|
1 /* glplib03.c (miscellaneous library routines) */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #include "glpenv.h" |
|
26 #include "glplib.h" |
|
27 |
|
28 /*********************************************************************** |
|
29 * NAME |
|
30 * |
|
31 * str2int - convert character string to value of int type |
|
32 * |
|
33 * SYNOPSIS |
|
34 * |
|
35 * #include "glplib.h" |
|
36 * int str2int(const char *str, int *val); |
|
37 * |
|
38 * DESCRIPTION |
|
39 * |
|
40 * The routine str2int converts the character string str to a value of |
|
41 * integer type and stores the value into location, which the parameter |
|
42 * val points to (in the case of error content of this location is not |
|
43 * changed). |
|
44 * |
|
45 * RETURNS |
|
46 * |
|
47 * The routine returns one of the following error codes: |
|
48 * |
|
49 * 0 - no error; |
|
50 * 1 - value out of range; |
|
51 * 2 - character string is syntactically incorrect. */ |
|
52 |
|
53 int str2int(const char *str, int *_val) |
|
54 { int d, k, s, val = 0; |
|
55 /* scan optional sign */ |
|
56 if (str[0] == '+') |
|
57 s = +1, k = 1; |
|
58 else if (str[0] == '-') |
|
59 s = -1, k = 1; |
|
60 else |
|
61 s = +1, k = 0; |
|
62 /* check for the first digit */ |
|
63 if (!isdigit((unsigned char)str[k])) return 2; |
|
64 /* scan digits */ |
|
65 while (isdigit((unsigned char)str[k])) |
|
66 { d = str[k++] - '0'; |
|
67 if (s > 0) |
|
68 { if (val > INT_MAX / 10) return 1; |
|
69 val *= 10; |
|
70 if (val > INT_MAX - d) return 1; |
|
71 val += d; |
|
72 } |
|
73 else |
|
74 { if (val < INT_MIN / 10) return 1; |
|
75 val *= 10; |
|
76 if (val < INT_MIN + d) return 1; |
|
77 val -= d; |
|
78 } |
|
79 } |
|
80 /* check for terminator */ |
|
81 if (str[k] != '\0') return 2; |
|
82 /* conversion has been done */ |
|
83 *_val = val; |
|
84 return 0; |
|
85 } |
|
86 |
|
87 /*********************************************************************** |
|
88 * NAME |
|
89 * |
|
90 * str2num - convert character string to value of double type |
|
91 * |
|
92 * SYNOPSIS |
|
93 * |
|
94 * #include "glplib.h" |
|
95 * int str2num(const char *str, double *val); |
|
96 * |
|
97 * DESCRIPTION |
|
98 * |
|
99 * The routine str2num converts the character string str to a value of |
|
100 * double type and stores the value into location, which the parameter |
|
101 * val points to (in the case of error content of this location is not |
|
102 * changed). |
|
103 * |
|
104 * RETURNS |
|
105 * |
|
106 * The routine returns one of the following error codes: |
|
107 * |
|
108 * 0 - no error; |
|
109 * 1 - value out of range; |
|
110 * 2 - character string is syntactically incorrect. */ |
|
111 |
|
112 int str2num(const char *str, double *_val) |
|
113 { int k; |
|
114 double val; |
|
115 /* scan optional sign */ |
|
116 k = (str[0] == '+' || str[0] == '-' ? 1 : 0); |
|
117 /* check for decimal point */ |
|
118 if (str[k] == '.') |
|
119 { k++; |
|
120 /* a digit should follow it */ |
|
121 if (!isdigit((unsigned char)str[k])) return 2; |
|
122 k++; |
|
123 goto frac; |
|
124 } |
|
125 /* integer part should start with a digit */ |
|
126 if (!isdigit((unsigned char)str[k])) return 2; |
|
127 /* scan integer part */ |
|
128 while (isdigit((unsigned char)str[k])) k++; |
|
129 /* check for decimal point */ |
|
130 if (str[k] == '.') k++; |
|
