ = inv(A*A')*A*c */
   480       A_by_vec(csa, c, y);
   481       solve_NE(csa, y);
   482       /* z~ = c - A'*y~ */
   483       AT_by_vec(csa, y,z);
   484       for (j = 1; j <= n; j++) z[j] = c[j] - z[j];
   485       /* use Mehrotra's heuristic in order to choose more appropriate
   486          starting point with positive components of vectors x and z */
   487       dp = dd = 0.0;
   488       for (j = 1; j <= n; j++)
   489       {  if (dp < -1.5 * x[j]) dp = -1.5 * x[j];
   490          if (dd < -1.5 * z[j]) dd = -1.5 * z[j];
   491       }
   492       /* note that b = 0 involves x = 0, and c = 0 involves y = 0 and
   493          z = 0, so we need to be careful */
   494       if (dp == 0.0) dp = 1.5;
   495       if (dd == 0.0) dd = 1.5;
   496       ex = ez = xz = 0.0;
   497       for (j = 1; j <= n; j++)
   498       {  ex += (x[j] + dp);
   499          ez += (z[j] + dd);
   500          xz += (x[j] + dp) * (z[j] + dd);
   501       }
   502       dp += 0.5 * (xz / ez);
   503       dd += 0.5 * (xz / ex);
   504       for (j = 1; j <= n; j++)
   505       {  x[j] += dp;
   506          z[j] += dd;
   507          xassert(x[j] > 0.0 && z[j] > 0.0);
   508       }
   509       return;
   510 }
   511 
   512 /***********************************************************************
   513 *  basic_info - perform basic computations at the current point
   514 *
   515 *  This routine computes the following quantities at the current point:
   516 *
   517 *  1) value of the objective function:
   518 *
   519 *     F = c'*x + c[0]
   520 *
   521 *  2) relative primal infeasibility:
   522 *
   523 *     rpi = ||A*x-b|| / (1+||b||)
   524 *
   525 *  3) relative dual infeasibility:
   526 *
   527 *     rdi = ||A'*y+z-c|| / (1+||c||)
   528 *
   529 *  4) primal-dual gap (relative difference between the primal and the
   530 *     dual objective function values):
   531 *
   532 *     gap = |c'*x-b'*y| / (1+|c'*x|)
   533 *
   534 *  5) merit function:
   535 *
   536 *     phi = ||A*x-b|| / max(1,||b||) + ||A'*y+z-c|| / max(1,||c||) +
   537 *
   538 *         + |c'*x-b'*y| / max(1,||b||,||c||)
   539 *
   540 *  6) duality measure:
   541 *
   542 *     mu = x'*z / n
   543 *
   544 *  7) the ratio of infeasibility to mu:
   545 *
   546 *     rmu = max(||A*x-b||,||A'*y+z-c||) / mu
   547 *
   548 *  where ||*|| denotes euclidian norm, *' denotes transposition. */
   549 
   550 static void basic_info(struct csa *csa)
   551 {     int m = csa->m;
   552       int n = csa->n;
   553       double *b = csa->b;
   554       double *c = csa->c;
   555       double *x = csa->x;
   556       double *y = csa->y;
   557       double *z = csa->z;
   558       int i, j;
   559       double norm1, bnorm, norm2, cnorm, cx, by, *work, temp;
   560       /* compute value of the objective function */
   561       temp = c[0];
   562       for (j = 1; j <= n; j++) temp += c[j] * x[j];
   563       csa->obj = temp;
   564       /* norm1 = ||A*x-b|| */
   565       work = xcalloc(1+m, sizeof(double));
   566       A_by_vec(csa, x, work);
   567       norm1 = 0.0;
   568       for (i = 1; i <= m; i++)
   569          norm1 += (work[i] - b[i]) * (work[i] - b[i]);
   570       norm1 = sqrt(norm1);
   571       xfree(work);
   572       /* bnorm = ||b|| */
