src/glplib01.c
changeset 1 c445c931472f
equal deleted inserted replaced
-1:000000000000 0:122fe7af0daf
       
     1 /* glplib01.c (bignum arithmetic) */
       
     2 
       
     3 /***********************************************************************
       
     4 *  This code is part of GLPK (GNU Linear Programming Kit).
       
     5 *
       
     6 *  Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
       
     7 *  2009, 2010 Andrew Makhorin, Department for Applied Informatics,
       
     8 *  Moscow Aviation Institute, Moscow, Russia. All rights reserved.
       
     9 *  E-mail: <mao@gnu.org>.
       
    10 *
       
    11 *  GLPK is free software: you can redistribute it and/or modify it
       
    12 *  under the terms of the GNU General Public License as published by
       
    13 *  the Free Software Foundation, either version 3 of the License, or
       
    14 *  (at your option) any later version.
       
    15 *
       
    16 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
       
    17 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
       
    18 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
       
    19 *  License for more details.
       
    20 *
       
    21 *  You should have received a copy of the GNU General Public License
       
    22 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
       
    23 ***********************************************************************/
       
    24 
       
    25 #include "glpenv.h"
       
    26 #include "glplib.h"
       
    27 
       
    28 /***********************************************************************
       
    29 *  Two routines below are intended to multiply and divide unsigned
       
    30 *  integer numbers of arbitrary precision.
       
    31 * 
       
    32 *  The routines assume that an unsigned integer number is represented in
       
    33 *  the positional numeral system with the base 2^16 = 65536, i.e. each
       
    34 *  "digit" of the number is in the range [0, 65535] and represented as
       
    35 *  a 16-bit value of the unsigned short type. In other words, a number x
       
    36 *  has the following representation:
       
    37 * 
       
    38 *         n-1
       
    39 *     x = sum d[j] * 65536^j,
       
    40 *         j=0
       
    41 * 
       
    42 *  where n is the number of places (positions), and d[j] is j-th "digit"
       
    43 *  of x, 0 <= d[j] <= 65535.
       
    44 ***********************************************************************/
       
    45 
       
    46 /***********************************************************************
       
    47 *  NAME
       
    48 *
       
    49 *  bigmul - multiply unsigned integer numbers of arbitrary precision
       
    50 * 
       
    51 *  SYNOPSIS
       
    52 * 
       
    53 *  #include "glplib.h"
       
    54 *  void bigmul(int n, int m, unsigned short x[], unsigned short y[]);
       
    55 * 
       
    56 *  DESCRIPTION
       
    57 * 
       
    58 *  The routine bigmul multiplies unsigned integer numbers of arbitrary
       
    59 *  precision.
       
    60 * 
       
    61 *  n is the number of digits of multiplicand, n >= 1;
       
    62 * 
       
    63 *  m is the number of digits of multiplier, m >= 1;
       
    64 * 
       
    65 *  x is an array containing digits of the multiplicand in elements
       
    66 *  x[m], x[m+1], ..., x[n+m-1]. Contents of x[0], x[1], ..., x[m-1] are
       
    67 *  ignored on entry.
       
    68 * 
       
    69 *  y is an array containing digits of the multiplier in elements y[0],
       
    70 *  y[1], ..., y[m-1].
       
    71 * 
       
    72 *  On exit digits of the product are stored in elements x[0], x[1], ...,
       
    73 *  x[n+m-1]. The array y is not changed. */
       
    74 
       
    75 void bigmul(int n, int m, unsigned short x[], unsigned short y[])
       
    76 {     int i, j;
       
    77       unsigned int t;
       
    78       xassert(n >= 1);
       
    79       xassert(m >= 1);
       
    80       for (j = 0; j < m; j++) x[j] = 0;
       
    81       for (i = 0; i < n; i++)
       
    82       {  if (x[i+m])
       
    83          {  t = 0;
       
    84             for (j = 0; j < m; j++)
       
    85             {  t += (unsigned int)x[i+m] * (unsigned int)y[j] +
       
    86                     (unsigned int)x[i+j];
       
    87                x[i+j] = (unsigned short)t;
       
    88                t >>= 16;
       
    89             }
       
    90             x[i+m] = (unsigned short)t;
       
    91          }
       
    92       }
       
    93       return;
       
    94 }
       
    95 
       
    96 /***********************************************************************
       
    97 *  NAME
       
    98 *
       
    99 *  bigdiv - divide unsigned integer numbers of arbitrary precision
       
   100 * 
       
   101 *  SYNOPSIS
       
   102 * 
       
   103 *  #include "glplib.h"
       
   104 *  void bigdiv(int n, int m, unsigned short x[], unsigned short y[]);
       
   105 * 
       
   106 *  DESCRIPTION
       
   107 * 
       
   108 *  The routine bigdiv divides one unsigned integer number of arbitrary
       
   109 *  precision by another with the algorithm described in [1].
       