131 frac: /* scan optional fraction part */ |
|
132 while (isdigit((unsigned char)str[k])) k++; |
|
133 /* check for decimal exponent */ |
|
134 if (str[k] == 'E' || str[k] == 'e') |
|
135 { k++; |
|
136 /* scan optional sign */ |
|
137 if (str[k] == '+' || str[k] == '-') k++; |
|
138 /* a digit should follow E, E+ or E- */ |
|
139 if (!isdigit((unsigned char)str[k])) return 2; |
|
140 } |
|
141 /* scan optional exponent part */ |
|
142 while (isdigit((unsigned char)str[k])) k++; |
|
143 /* check for terminator */ |
|
144 if (str[k] != '\0') return 2; |
|
145 /* perform conversion */ |
|
146 { char *endptr; |
|
147 val = strtod(str, &endptr); |
|
148 if (*endptr != '\0') return 2; |
|
149 } |
|
150 /* check for overflow */ |
|
151 if (!(-DBL_MAX <= val && val <= +DBL_MAX)) return 1; |
|
152 /* check for underflow */ |
|
153 if (-DBL_MIN < val && val < +DBL_MIN) val = 0.0; |
|
154 /* conversion has been done */ |
|
155 *_val = val; |
|
156 return 0; |
|
157 } |
|
158 |
|
159 /*********************************************************************** |
|
160 * NAME |
|
161 * |
|
162 * strspx - remove all spaces from character string |
|
163 * |
|
164 * SYNOPSIS |
|
165 * |
|
166 * #include "glplib.h" |
|
167 * char *strspx(char *str); |
|
168 * |
|
169 * DESCRIPTION |
|
170 * |
|
171 * The routine strspx removes all spaces from the character string str. |
|
172 * |
|
173 * RETURNS |
|
174 * |
|
175 * The routine returns a pointer to the character string. |
|
176 * |
|
177 * EXAMPLES |
|
178 * |
|
179 * strspx(" Errare humanum est ") => "Errarehumanumest" |
|
180 * |
|
181 * strspx(" ") => "" */ |
|
182 |
|
183 char *strspx(char *str) |
|
184 { char *s, *t; |
|
185 for (s = t = str; *s; s++) if (*s != ' ') *t++ = *s; |
|
186 *t = '\0'; |
|
187 return str; |
|
188 } |
|
189 |
|
190 /*********************************************************************** |
|
191 * NAME |
|
192 * |
|
193 * strtrim - remove trailing spaces from character string |
|
194 * |
|
195 * SYNOPSIS |
|
196 * |
|
197 * #include "glplib.h" |
|
198 * char *strtrim(char *str); |
|
199 * |
|
200 * DESCRIPTION |
|
201 * |
|
202 * The routine strtrim removes trailing spaces from the character |
|
203 * string str. |
|
204 * |
|
205 * RETURNS |
|
206 * |
|
207 * The routine returns a pointer to the character string. |
|
208 * |
|
209 * EXAMPLES |
|
210 * |
|
211 * strtrim("Errare humanum est ") => "Errare humanum est" |
|
212 * |
|
213 * strtrim(" ") => "" */ |
|
214 |
|
215 char *strtrim(char *str) |
|
216 { char *t; |
|
217 for (t = strrchr(str, '\0') - 1; t >= str; t--) |
|
218 { if (*t != ' ') break; |
|
219 *t = '\0'; |
|
220 } |
|
221 return str; |
|
222 } |
|
223 |
|
224 /*********************************************************************** |
|
225 * NAME |
|
226 * |
|
227 * strrev - reverse character string |
|
228 * |
|
229 * SYNOPSIS |
|
230 * |
|
231 * #include "glplib.h" |
|
232 * char *strrev(char *s); |
|
233 * |
|
234 * DESCRIPTION |
|
235 * |
|
236 * The routine strrev changes characters in a character string s to the |
|
237 * reverse order, except the terminating null character. |
|
238 * |
|
239 * RETURNS |
|
240 * |
|
241 * The routine returns the pointer s. |
|
242 * |
|
243 * EXAMPLES |
|
244 * |
|
245 * strrev("") => "" |
|
246 * |
|
247 * strrev("Today is Monday") => "yadnoM si yadoT" */ |
|
248 |
|