   573       bnorm = 0.0;
   574       for (i = 1; i <= m; i++) bnorm += b[i] * b[i];
   575       bnorm = sqrt(bnorm);
   576       /* compute relative primal infeasibility */
   577       csa->rpi = norm1 / (1.0 + bnorm);
   578       /* norm2 = ||A'*y+z-c|| */
   579       work = xcalloc(1+n, sizeof(double));
   580       AT_by_vec(csa, y, work);
   581       norm2 = 0.0;
   582       for (j = 1; j <= n; j++)
   583          norm2 += (work[j] + z[j] - c[j]) * (work[j] + z[j] - c[j]);
   584       norm2 = sqrt(norm2);
   585       xfree(work);
   586       /* cnorm = ||c|| */
   587       cnorm = 0.0;
   588       for (j = 1; j <= n; j++) cnorm += c[j] * c[j];
   589       cnorm = sqrt(cnorm);
   590       /* compute relative dual infeasibility */
   591       csa->rdi = norm2 / (1.0 + cnorm);
   592       /* by = b'*y */
   593       by = 0.0;
   594       for (i = 1; i <= m; i++) by += b[i] * y[i];
   595       /* cx = c'*x */
   596       cx = 0.0;
   597       for (j = 1; j <= n; j++) cx += c[j] * x[j];
   598       /* compute primal-dual gap */
   599       csa->gap = fabs(cx - by) / (1.0 + fabs(cx));
   600       /* compute merit function */
   601       csa->phi = 0.0;
   602       csa->phi += norm1 / (bnorm > 1.0 ? bnorm : 1.0);
   603       csa->phi += norm2 / (cnorm > 1.0 ? cnorm : 1.0);
   604       temp = 1.0;
   605       if (temp < bnorm) temp = bnorm;
   606       if (temp < cnorm) temp = cnorm;
   607       csa->phi += fabs(cx - by) / temp;
   608       /* compute duality measure */
   609       temp = 0.0;
   610       for (j = 1; j <= n; j++) temp += x[j] * z[j];
   611       csa->mu = temp / (double)n;
   612       /* compute the ratio of infeasibility to mu */
   613       csa->rmu = (norm1 > norm2 ? norm1 : norm2) / csa->mu;
   614       return;
   615 }
   616 
   617 /***********************************************************************
   618 *  make_step - compute next point using Mehrotra's technique
   619 *
   620 *  This routine computes the next point using the predictor-corrector
   621 *  technique proposed in the paper:
   622 *
   623 *  S. Mehrotra. On the implementation of a primal-dual interior point
   624 *  method. SIAM J. on Optim., 2(4), pp. 575-601, 1992.
   625 *
   626 *  At first, the routine computes so called affine scaling (predictor)
   627 *  direction (dx_aff,dy_aff,dz_aff) which is a solution of the system:
   628 *
   629 *     A*dx_aff                       = b - A*x
   630 *
   631 *               A'*dy_aff +   dz_aff = c - A'*y - z
   632 *
   633 *     Z*dx_aff            + X*dz_aff = - X*Z*e
   634 *
   635 *  where (x,y,z) is the current point, X = diag(x[j]), Z = diag(z[j]),
   636 *  e = (1,...,1)'.
   637 *
   638 *  Then, the routine computes the centering parameter sigma, using the
   639 *  following Mehrotra's heuristic:
   640 *
   641 *     alfa_aff_p = inf{0 <= alfa <= 1 | x+alfa*dx_aff >= 0}
   642 *
   643 *     alfa_aff_d = inf{0 <= alfa <= 1 | z+alfa*dz_aff >= 0}
   644 *
   645 *     mu_aff = (x+alfa_aff_p*dx_aff)'*(z+alfa_aff_d*dz_aff)/n
   646 *
   647 *     sigma = (mu_aff/mu)^3
   648 *
   649 *  where alfa_aff_p is the maximal stepsize along the affine scaling
   650 *  direction in the primal space, alfa_aff_d is the maximal stepsize
   651 *  along the same direction in the dual space.
