alpar@1
|
1 |
/* glplib03.c (miscellaneous library routines) */
|
alpar@1
|
2 |
|
alpar@1
|
3 |
/***********************************************************************
|
alpar@1
|
4 |
* This code is part of GLPK (GNU Linear Programming Kit).
|
alpar@1
|
5 |
*
|
alpar@1
|
6 |
* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
alpar@1
|
7 |
* 2009, 2010 Andrew Makhorin, Department for Applied Informatics,
|
alpar@1
|
8 |
* Moscow Aviation Institute, Moscow, Russia. All rights reserved.
|
alpar@1
|
9 |
* E-mail: <mao@gnu.org>.
|
alpar@1
|
10 |
*
|
alpar@1
|
11 |
* GLPK is free software: you can redistribute it and/or modify it
|
alpar@1
|
12 |
* under the terms of the GNU General Public License as published by
|
alpar@1
|
13 |
* the Free Software Foundation, either version 3 of the License, or
|
alpar@1
|
14 |
* (at your option) any later version.
|
alpar@1
|
15 |
*
|
alpar@1
|
16 |
* GLPK is distributed in the hope that it will be useful, but WITHOUT
|
alpar@1
|
17 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
alpar@1
|
18 |
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
alpar@1
|
19 |
* License for more details.
|
alpar@1
|
20 |
*
|
alpar@1
|
21 |
* You should have received a copy of the GNU General Public License
|
alpar@1
|
22 |
* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
|
alpar@1
|
23 |
***********************************************************************/
|
alpar@1
|
24 |
|
alpar@1
|
25 |
#include "glpenv.h"
|
alpar@1
|
26 |
#include "glplib.h"
|
alpar@1
|
27 |
|
alpar@1
|
28 |
/***********************************************************************
|
alpar@1
|
29 |
* NAME
|
alpar@1
|
30 |
*
|
alpar@1
|
31 |
* str2int - convert character string to value of int type
|
alpar@1
|
32 |
*
|
alpar@1
|
33 |
* SYNOPSIS
|
alpar@1
|
34 |
*
|
alpar@1
|
35 |
* #include "glplib.h"
|
alpar@1
|
36 |
* int str2int(const char *str, int *val);
|
alpar@1
|
37 |
*
|
alpar@1
|
38 |
* DESCRIPTION
|
alpar@1
|
39 |
*
|
alpar@1
|
40 |
* The routine str2int converts the character string str to a value of
|
alpar@1
|
41 |
* integer type and stores the value into location, which the parameter
|
alpar@1
|
42 |
* val points to (in the case of error content of this location is not
|
alpar@1
|
43 |
* changed).
|
alpar@1
|
44 |
*
|
alpar@1
|
45 |
* RETURNS
|
alpar@1
|
46 |
*
|
alpar@1
|
47 |
* The routine returns one of the following error codes:
|
alpar@1
|
48 |
*
|
alpar@1
|
49 |
* 0 - no error;
|
alpar@1
|
50 |
* 1 - value out of range;
|
alpar@1
|
51 |
* 2 - character string is syntactically incorrect. */
|
alpar@1
|
52 |
|
alpar@1
|
53 |
int str2int(const char *str, int *_val)
|
alpar@1
|
54 |
{ int d, k, s, val = 0;
|
alpar@1
|
55 |
/* scan optional sign */
|
alpar@1
|
56 |
if (str[0] == '+')
|
alpar@1
|
57 |
s = +1, k = 1;
|
alpar@1
|
58 |
else if (str[0] == '-')
|
alpar@1
|
59 |
s = -1, k = 1;
|
alpar@1
|
60 |
else
|
alpar@1
|
61 |
s = +1, k = 0;
|
alpar@1
|
62 |