   110 * 
       
   111 *  n is the difference between the number of digits of dividend and the
       
   112 *  number of digits of divisor, n >= 0.
       
   113 * 
       
   114 *  m is the number of digits of divisor, m >= 1.
       
   115 * 
       
   116 *  x is an array containing digits of the dividend in elements x[0],
       
   117 *  x[1], ..., x[n+m-1].
       
   118 * 
       
   119 *  y is an array containing digits of the divisor in elements y[0],
       
   120 *  y[1], ..., y[m-1]. The highest digit y[m-1] must be non-zero.
       
   121 * 
       
   122 *  On exit n+1 digits of the quotient are stored in elements x[m],
       
   123 *  x[m+1], ..., x[n+m], and m digits of the remainder are stored in
       
   124 *  elements x[0], x[1], ..., x[m-1]. The array y is changed but then
       
   125 *  restored.
       
   126 *
       
   127 *  REFERENCES
       
   128 *
       
   129 *  1. D. Knuth. The Art of Computer Programming. Vol. 2: Seminumerical
       
   130 *  Algorithms. Stanford University, 1969. */
       
   131 
       
   132 void bigdiv(int n, int m, unsigned short x[], unsigned short y[])
       
   133 {     int i, j;
       
   134       unsigned int t;
       
   135       unsigned short d, q, r;
       
   136       xassert(n >= 0);
       
   137       xassert(m >= 1);
       
   138       xassert(y[m-1] != 0);
       
   139       /* special case when divisor has the only digit */
       
   140       if (m == 1)
       
   141       {  d = 0;
       
   142          for (i = n; i >= 0; i--)
       
   143          {  t = ((unsigned int)d << 16) + (unsigned int)x[i];
       
   144             x[i+1] = (unsigned short)(t / y[0]);
       
   145             d = (unsigned short)(t % y[0]);
       
   146          }
       
   147          x[0] = d;
       
   148          goto done;
       
   149       }
       
   150       /* multiply dividend and divisor by a normalizing coefficient in
       
   151          order to provide the condition y[m-1] >= base / 2 */
       
   152       d = (unsigned short)(0x10000 / ((unsigned int)y[m-1] + 1));
       
   153       if (d == 1)
       
   154          x[n+m] = 0;
       
   155       else
       
   156       {  t = 0;
       
   157          for (i = 0; i < n+m; i++)
       
   158          {  t += (unsigned int)x[i] * (unsigned int)d;
       
   159             x[i] = (unsigned short)t;
       
   160             t >>= 16;
       
   161          }
       
   162          x[n+m] = (unsigned short)t;
       
   163          t = 0;
       
   164          for (j = 0; j < m; j++)
       
   165          {  t += (unsigned int)y[j] * (unsigned int)d;
       
   166             y[j] = (unsigned short)t;
       
   167             t >>= 16;
       
   168          }
       
   169       }
       
   170       /* main loop */
       
   171       for (i = n; i >= 0; i--)
       
   172       {  /* estimate and correct the current digit of quotient */
       
   173          if (x[i+m] < y[m-1])
       
   174          {  t = ((unsigned int)x[i+m] << 16) + (unsigned int)x[i+m-1];
       
   175             q = (unsigned short)(t / (unsigned int)y[m-1]);
       
   176             r = (unsigned short)(t % (unsigned int)y[m-1]);
       
   177             if (q == 0) goto putq; else goto test;
       
   178          }
       
   179          q = 0;
       
   180          r = x[i+m-1];
       
   181 decr:    q--; /* if q = 0 then q-- = 0xFFFF */
       
   182          t = (unsigned int)r + (unsigned int)y[m-1];
       
   183          r = (unsigned short)t;
       
   184          if (t > 0xFFFF) goto msub;
       
   185 test:    t = (unsigned int)y[m-2] * (unsigned int)q;
       
   186          if ((unsigned short)(t >> 16) > r) goto decr;
       
   187          if ((unsigned short)(t >> 16) < r) goto msub;
       
   188          if ((unsigned short)t > x[i+m-2]) goto decr;
       