   652 *
   653 *  After determining sigma the routine computes so called centering
   654 *  (corrector) direction (dx_cc,dy_cc,dz_cc) which is the solution of
   655 *  the system:
   656 *
   657 *     A*dx_cc                     = 0
   658 *
   659 *              A'*dy_cc +   dz_cc = 0
   660 *
   661 *     Z*dx_cc           + X*dz_cc = sigma*mu*e - X*Z*e
   662 *
   663 *  Finally, the routine computes the combined direction
   664 *
   665 *     (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc)
   666 *
   667 *  and determines maximal primal and dual stepsizes along the combined
   668 *  direction:
   669 *
   670 *     alfa_max_p = inf{0 <= alfa <= 1 | x+alfa*dx >= 0}
   671 *
   672 *     alfa_max_d = inf{0 <= alfa <= 1 | z+alfa*dz >= 0}
   673 *
   674 *  In order to prevent the next point to be too close to the boundary
   675 *  of the positive ortant, the routine decreases maximal stepsizes:
   676 *
   677 *     alfa_p = gamma_p * alfa_max_p
   678 *
   679 *     alfa_d = gamma_d * alfa_max_d
   680 *
   681 *  where gamma_p and gamma_d are scaling factors, and computes the next
   682 *  point:
   683 *
   684 *     x_new = x + alfa_p * dx
   685 *
   686 *     y_new = y + alfa_d * dy
   687 *
   688 *     z_new = z + alfa_d * dz
   689 *
   690 *  which becomes the current point on the next iteration. */
   691 
   692 static int make_step(struct csa *csa)
   693 {     int m = csa->m;
   694       int n = csa->n;
   695       double *b = csa->b;
   696       double *c = csa->c;
   697       double *x = csa->x;
   698       double *y = csa->y;
   699       double *z = csa->z;
   700       double *dx_aff = csa->dx_aff;
   701       double *dy_aff = csa->dy_aff;
   702       double *dz_aff = csa->dz_aff;
   703       double *dx_cc = csa->dx_cc;
   704       double *dy_cc = csa->dy_cc;
   705       double *dz_cc = csa->dz_cc;
   706       double *dx = csa->dx;
   707       double *dy = csa->dy;
   708       double *dz = csa->dz;
   709       int i, j, ret = 0;
   710       double temp, gamma_p, gamma_d, *p, *q, *r;
   711       /* allocate working arrays */
   712       p = xcalloc(1+m, sizeof(double));
   713       q = xcalloc(1+n, sizeof(double));
   714       r = xcalloc(1+n, sizeof(double));
   715       /* p = b - A*x */
   716       A_by_vec(csa, x, p);
   717       for (i = 1; i <= m; i++) p[i] = b[i] - p[i];
   718       /* q = c - A'*y - z */
   719       AT_by_vec(csa, y,q);
   720       for (j = 1; j <= n; j++) q[j] = c[j] - q[j] - z[j];
   721       /* r = - X * Z * e */
   722       for (j = 1; j <= n; j++) r[j] = - x[j] * z[j];
   723       /* solve the first Newtonian system */
   724       if (solve_NS(csa, p, q, r, dx_aff, dy_aff, dz_aff))
   725       {  ret = 1;
   726          goto done;
   727       }
   728       /* alfa_aff_p = inf{0 <= alfa <= 1 | x + alfa*dx_aff >= 0} */
   729       /* alfa_aff_d = inf{0 <= alfa <= 1 | z + alfa*dz_aff >= 0} */
   730       csa->alfa_aff_p = csa->alfa_aff_d = 1.0;
   731       for (j = 1; j <= n; j++)
   732       {  if (dx_aff[j] < 0.0)
   733          {  temp = - x[j] / dx_aff[j];
   734             if (csa->alfa_aff_p > temp) csa->alfa_aff_p = temp;
   735          }
   736          if (dz_aff[j] < 0.0)
   737          {  temp = - z[j] / dz_aff[j];
   738             if (csa->alfa_aff_d > temp) csa->alfa_aff_d = temp;
   739          }
   740       }
   741       /* mu_aff = (x+alfa_aff_p*dx_aff)' * (z+alfa_aff_d*dz_aff) / n */
   742       temp = 0.0;
   743       for (j = 1; j <= n; j++)
   744          temp += (x[j] + csa->alfa_aff_p * dx_aff[j]) *
   745                  (z[j] + csa->alfa_aff_d * dz_aff[j]);
   746       csa->mu_aff = temp / (double)n;
   747       /* sigma = (mu_aff/mu)^3 */