/* check for the first digit */
|
alpar@1
|
63 |
if (!isdigit((unsigned char)str[k])) return 2;
|
alpar@1
|
64 |
/* scan digits */
|
alpar@1
|
65 |
while (isdigit((unsigned char)str[k]))
|
alpar@1
|
66 |
{ d = str[k++] - '0';
|
alpar@1
|
67 |
if (s > 0)
|
alpar@1
|
68 |
{ if (val > INT_MAX / 10) return 1;
|
alpar@1
|
69 |
val *= 10;
|
alpar@1
|
70 |
if (val > INT_MAX - d) return 1;
|
alpar@1
|
71 |
val += d;
|
alpar@1
|
72 |
}
|
alpar@1
|
73 |
else
|
alpar@1
|
74 |
{ if (val < INT_MIN / 10) return 1;
|
alpar@1
|
75 |
val *= 10;
|
alpar@1
|
76 |
if (val < INT_MIN + d) return 1;
|
alpar@1
|
77 |
val -= d;
|
alpar@1
|
78 |
}
|
alpar@1
|
79 |
}
|
alpar@1
|
80 |
/* check for terminator */
|
alpar@1
|
81 |
if (str[k] != '\0') return 2;
|
alpar@1
|
82 |
/* conversion has been done */
|
alpar@1
|
83 |
*_val = val;
|
alpar@1
|
84 |
return 0;
|
alpar@1
|
85 |
}
|
alpar@1
|
86 |
|
alpar@1
|
87 |
/***********************************************************************
|
alpar@1
|
88 |
* NAME
|
alpar@1
|
89 |
*
|
alpar@1
|
90 |
* str2num - convert character string to value of double type
|
alpar@1
|
91 |
*
|
alpar@1
|
92 |
* SYNOPSIS
|
alpar@1
|
93 |
*
|
alpar@1
|
94 |
* #include "glplib.h"
|
alpar@1
|
95 |
* int str2num(const char *str, double *val);
|
alpar@1
|
96 |
*
|
alpar@1
|
97 |
* DESCRIPTION
|
alpar@1
|
98 |
*
|
alpar@1
|
99 |
* The routine str2num converts the character string str to a value of
|
alpar@1
|
100 |
* double type and stores the value into location, which the parameter
|
alpar@1
|
101 |
* val points to (in the case of error content of this location is not
|
alpar@1
|
102 |
* changed).
|
alpar@1
|
103 |
*
|
alpar@1
|
104 |
* RETURNS
|
alpar@1
|
105 |
*
|
alpar@1
|
106 |
* The routine returns one of the following error codes:
|
alpar@1
|
107 |
*
|
alpar@1
|
108 |
* 0 - no error;
|
alpar@1
|
109 |
* 1 - value out of range;
|
alpar@1
|
110 |
* 2 - character string is syntactically incorrect. */
|
alpar@1
|
111 |
|
alpar@1
|
112 |
int str2num(const char *str, double *_val)
|
alpar@1
|
113 |
{ int k;
|
alpar@1
|
114 |
double val;
|
alpar@1
|
115 |
/* scan optional sign */
|
alpar@1
|
116 |
k = (str[0] == '+' || str[0] == '-' ? 1 : 0);
|
alpar@1
|
117 |
/* check for decimal point */
|
alpar@1
|
118 |
if (str[k] == '.')
|
alpar@1
|
119 |
{ k++;
|
alpar@1
|
120 |
/* a digit should follow it */
|
alpar@1
|
121 |
if (!isdigit((unsigned char)str[k])) return 2;
|
alpar@1
|
122 |
k++;
|
alpar@1
|
123 |
goto frac;
|
alpar@1
|
124 |
}
|
alpar@1
|
125 |
/* integer part should start with a digit */
|
alpar@1
|
126 |
if (!isdigit((unsigned char)str[k])) return 2;
|
alpar@1
|
127 |
/* scan integer part */
|
alpar@1
|
128 |
while (isdigit((unsigned char)str[k])) k++;
|
alpar@1
|
129 |
/* check for decimal point */
|
alpar@1
|
130 |
if (str[k] == '.') k++;
|
alpar@1
|
131 |
frac: /* scan optional fraction part */
|
alpar@1
|
132 |
while (isdigit((unsigned char)str[k])) k++;
|
alpar@1
|
133 |