249 char *strrev(char *s) |
|
250 { int i, j; |
|
251 char t; |
|
252 for (i = 0, j = strlen(s)-1; i < j; i++, j--) |
|
253 t = s[i], s[i] = s[j], s[j] = t; |
|
254 return s; |
|
255 } |
|
256 |
|
257 /*********************************************************************** |
|
258 * NAME |
|
259 * |
|
260 * gcd - find greatest common divisor of two integers |
|
261 * |
|
262 * SYNOPSIS |
|
263 * |
|
264 * #include "glplib.h" |
|
265 * int gcd(int x, int y); |
|
266 * |
|
267 * RETURNS |
|
268 * |
|
269 * The routine gcd returns gcd(x, y), the greatest common divisor of |
|
270 * the two positive integers given. |
|
271 * |
|
272 * ALGORITHM |
|
273 * |
|
274 * The routine gcd is based on Euclid's algorithm. |
|
275 * |
|
276 * REFERENCES |
|
277 * |
|
278 * Don Knuth, The Art of Computer Programming, Vol.2: Seminumerical |
|
279 * Algorithms, 3rd Edition, Addison-Wesley, 1997. Section 4.5.2: The |
|
280 * Greatest Common Divisor, pp. 333-56. */ |
|
281 |
|
282 int gcd(int x, int y) |
|
283 { int r; |
|
284 xassert(x > 0 && y > 0); |
|
285 while (y > 0) |
|
286 r = x % y, x = y, y = r; |
|
287 return x; |
|
288 } |
|
289 |
|
290 /*********************************************************************** |
|
291 * NAME |
|
292 * |
|
293 * gcdn - find greatest common divisor of n integers |
|
294 * |
|
295 * SYNOPSIS |
|
296 * |
|
297 * #include "glplib.h" |
|
298 * int gcdn(int n, int x[]); |
|
299 * |
|
300 * RETURNS |
|
301 * |
|
302 * The routine gcdn returns gcd(x[1], x[2], ..., x[n]), the greatest |
|
303 * common divisor of n positive integers given, n > 0. |
|
304 * |
|
305 * BACKGROUND |
|
306 * |
|
307 * The routine gcdn is based on the following identity: |
|
308 * |
|
309 * gcd(x, y, z) = gcd(gcd(x, y), z). |
|
310 * |
|
311 * REFERENCES |
|
312 * |
|
313 * Don Knuth, The Art of Computer Programming, Vol.2: Seminumerical |
|
314 * Algorithms, 3rd Edition, Addison-Wesley, 1997. Section 4.5.2: The |
|
315 * Greatest Common Divisor, pp. 333-56. */ |
|
316 |
|
317 int gcdn(int n, int x[]) |
|
318 { int d, j; |
|
319 xassert(n > 0); |
|
320 for (j = 1; j <= n; j++) |
|
321 { xassert(x[j] > 0); |
|
322 if (j == 1) |
|
323 d = x[1]; |
|
324 else |
|
325 d = gcd(d, x[j]); |
|
326 if (d == 1) break; |
|
327 } |
|
328 return d; |
|
329 } |
|
330 |
|
331 /*********************************************************************** |
|
332 * NAME |
|
333 * |
|
334 * lcm - find least common multiple of two integers |
|
335 * |
|
336 * SYNOPSIS |
|
337 * |
|
338 * #include "glplib.h" |
|
339 * int lcm(int x, int y); |
|
340 * |
|
341 * RETURNS |
|
342 * |
|
343 * The routine lcm returns lcm(x, y), the least common multiple of the |
|
344 * two positive integers given. In case of integer overflow the routine |
|
345 * returns zero. |
|
346 * |
|
347 * BACKGROUND |
|
348 * |
|
349 * The routine lcm is based on the following identity: |
|
350 * |
|
351 * lcm(x, y) = (x * y) / gcd(x, y) = x * [y / gcd(x, y)], |
|
352 * |
|
353 * where gcd(x, y) is the greatest common divisor of x and y. */ |
|
354 |
|
355 int lcm(int x, int y) |
|
356 { xassert(x > 0); |
|
357 xassert(y > 0); |
|
358 y /= gcd(x, y); |
|
359 if (x > INT_MAX / y) return 0; |
|
360 return x * y; |
|
361 } |
|
362 |
|
363 /*********************************************************************** |
|
364 * NAME |
|
365 * |
|