   748       temp = csa->mu_aff / csa->mu;
   749       csa->sigma = temp * temp * temp;
   750       /* p = 0 */
   751       for (i = 1; i <= m; i++) p[i] = 0.0;
   752       /* q = 0 */
   753       for (j = 1; j <= n; j++) q[j] = 0.0;
   754       /* r = sigma * mu * e - X * Z * e */
   755       for (j = 1; j <= n; j++)
   756          r[j] = csa->sigma * csa->mu - dx_aff[j] * dz_aff[j];
   757       /* solve the second Newtonian system with the same coefficients
   758          but with altered right-hand sides */
   759       if (solve_NS(csa, p, q, r, dx_cc, dy_cc, dz_cc))
   760       {  ret = 1;
   761          goto done;
   762       }
   763       /* (dx,dy,dz) = (dx_aff,dy_aff,dz_aff) + (dx_cc,dy_cc,dz_cc) */
   764       for (j = 1; j <= n; j++) dx[j] = dx_aff[j] + dx_cc[j];
   765       for (i = 1; i <= m; i++) dy[i] = dy_aff[i] + dy_cc[i];
   766       for (j = 1; j <= n; j++) dz[j] = dz_aff[j] + dz_cc[j];
   767       /* alfa_max_p = inf{0 <= alfa <= 1 | x + alfa*dx >= 0} */
   768       /* alfa_max_d = inf{0 <= alfa <= 1 | z + alfa*dz >= 0} */
   769       csa->alfa_max_p = csa->alfa_max_d = 1.0;
   770       for (j = 1; j <= n; j++)
   771       {  if (dx[j] < 0.0)
   772          {  temp = - x[j] / dx[j];
   773             if (csa->alfa_max_p > temp) csa->alfa_max_p = temp;
   774          }
   775          if (dz[j] < 0.0)
   776          {  temp = - z[j] / dz[j];
   777             if (csa->alfa_max_d > temp) csa->alfa_max_d = temp;
   778          }
   779       }
   780       /* determine scale factors (not implemented yet) */
   781       gamma_p = 0.90;
   782       gamma_d = 0.90;
   783       /* compute the next point */
   784       for (j = 1; j <= n; j++)
   785       {  x[j] += gamma_p * csa->alfa_max_p * dx[j];
   786          xassert(x[j] > 0.0);
   787       }
   788       for (i = 1; i <= m; i++)
   789          y[i] += gamma_d * csa->alfa_max_d * dy[i];
   790       for (j = 1; j <= n; j++)
   791       {  z[j] += gamma_d * csa->alfa_max_d * dz[j];
   792          xassert(z[j] > 0.0);
   793       }
   794 done: /* free working arrays */
   795       xfree(p);
   796       xfree(q);
   797       xfree(r);
   798       return ret;
   799 }
   800 
   801 /***********************************************************************
   802 *  terminate - deallocate common storage area
   803 *
   804 *  This routine frees all memory allocated to the common storage area
   805 *  used by interior-point method routines. */
   806 
   807 static void terminate(struct csa *csa)
   808 {     xfree(csa->D);
   809       xfree(csa->P);
   810       xfree(csa->S_ptr);
   811       xfree(csa->S_ind);
   812       xfree(csa->S_val);
   813       xfree(csa->S_diag);
   814       xfree(csa->U_ptr);
   815       xfree(csa->U_ind);
   816       xfree(csa->U_val);
   817       xfree(csa->U_diag);
   818       xfree(csa->phi_min);
   819       xfree(csa->best_x);
   820       xfree(csa->best_y);
   821       xfree(csa->best_z);
   822       xfree(csa->dx_aff);
   823       xfree(csa->dy_aff);
   824       xfree(csa->dz_aff);
   825       xfree(csa->dx_cc);
   826       xfree(csa->dy_cc);
   827       xfree(csa->dz_cc);
   828       return;
   829 }
   830 
   831 /***********************************************************************
   832 *  ipm_main - main interior-point method routine
   833 *
   834 *  This is a main routine of the primal-dual interior-point method.
   835 *
   836 *  The routine ipm_main returns one of the following codes:
   837 *
   838 *  0 - optimal solution found;
   839 *  1 - problem has no feasible (primal or dual) solution;
   840 *  2 - no convergence;
   841 *  3 - iteration limit exceeded;
   842 *  4 - numeric instability on solving Newtonian system.