/* check for decimal exponent */
|
alpar@1
|
134 |
if (str[k] == 'E' || str[k] == 'e')
|
alpar@1
|
135 |
{ k++;
|
alpar@1
|
136 |
/* scan optional sign */
|
alpar@1
|
137 |
if (str[k] == '+' || str[k] == '-') k++;
|
alpar@1
|
138 |
/* a digit should follow E, E+ or E- */
|
alpar@1
|
139 |
if (!isdigit((unsigned char)str[k])) return 2;
|
alpar@1
|
140 |
}
|
alpar@1
|
141 |
/* scan optional exponent part */
|
alpar@1
|
142 |
while (isdigit((unsigned char)str[k])) k++;
|
alpar@1
|
143 |
/* check for terminator */
|
alpar@1
|
144 |
if (str[k] != '\0') return 2;
|
alpar@1
|
145 |
/* perform conversion */
|
alpar@1
|
146 |
{ char *endptr;
|
alpar@1
|
147 |
val = strtod(str, &endptr);
|
alpar@1
|
148 |
if (*endptr != '\0') return 2;
|
alpar@1
|
149 |
}
|
alpar@1
|
150 |
/* check for overflow */
|
alpar@1
|
151 |
if (!(-DBL_MAX <= val && val <= +DBL_MAX)) return 1;
|
alpar@1
|
152 |
/* check for underflow */
|
alpar@1
|
153 |
if (-DBL_MIN < val && val < +DBL_MIN) val = 0.0;
|
alpar@1
|
154 |
/* conversion has been done */
|
alpar@1
|
155 |
*_val = val;
|
alpar@1
|
156 |
return 0;
|
alpar@1
|
157 |
}
|
alpar@1
|
158 |
|
alpar@1
|
159 |
/***********************************************************************
|
alpar@1
|
160 |
* NAME
|
alpar@1
|
161 |
*
|
alpar@1
|
162 |
* strspx - remove all spaces from character string
|
alpar@1
|
163 |
*
|
alpar@1
|
164 |
* SYNOPSIS
|
alpar@1
|
165 |
*
|
alpar@1
|
166 |
* #include "glplib.h"
|
alpar@1
|
167 |
* char *strspx(char *str);
|
alpar@1
|
168 |
*
|
alpar@1
|
169 |
* DESCRIPTION
|
alpar@1
|
170 |
*
|
alpar@1
|
171 |
* The routine strspx removes all spaces from the character string str.
|
alpar@1
|
172 |
*
|
alpar@1
|
173 |
* RETURNS
|
alpar@1
|
174 |
*
|
alpar@1
|
175 |
* The routine returns a pointer to the character string.
|
alpar@1
|
176 |
*
|
alpar@1
|
177 |
* EXAMPLES
|
alpar@1
|
178 |
*
|
alpar@1
|
179 |
* strspx(" Errare humanum est ") => "Errarehumanumest"
|
alpar@1
|
180 |
*
|
alpar@1
|
181 |
* strspx(" ") => "" */
|
alpar@1
|
182 |
|
alpar@1
|
183 |
char *strspx(char *str)
|
alpar@1
|
184 |
{ char *s, *t;
|
alpar@1
|
185 |
for (s = t = str; *s; s++) if (*s != ' ') *t++ = *s;
|
alpar@1
|
186 |
*t = '\0';
|
alpar@1
|
187 |
return str;
|
alpar@1
|
188 |
}
|
alpar@1
|
189 |
|
alpar@1
|
190 |
/***********************************************************************
|
alpar@1
|
191 |
* NAME
|
alpar@1
|
192 |
*
|
alpar@1
|
193 |
* strtrim - remove trailing spaces from character string
|
alpar@1
|
194 |
*
|
alpar@1
|
195 |
* SYNOPSIS
|
alpar@1
|
196 |
*
|
alpar@1
|
197 |
* #include "glplib.h"
|
alpar@1
|
198 |
* char *strtrim(char *str);
|
alpar@1
|
199 |
*
|
alpar@1
|
200 |
* DESCRIPTION
|
alpar@1
|
201 |
*
|
alpar@1
|
202 |
* The routine strtrim removes trailing spaces from the character
|
alpar@1
|
203 |
* string str.
|
alpar@1
|
204 |
*
|
alpar@1
|
205 |
* RETURNS
|
alpar@1
|
206 |
*
|
alpar@1
|
207 |
* The routine returns a pointer to the character string.