   189 msub:    /* now subtract divisor multiplied by the current digit of
       
   190             quotient from the current dividend */
       
   191          if (q == 0) goto putq;
       
   192          t = 0;
       
   193          for (j = 0; j < m; j++)
       
   194          {  t += (unsigned int)y[j] * (unsigned int)q;
       
   195             if (x[i+j] < (unsigned short)t) t += 0x10000;
       
   196             x[i+j] -= (unsigned short)t;
       
   197             t >>= 16;
       
   198          }
       
   199          if (x[i+m] >= (unsigned short)t) goto putq;
       
   200          /* perform correcting addition, because the current digit of
       
   201             quotient is greater by one than its correct value */
       
   202          q--;
       
   203          t = 0;
       
   204          for (j = 0; j < m; j++)
       
   205          {  t += (unsigned int)x[i+j] + (unsigned int)y[j];
       
   206             x[i+j] = (unsigned short)t;
       
   207             t >>= 16;
       
   208          }
       
   209 putq:    /* store the current digit of quotient */
       
   210          x[i+m] = q;
       
   211       }
       
   212       /* divide divisor and remainder by the normalizing coefficient in
       
   213          order to restore their original values */
       
   214       if (d > 1)
       
   215       {  t = 0;
       
   216          for (i = m-1; i >= 0; i--)
       
   217          {  t = (t << 16) + (unsigned int)x[i];
       
   218             x[i] = (unsigned short)(t / (unsigned int)d);
       
   219             t %= (unsigned int)d;
       
   220          }
       
   221          t = 0;
       
   222          for (j = m-1; j >= 0; j--)
       
   223          {  t = (t << 16) + (unsigned int)y[j];
       
   224             y[j] = (unsigned short)(t / (unsigned int)d);
       
   225             t %= (unsigned int)d;
       
   226          }
       
   227       }
       
   228 done: return;
       
   229 }
       
   230 
       
   231 /**********************************************************************/
       
   232 
       
   233 #if 0
       
   234 #include <assert.h>
       
   235 #include <stdio.h>
       
   236 #include <stdlib.h>
       
   237 #include "glprng.h"
       
   238 
       
   239 #define N_MAX 7
       
   240 /* maximal number of digits in multiplicand */
       
   241 
       
   242 #define M_MAX 5
       
   243 /* maximal number of digits in multiplier */
       
   244 
       
   245 #define N_TEST 1000000
       
   246 /* number of tests */
       
   247 
       
   248 int main(void)
       
   249 {     RNG *rand;
       
   250       int d, j, n, m, test;
       
   251       unsigned short x[N_MAX], y[M_MAX], z[N_MAX+M_MAX];
       
   252       rand = rng_create_rand();
       
   253       for (test = 1; test <= N_TEST; test++)
       
   254       {  /* x[0,...,n-1] := multiplicand */
       
   255          n = 1 + rng_unif_rand(rand, N_MAX-1);
       
   256          assert(1 <= n && n <= N_MAX);
       
   257          for (j = 0; j < n; j++)
       
   258          {  d = rng_unif_rand(rand, 65536);
       
   259             assert(0 <= d && d <= 65535);
       
   260             x[j] = (unsigned short)d;
       
   261          }
       
   262          /* y[0,...,m-1] := multiplier */
       
   263          m = 1 + rng_unif_rand(rand, M_MAX-1);
       
   264          assert(1 <= m && m <= M_MAX);
       
   265          for (j = 0; j < m; j++)
       
   266          {  d = rng_unif_rand(rand, 65536);
       
   267             assert(0 <= d && d <= 65535);
       
   268             y[j] = (unsigned short)d;
       
   269          }
       
   270          if (y[m-1] == 0) y[m-1] = 1;
       
   271          /* z[0,...,n+m-1] := x * y */
       
   272          for (j = 0; j < n; j++) z[m+j] = x[j];
       
   273          bigmul(n, m, z, y);
       
   274          /* z[0,...,m-1] := z mod y, z[m,...,n+m-1] := z div y */
       
   275          bigdiv(n, m, z, y);
       
   276          /* z mod y must be 0 */
       
   277          for (j = 0; j < m; j++) assert(z[j] == 0);
       
   278          /* z div y must be x */
       
   279          for (j = 0; j < n; j++) assert(z[m+j] == x[j]);
       
   280       }
       
   281       fprintf(stderr, "%d tests successfully passed\n", N_TEST);
       
   282       rng_delete_rand(rand);
       
   283       return 0;
       
   284 }
       
   285 #endif
       
   286 
       
   287 /* eof */