   843 *
   844 *  In case of non-zero return code the routine returns the best point,
   845 *  which has been reached during optimization. */
   846 
   847 static int ipm_main(struct csa *csa)
   848 {     int m = csa->m;
   849       int n = csa->n;
   850       int i, j, status;
   851       double temp;
   852       /* choose initial point using Mehrotra's heuristic */
   853       if (csa->parm->msg_lev >= GLP_MSG_ALL)
   854          xprintf("Guessing initial point...\n");
   855       initial_point(csa);
   856       /* main loop starts here */
   857       if (csa->parm->msg_lev >= GLP_MSG_ALL)
   858          xprintf("Optimization begins...\n");
   859       for (;;)
   860       {  /* perform basic computations at the current point */
   861          basic_info(csa);
   862          /* save initial value of rmu */
   863          if (csa->iter == 0) csa->rmu0 = csa->rmu;
   864          /* accumulate values of min(phi[k]) and save the best point */
   865          xassert(csa->iter <= ITER_MAX);
   866          if (csa->iter == 0 || csa->phi_min[csa->iter-1] > csa->phi)
   867          {  csa->phi_min[csa->iter] = csa->phi;
   868             csa->best_iter = csa->iter;
   869             for (j = 1; j <= n; j++) csa->best_x[j] = csa->x[j];
   870             for (i = 1; i <= m; i++) csa->best_y[i] = csa->y[i];
   871             for (j = 1; j <= n; j++) csa->best_z[j] = csa->z[j];
   872             csa->best_obj = csa->obj;
   873          }
   874          else
   875             csa->phi_min[csa->iter] = csa->phi_min[csa->iter-1];
   876          /* display information at the current point */
   877          if (csa->parm->msg_lev >= GLP_MSG_ON)
   878             xprintf("%3d: obj = %17.9e; rpi = %8.1e; rdi = %8.1e; gap ="
   879                " %8.1e\n", csa->iter, csa->obj, csa->rpi, csa->rdi,
   880                csa->gap);
   881          /* check if the current point is optimal */
   882          if (csa->rpi < 1e-8 && csa->rdi < 1e-8 && csa->gap < 1e-8)
   883          {  if (csa->parm->msg_lev >= GLP_MSG_ALL)
   884                xprintf("OPTIMAL SOLUTION FOUND\n");
   885             status = 0;
   886             break;
   887          }
   888          /* check if the problem has no feasible solution */
   889          temp = 1e5 * csa->phi_min[csa->iter];
   890          if (temp < 1e-8) temp = 1e-8;
   891          if (csa->phi >= temp)
   892          {  if (csa->parm->msg_lev >= GLP_MSG_ALL)
   893                xprintf("PROBLEM HAS NO FEASIBLE PRIMAL/DUAL SOLUTION\n")
   894                   ;
   895             status = 1;
   896             break;
   897          }
   898          /* check for very slow convergence or divergence */
   899          if (((csa->rpi >= 1e-8 || csa->rdi >= 1e-8) && csa->rmu /
   900                csa->rmu0 >= 1e6) ||
   901                (csa->iter >= 30 && csa->phi_min[csa->iter] >= 0.5 *
   902                csa->phi_min[csa->iter - 30]))
   903          {  if (csa->parm->msg_lev >= GLP_MSG_ALL)
   904                xprintf("NO CONVERGENCE; SEARCH TERMINATED\n");
   905             status = 2;
   906             break;
   907          }
   908          /* check for maximal number of iterations */
   909          if (csa->iter == ITER_MAX)
   910          {  if (csa->parm->msg_lev >= GLP_MSG_ALL)
   911                xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n");
   912             status = 3;
   913             break;
   914          }
   915          /* start the next iteration */
   916          csa->iter++;
   917          /* factorize normal equation system */
   918          for (j = 1; j <= n; j++) csa->D[j] = csa->x[j] / csa->z[j];
   919          decomp_NE(csa);
   920          /* compute the next point using Mehrotra's predictor-corrector
   921             technique */
   922          if (make_step(csa))
   923          {  if (csa->parm->msg_lev >= GLP_MSG_ALL)
   924                xprintf("NUMERIC INSTABILITY; SEARCH TERMINATED\n");
   925             status = 4;
   926             break;
   927          }
   928       }
   929       /* restore the best point */
   930       if (status != 0)
   931       {  for (j = 1; j <= n; j++) csa->x[j] = csa->best_x[j];
   932          for (i = 1; i <= m; i++) csa->y[i] = csa->best_y[i];
   933          for (j = 1; j <= n; j++) csa->z[j] = csa->best_z[j];
   934          if (csa->parm->msg_lev >= GLP_MSG_ALL)
   935             xprintf("Best point %17.9e was reached on iteration %d\n",
   936                csa->best_obj, csa->best_iter);
   937       }
   938       /* return to the calling program */
   939       return status;
   940 }
   941 
   942 /***********************************************************************
   943 *  NAME
   944 *
   945 *  ipm_solve - core LP solver based on the interior-point method
   946 *
   947 *  SYNOPSIS
   948 *
   949 *  #include "glpipm.h"
   950 *  int ipm_solve(glp_prob *P, const glp_iptcp *parm);
   951 *
   952 *  DESCRIPTION
   953 *
   954 *  The routine ipm_solve is a core LP solver based on the primal-dual
   955 *  interior-point method.