366 * lcmn - find least common multiple of n integers |
|
367 * |
|
368 * SYNOPSIS |
|
369 * |
|
370 * #include "glplib.h" |
|
371 * int lcmn(int n, int x[]); |
|
372 * |
|
373 * RETURNS |
|
374 * |
|
375 * The routine lcmn returns lcm(x[1], x[2], ..., x[n]), the least |
|
376 * common multiple of n positive integers given, n > 0. In case of |
|
377 * integer overflow the routine returns zero. |
|
378 * |
|
379 * BACKGROUND |
|
380 * |
|
381 * The routine lcmn is based on the following identity: |
|
382 * |
|
383 * lcmn(x, y, z) = lcm(lcm(x, y), z), |
|
384 * |
|
385 * where lcm(x, y) is the least common multiple of x and y. */ |
|
386 |
|
387 int lcmn(int n, int x[]) |
|
388 { int m, j; |
|
389 xassert(n > 0); |
|
390 for (j = 1; j <= n; j++) |
|
391 { xassert(x[j] > 0); |
|
392 if (j == 1) |
|
393 m = x[1]; |
|
394 else |
|
395 m = lcm(m, x[j]); |
|
396 if (m == 0) break; |
|
397 } |
|
398 return m; |
|
399 } |
|
400 |
|
401 /*********************************************************************** |
|
402 * NAME |
|
403 * |
|
404 * round2n - round floating-point number to nearest power of two |
|
405 * |
|
406 * SYNOPSIS |
|
407 * |
|
408 * #include "glplib.h" |
|
409 * double round2n(double x); |
|
410 * |
|
411 * RETURNS |
|
412 * |
|
413 * Given a positive floating-point value x the routine round2n returns |
|
414 * 2^n such that |x - 2^n| is minimal. |
|
415 * |
|
416 * EXAMPLES |
|
417 * |
|
418 * round2n(10.1) = 2^3 = 8 |
|
419 * round2n(15.3) = 2^4 = 16 |
|
420 * round2n(0.01) = 2^(-7) = 0.0078125 |
|
421 * |
|
422 * BACKGROUND |
|
423 * |
|
424 * Let x = f * 2^e, where 0.5 <= f < 1 is a normalized fractional part, |
|
425 * e is an integer exponent. Then, obviously, 0.5 * 2^e <= x < 2^e, so |
|
426 * if x - 0.5 * 2^e <= 2^e - x, we choose 0.5 * 2^e = 2^(e-1), and 2^e |
|
427 * otherwise. The latter condition can be written as 2 * x <= 1.5 * 2^e |
|
428 * or 2 * f * 2^e <= 1.5 * 2^e or, finally, f <= 0.75. */ |
|
429 |
|
430 double round2n(double x) |
|
431 { int e; |
|
432 double f; |
|
433 xassert(x > 0.0); |
|
434 f = frexp(x, &e); |
|
435 return ldexp(1.0, f <= 0.75 ? e-1 : e); |
|
436 } |
|
437 |
|
438 /*********************************************************************** |
|
439 * NAME |
|
440 * |
|
441 * fp2rat - convert floating-point number to rational number |
|
442 * |
|
443 * SYNOPSIS |
|
444 * |
|
445 * #include "glplib.h" |
|
446 * int fp2rat(double x, double eps, double *p, double *q); |
|
447 * |
|
448 * DESCRIPTION |
|
449 * |
|
450 * Given a floating-point number 0 <= x < 1 the routine fp2rat finds |
|
451 * its "best" rational approximation p / q, where p >= 0 and q > 0 are |
|
452 * integer numbers, such that |x - p / q| <= eps. |
|
453 * |
|
454 * RETURNS |
|
455 * |
|
456 * The routine fp2rat returns the number of iterations used to achieve |
|
457 * the specified precision eps. |
|
458 * |
|
459 * EXAMPLES |
|
460 * |
|
461 * For x = sqrt(2) - 1 = 0.414213562373095 and eps = 1e-6 the routine |
|
462 * gives p = 408 and q = 985, where 408 / 985 = 0.414213197969543. |
|
463 * |
|
464 * BACKGROUND |
|
465 * |
|
466 * It is well known that every positive real number x can be expressed |
|
467 * as the following continued fraction: |
|
468 * |
|
469 * x = b[0] + a[1] |
|
470 * ------------------------ |
|
471 * b[1] + a[2] |
|
472 * ----------------- |
|
473 * b[2] + a[3] |