|
alpar@1
|
208 |
*
|
alpar@1
|
209 |
* EXAMPLES
|
alpar@1
|
210 |
*
|
alpar@1
|
211 |
* strtrim("Errare humanum est ") => "Errare humanum est"
|
alpar@1
|
212 |
*
|
alpar@1
|
213 |
* strtrim(" ") => "" */
|
alpar@1
|
214 |
|
alpar@1
|
215 |
char *strtrim(char *str)
|
alpar@1
|
216 |
{ char *t;
|
alpar@1
|
217 |
for (t = strrchr(str, '\0') - 1; t >= str; t--)
|
alpar@1
|
218 |
{ if (*t != ' ') break;
|
alpar@1
|
219 |
*t = '\0';
|
alpar@1
|
220 |
}
|
alpar@1
|
221 |
return str;
|
alpar@1
|
222 |
}
|
alpar@1
|
223 |
|
alpar@1
|
224 |
/***********************************************************************
|
alpar@1
|
225 |
* NAME
|
alpar@1
|
226 |
*
|
alpar@1
|
227 |
* strrev - reverse character string
|
alpar@1
|
228 |
*
|
alpar@1
|
229 |
* SYNOPSIS
|
alpar@1
|
230 |
*
|
alpar@1
|
231 |
* #include "glplib.h"
|
alpar@1
|
232 |
* char *strrev(char *s);
|
alpar@1
|
233 |
*
|
alpar@1
|
234 |
* DESCRIPTION
|
alpar@1
|
235 |
*
|
alpar@1
|
236 |
* The routine strrev changes characters in a character string s to the
|
alpar@1
|
237 |
* reverse order, except the terminating null character.
|
alpar@1
|
238 |
*
|
alpar@1
|
239 |
* RETURNS
|
alpar@1
|
240 |
*
|
alpar@1
|
241 |
* The routine returns the pointer s.
|
alpar@1
|
242 |
*
|
alpar@1
|
243 |
* EXAMPLES
|
alpar@1
|
244 |
*
|
alpar@1
|
245 |
* strrev("") => ""
|
alpar@1
|
246 |
*
|
alpar@1
|
247 |
* strrev("Today is Monday") => "yadnoM si yadoT" */
|
alpar@1
|
248 |
|
alpar@1
|
249 |
char *strrev(char *s)
|
alpar@1
|
250 |
{ int i, j;
|
alpar@1
|
251 |
char t;
|
alpar@1
|
252 |
for (i = 0, j = strlen(s)-1; i < j; i++, j--)
|
alpar@1
|
253 |
t = s[i], s[i] = s[j], s[j] = t;
|
alpar@1
|
254 |
return s;
|
alpar@1
|
255 |
}
|
alpar@1
|
256 |
|
alpar@1
|
257 |
/***********************************************************************
|
alpar@1
|
258 |
* NAME
|
alpar@1
|
259 |
*
|
alpar@1
|
260 |
* gcd - find greatest common divisor of two integers
|
alpar@1
|
261 |
*
|
alpar@1
|
262 |
* SYNOPSIS
|
alpar@1
|
263 |
*
|
alpar@1
|
264 |
* #include "glplib.h"
|
alpar@1
|
265 |
* int gcd(int x, int y);
|
alpar@1
|
266 |
*
|
alpar@1
|
267 |
* RETURNS
|
alpar@1
|
268 |
*
|
alpar@1
|
269 |
* The routine gcd returns gcd(x, y), the greatest common divisor of
|
alpar@1
|
270 |
* the two positive integers given.
|
alpar@1
|
271 |
*
|
alpar@1
|
272 |
* ALGORITHM
|
alpar@1
|
273 |
*
|
alpar@1
|
274 |
* The routine gcd is based on Euclid's algorithm.
|
alpar@1
|
275 |
*
|
alpar@1
|
276 |
* REFERENCES
|
alpar@1
|
277 |
*
|
alpar@1
|
278 |
* Don Knuth, The Art of Computer Programming, Vol.2: Seminumerical
|
alpar@1
|
279 |
* Algorithms, 3rd Edition, Addison-Wesley, 1997. Section 4.5.2: The
|
alpar@1
|
280 |
* Greatest Common Divisor, pp. 333-56. */
|
alpar@1
|
281 |
|
alpar@1
|
282 |
int gcd(int x, int y)
|
alpar@1
|
283 |
{ int r;
|
alpar@1
|
284 |
xassert(x > 0 && y > 0);
|
alpar@1
|
285 |
while (y > 0)
|
alpar@1
|
286 |
r = x % y, x = y, y = r;
|
alpar@1
|
287 |
return x;
|
alpar@1
|
288 |
}
|
alpar@1
|
289 |
|
alpar@1
|
290 |
/***********************************************************************
|
alpar@1
|
291 |
* NAME
|
alpar@1
|
292 |
*
|
alpar@1
|
293 |
* gcdn - find greatest common divisor of n integers
|
alpar@1
|
294 |
*
|
alpar@1
|
295 |
* SYNOPSIS
|
alpar@1
|
296 |
*
|
alpar@1
|
297 |
* #include "glplib.h"
|
alpar@1
|
298 |
* int gcdn(int n, int x[]);
|
alpar@1
|
299 |
*
|
alpar@1
|
300 |
* RETURNS
|
alpar@1
|
301 |
*
|
alpar@1
|
302 |
* The routine gcdn returns gcd(x[1], x[2], ..., x[n]), the greatest
|
alpar@1
|
303 |
* common divisor of n positive integers given, n > 0.