   956 *
   957 *  The routine assumes the following standard formulation of LP problem
   958 *  to be solved:
   959 *
   960 *     minimize
   961 *
   962 *        F = c[0] + c[1]*x[1] + c[2]*x[2] + ... + c[n]*x[n]
   963 *
   964 *     subject to linear constraints
   965 *
   966 *        a[1,1]*x[1] + a[1,2]*x[2] + ... + a[1,n]*x[n] = b[1]
   967 *
   968 *        a[2,1]*x[1] + a[2,2]*x[2] + ... + a[2,n]*x[n] = b[2]
   969 *
   970 *              . . . . . .
   971 *
   972 *        a[m,1]*x[1] + a[m,2]*x[2] + ... + a[m,n]*x[n] = b[m]
   973 *
   974 *     and non-negative variables
   975 *
   976 *        x[1] >= 0, x[2] >= 0, ..., x[n] >= 0
   977 *
   978 *  where:
   979 *  F                    is the objective function;
   980 *  x[1], ..., x[n]      are (structural) variables;
   981 *  c[0]                 is a constant term of the objective function;
   982 *  c[1], ..., c[n]      are objective coefficients;
   983 *  a[1,1], ..., a[m,n]  are constraint coefficients;
   984 *  b[1], ..., b[n]      are right-hand sides.
   985 *
   986 *  The solution is three vectors x, y, and z, which are stored by the
   987 *  routine in the arrays x, y, and z, respectively. These vectors
   988 *  correspond to the best primal-dual point found during optimization.
   989 *  They are approximate solution of the following system (which is the
   990 *  Karush-Kuhn-Tucker optimality conditions):
   991 *
   992 *     A*x      = b      (primal feasibility condition)
   993 *
   994 *     A'*y + z = c      (dual feasibility condition)
   995 *
   996 *     x'*z     = 0      (primal-dual complementarity condition)
   997 *
   998 *     x >= 0, z >= 0    (non-negativity condition)
   999 *
  1000 *  where:
  1001 *  x[1], ..., x[n]      are primal (structural) variables;
  1002 *  y[1], ..., y[m]      are dual variables (Lagrange multipliers) for
  1003 *                       equality constraints;
  1004 *  z[1], ..., z[n]      are dual variables (Lagrange multipliers) for
  1005 *                       non-negativity constraints.
  1006 *
  1007 *  RETURNS
  1008 *
  1009 *  0  LP has been successfully solved.
  1010 *
  1011 *  GLP_ENOCVG
  1012 *     No convergence.
  1013 *
  1014 *  GLP_EITLIM
  1015 *     Iteration limit exceeded.
  1016 *
  1017 *  GLP_EINSTAB
  1018 *     Numeric instability on solving Newtonian system.