|
474 * ---------- |
|
475 * b[3] + ... |
|
476 * |
|
477 * where: |
|
478 * |
|
479 * a[k] = 1, k = 0, 1, 2, ... |
|
480 * |
|
481 * b[k] = floor(x[k]), k = 0, 1, 2, ... |
|
482 * |
|
483 * x[0] = x, |
|
484 * |
|
485 * x[k] = 1 / frac(x[k-1]), k = 1, 2, 3, ... |
|
486 * |
|
487 * To find the "best" rational approximation of x the routine computes |
|
488 * partial fractions f[k] by dropping after k terms as follows: |
|
489 * |
|
490 * f[k] = A[k] / B[k], |
|
491 * |
|
492 * where: |
|
493 * |
|
494 * A[-1] = 1, A[0] = b[0], B[-1] = 0, B[0] = 1, |
|
495 * |
|
496 * A[k] = b[k] * A[k-1] + a[k] * A[k-2], |
|
497 * |
|
498 * B[k] = b[k] * B[k-1] + a[k] * B[k-2]. |
|
499 * |
|
500 * Once the condition |
|
501 * |
|
502 * |x - f[k]| <= eps |
|
503 * |
|
504 * has been satisfied, the routine reports p = A[k] and q = B[k] as the |
|
505 * final answer. |
|
506 * |
|
507 * In the table below here is some statistics obtained for one million |
|
508 * random numbers uniformly distributed in the range [0, 1). |
|
509 * |
|
510 * eps max p mean p max q mean q max k mean k |
|
511 * ------------------------------------------------------------- |
|
512 * 1e-1 8 1.6 9 3.2 3 1.4 |
|
513 * 1e-2 98 6.2 99 12.4 5 2.4 |
|
514 * 1e-3 997 20.7 998 41.5 8 3.4 |
|
515 * 1e-4 9959 66.6 9960 133.5 10 4.4 |
|
516 * 1e-5 97403 211.7 97404 424.2 13 5.3 |
|
517 * 1e-6 479669 669.9 479670 1342.9 15 6.3 |
|
518 * 1e-7 1579030 2127.3 3962146 4257.8 16 7.3 |
|
519 * 1e-8 26188823 6749.4 26188824 13503.4 19 8.2 |
|
520 * |
|
521 * REFERENCES |
|
522 * |
|
523 * W. B. Jones and W. J. Thron, "Continued Fractions: Analytic Theory |
|
524 * and Applications," Encyclopedia on Mathematics and Its Applications, |
|
525 * Addison-Wesley, 1980. */ |
|
526 |
|
527 int fp2rat(double x, double eps, double *p, double *q) |
|
528 { int k; |
|
529 double xk, Akm1, Ak, Bkm1, Bk, ak, bk, fk, temp; |
|
530 if (!(0.0 <= x && x < 1.0)) |
|
531 xerror("fp2rat: x = %g; number out of range\n", x); |
|
532 for (k = 0; ; k++) |
|
533 { xassert(k <= 100); |
|
534 if (k == 0) |
|
535 { /* x[0] = x */ |
|
536 xk = x; |
|
537 /* A[-1] = 1 */ |
|
538 Akm1 = 1.0; |
|
539 /* A[0] = b[0] = floor(x[0]) = 0 */ |
|
540 Ak = 0.0; |
|
541 /* B[-1] = 0 */ |
|
542 Bkm1 = 0.0; |
|
543 /* B[0] = 1 */ |
|
544 Bk = 1.0; |
|
545 } |
|
546 else |
|
547 { /* x[k] = 1 / frac(x[k-1]) */ |
|
548 temp = xk - floor(xk); |
|
549 xassert(temp != 0.0); |
|
550 xk = 1.0 / temp; |
|
551 /* a[k] = 1 */ |
|
552 ak = 1.0; |
|
553 /* b[k] = floor(x[k]) */ |
|
554 bk = floor(xk); |
|
555 /* A[k] = b[k] * A[k-1] + a[k] * A[k-2] */ |
|
556 temp = bk * Ak + ak * Akm1; |
|
557 Akm1 = Ak, Ak = temp; |
|
558 /* B[k] = b[k] * B[k-1] + a[k] * B[k-2] */ |
|
559 temp = bk * Bk + ak * Bkm1; |
|
560 Bkm1 = Bk, Bk = temp; |
|
561 } |
|
562 /* f[k] = A[k] / B[k] */ |
|
563 fk = Ak / Bk; |
|
564 #if 0 |
|
565 print("%.*g / %.*g = %.*g", DBL_DIG, Ak, DBL_DIG, Bk, DBL_DIG, |
|
566 fk); |
|
567 #endif |
|
568 if (fabs(x - fk) <= eps) break; |
|
569 } |
|
570 *p = Ak; |
|
571 *q = Bk; |
|
572 return k; |
|
573 } |
|
574 |
|
575 /*********************************************************************** |
|
576 * NAME |
|
577 * |
|
578 * jday - convert calendar date to Julian day number |
|
579 * |
|
580 * SYNOPSIS |
|
581 * |
|
582 * #include "glplib.h" |
|
583 * int jday(int d, int m, int y); |
|
584 * |
|
585 * DESCRIPTION |
|
586 * |
|
587 * The routine jday converts a calendar date, Gregorian calendar, to |
|
588 * corresponding Julian day number j. |
|
589 * |
|
590 * From the given day d, month m, and year y, the Julian day number j |
|
591 * is computed without using tables. |
|
592 * |
|
593 * The routine is valid for 1 <= y <= 4000. |
|
594 * |
|
595 * RETURNS |
|
596 * |
|
597 * The routine jday returns the Julian day number, or negative value if |
|
598 * the specified date is incorrect. |
|
599 * |
|
600 * REFERENCES |
|
601 * |
|
602 * R. G. Tantzen, Algorithm 199: conversions between calendar date and |
|
603 * Julian day number, Communications of the ACM, vol. 6, no. 8, p. 444, |
|
604 * Aug. 1963. */ |
|
605 |
|
606 int jday(int d, int m, int y) |
|
607 { int c, ya, j, dd; |
|
608 if (!(1 <= d && d <= 31 && 1 <= m && m <= 12 && 1 <= y && |
|
609 y <= 4000)) |
|
610 { j = -1; |
|
611 goto done; |
|
612 } |
|
613 if (m >= 3) m -= 3; else m += 9, y--; |
|
614 c = y / 100; |
|
615 ya = y - 100 * c; |
|
616 j = (146097 * c) / 4 + (1461 * ya) / 4 + (153 * m + 2) / 5 + d + |
|
617 1721119; |
|
618 jdate(j, &dd, NULL, NULL); |
|
619 if (d != dd) j = -1; |
|
620 done: return j; |
|
621 } |
|
622 |
|
623 /*********************************************************************** |
|
624 * NAME |
|
625 * |
|
626 * jdate - convert Julian day number to calendar date |
|
627 * |
|
628 * SYNOPSIS |
|
629 * |
|
630 * #include "glplib.h" |
|
631 * void jdate(int j, int *d, int *m, int *y); |
|
632 * |
|
633 * DESCRIPTION |
|
634 * |
|
635 * The routine jdate converts a Julian day number j to corresponding |
|
636 * calendar date, Gregorian calendar. |
|
637 * |
|
638 * The day d, month m, and year y are computed without using tables and |
|
639 * stored in corresponding locations. |
|
640 * |
|
641 * The routine is valid for 1721426 <= j <= 3182395. |
|
642 * |
|
643 * RETURNS |
|
644 * |
|
645 * If the conversion is successful, the routine returns zero, otherwise |
|
646 * non-zero. |
|
647 * |
|
648 * REFERENCES |
|
649 * |
|
650 * R. G. Tantzen, Algorithm 199: conversions between calendar date and |
|
651 * Julian day number, Communications of the ACM, vol. 6, no. 8, p. 444, |
|
652 * Aug. 1963. */ |
|
653 |
|
654 int jdate(int j, int *_d, int *_m, int *_y) |
|
655 { int d, m, y, ret = 0; |
|
656 if (!(1721426 <= j && j <= 3182395)) |
|
657 { ret = 1; |
|
658 goto done; |
|
659 } |
|
660 j -= 1721119; |
|
661 y = (4 * j - 1) / 146097; |
|
662 j = (4 * j - 1) % 146097; |
|
663 d = j / 4; |
|
664 j = (4 * d + 3) / 1461; |
|
665 d = (4 * d + 3) % 1461; |
|
666 d = (d + 4) / 4; |
|
667 m = (5 * d - 3) / 153; |
|
668 d = (5 * d - 3) % 153; |
|
669 d = (d + 5) / 5; |
|
670 y = 100 * y + j; |
|
671 if (m <= 9) m += 3; else m -= 9, y++; |
|
672 if (_d != NULL) *_d = d; |
|
673 if (_m != NULL) *_m = m; |
|
674 if (_y != NULL) *_y = y; |
|
675 done: return ret; |
|
676 } |
|
677 |
|
678 #if 0 |
|
679 int main(void) |
|
680 { int jbeg, jend, j, d, m, y; |
|
681 jbeg = jday(1, 1, 1); |
|
682 jend = jday(31, 12, 4000); |
|
683 for (j = jbeg; j <= jend; j++) |
|
684 { xassert(jdate(j, &d, &m, &y) == 0); |
|
685 xassert(jday(d, m, y) == j); |
|
686 } |
|
687 xprintf("Routines jday and jdate work correctly.\n"); |
|
688 return 0; |
|
689 } |
|
690 #endif |
|
691 |
|
692 /* eof */ |