  1019 *
  1020 *  In case of non-zero return code the routine returns the best point,
  1021 *  which has been reached during optimization. */
  1022 
  1023 int ipm_solve(glp_prob *P, const glp_iptcp *parm)
  1024 {     struct csa _dsa, *csa = &_dsa;
  1025       int m = P->m;
  1026       int n = P->n;
  1027       int nnz = P->nnz;
  1028       GLPROW *row;
  1029       GLPCOL *col;
  1030       GLPAIJ *aij;
  1031       int i, j, loc, ret, *A_ind, *A_ptr;
  1032       double dir, *A_val, *b, *c, *x, *y, *z;
  1033       xassert(m > 0);
  1034       xassert(n > 0);
  1035       /* allocate working arrays */
  1036       A_ptr = xcalloc(1+m+1, sizeof(int));
  1037       A_ind = xcalloc(1+nnz, sizeof(int));
  1038       A_val = xcalloc(1+nnz, sizeof(double));
  1039       b = xcalloc(1+m, sizeof(double));
  1040       c = xcalloc(1+n, sizeof(double));
  1041       x = xcalloc(1+n, sizeof(double));
  1042       y = xcalloc(1+m, sizeof(double));
  1043       z = xcalloc(1+n, sizeof(double));
  1044       /* prepare rows and constraint coefficients */
  1045       loc = 1;
  1046       for (i = 1; i <= m; i++)
  1047       {  row = P->row[i];
  1048          xassert(row->type == GLP_FX);
  1049          b[i] = row->lb * row->rii;
  1050          A_ptr[i] = loc;
  1051          for (aij = row->ptr; aij != NULL; aij = aij->r_next)
  1052          {  A_ind[loc] = aij->col->j;
  1053             A_val[loc] = row->rii * aij->val * aij->col->sjj;
  1054             loc++;
  1055          }
  1056       }
  1057       A_ptr[m+1] = loc;
  1058       xassert(loc-1 == nnz);
  1059       /* prepare columns and objective coefficients */
  1060       if (P->dir == GLP_MIN)
  1061          dir = +1.0;
  1062       else if (P->dir == GLP_MAX)
  1063          dir = -1.0;
  1064       else
  1065          xassert(P != P);
  1066       c[0] = dir * P->c0;
  1067       for (j = 1; j <= n; j++)
  1068       {  col = P->col[j];
  1069          xassert(col->type == GLP_LO && col->lb == 0.0);
  1070          c[j] = dir * col->coef * col->sjj;
  1071       }
  1072       /* allocate and initialize the common storage area */
  1073       csa->m = m;
  1074       csa->n = n;
  1075       csa->A_ptr = A_ptr;
  1076       csa->A_ind = A_ind;
  1077       csa->A_val = A_val;
  1078       csa->b = b;
  1079       csa->c = c;
  1080       csa->x = x;
  1081       csa->y = y;
  1082       csa->z = z;
  1083       csa->parm = parm;
  1084       initialize(csa);
  1085       /* solve LP with the interior-point method */
  1086       ret = ipm_main(csa);
  1087       /* deallocate the common storage area */
  1088       terminate(csa);
  1089       /* determine solution status */
  1090       if (ret == 0)
  1091       {  /* optimal solution found */
  1092          P->ipt_stat = GLP_OPT;
  1093          ret = 0;
  1094       }
  1095       else if (ret == 1)
  1096       {  /* problem has no feasible (primal or dual) solution */
  1097          P->ipt_stat = GLP_NOFEAS;
  1098          ret = 0;
  1099       }
  1100       else if (ret == 2)
  1101       {  /* no convergence */
  1102          P->ipt_stat = GLP_INFEAS;
  1103          ret = GLP_ENOCVG;
  1104       }
  1105       else if (ret == 3)
  1106       {  /* iteration limit exceeded */
  1107          P->ipt_stat = GLP_INFEAS;
  1108          ret = GLP_EITLIM;
  1109       }
  1110       else if (ret == 4)
  1111       {  /* numeric instability on solving Newtonian system */
  1112          P->ipt_stat = GLP_INFEAS;
  1113          ret = GLP_EINSTAB;
  1114       }
  1115       else
  1116          xassert(ret != ret);
  1117       /* store row solution components */
  1118       for (i = 1; i <= m; i++)
  1119       {  row = P->row[i];
  1120          row->pval = row->lb;
  1121          row->dval = dir * y[i] * row->rii;
  1122       }
  1123       /* store column solution components */
  1124       P->ipt_obj = P->c0;
  1125       for (j = 1; j <= n; j++)
  1126       {  col = P->col[j];
  1127          col->pval = x[j] * col->sjj;
  1128          col->dval = dir * z[j] / col->sjj;
  1129          P->ipt_obj += col->coef * col->pval;
  1130       }
  1131       /* free working arrays */
  1132       xfree(A_ptr);
  1133       xfree(A_ind);
  1134       xfree(A_val);
  1135       xfree(b);
  1136       xfree(c);
  1137       xfree(x);
  1138       xfree(y);
  1139       xfree(z);
  1140       return ret;
  1141 }
  1142 
  1143 /* eof */