|
alpar@1
|
304 |
*
|
alpar@1
|
305 |
* BACKGROUND
|
alpar@1
|
306 |
*
|
alpar@1
|
307 |
* The routine gcdn is based on the following identity:
|
alpar@1
|
308 |
*
|
alpar@1
|
309 |
* gcd(x, y, z) = gcd(gcd(x, y), z).
|
alpar@1
|
310 |
*
|
alpar@1
|
311 |
* REFERENCES
|
alpar@1
|
312 |
*
|
alpar@1
|
313 |
* Don Knuth, The Art of Computer Programming, Vol.2: Seminumerical
|
alpar@1
|
314 |
* Algorithms, 3rd Edition, Addison-Wesley, 1997. Section 4.5.2: The
|
alpar@1
|
315 |
* Greatest Common Divisor, pp. 333-56. */
|
alpar@1
|
316 |
|
alpar@1
|
317 |
int gcdn(int n, int x[])
|
alpar@1
|
318 |
{ int d, j;
|
alpar@1
|
319 |
xassert(n > 0);
|
alpar@1
|
320 |
for (j = 1; j <= n; j++)
|
alpar@1
|
321 |
{ xassert(x[j] > 0);
|
alpar@1
|
322 |
if (j == 1)
|
alpar@1
|
323 |
d = x[1];
|
alpar@1
|
324 |
else
|
alpar@1
|
325 |
d = gcd(d, x[j]);
|
alpar@1
|
326 |
if (d == 1) break;
|
alpar@1
|
327 |
}
|
alpar@1
|
328 |
return d;
|
alpar@1
|
329 |
}
|
alpar@1
|
330 |
|
alpar@1
|
331 |
/***********************************************************************
|
alpar@1
|
332 |
* NAME
|
alpar@1
|
333 |
*
|
alpar@1
|
334 |
* lcm - find least common multiple of two integers
|
alpar@1
|
335 |
*
|
alpar@1
|
336 |
* SYNOPSIS
|
alpar@1
|
337 |
*
|
alpar@1
|
338 |
* #include "glplib.h"
|
alpar@1
|
339 |
* int lcm(int x, int y);
|
alpar@1
|
340 |
*
|
alpar@1
|
341 |
* RETURNS
|
alpar@1
|
342 |
*
|
alpar@1
|
343 |
* The routine lcm returns lcm(x, y), the least common multiple of the
|
alpar@1
|
344 |
* two positive integers given. In case of integer overflow the routine
|
alpar@1
|
345 |
* returns zero.
|
alpar@1
|
346 |
*
|
alpar@1
|
347 |
* BACKGROUND
|
alpar@1
|
348 |
*
|
alpar@1
|
349 |
* The routine lcm is based on the following identity:
|
alpar@1
|
350 |
*
|
alpar@1
|
351 |
* lcm(x, y) = (x * y) / gcd(x, y) = x * [y / gcd(x, y)],
|
alpar@1
|
352 |
*
|
alpar@1
|
353 |
* where gcd(x, y) is the greatest common divisor of x and y. */
|
alpar@1
|
354 |
|
alpar@1
|
355 |
int lcm(int x, int y)
|
alpar@1
|
356 |
{ xassert(x > 0);
|
alpar@1
|
357 |
xassert(y > 0);
|
alpar@1
|
358 |
y /= gcd(x, y);
|
alpar@1
|
359 |
if (x > INT_MAX / y) return 0;
|
alpar@1
|
360 |
return x * y;
|
alpar@1
|
361 |
}
|
alpar@1
|
362 |
|
alpar@1
|
363 |
/***********************************************************************
|
alpar@1
|
364 |
* NAME
|
alpar@1
|
365 |
*
|
alpar@1
|
366 |
* lcmn - find least common multiple of n integers
|
alpar@1
|
367 |
*
|
alpar@1
|
368 |
* SYNOPSIS
|
alpar@1
|
369 |
*
|
alpar@1
|
370 |
* #include "glplib.h"
|
alpar@1
|
371 |
* int lcmn(int n, int x[]);
|
alpar@1
|
372 |
*
|
alpar@1
|
373 |
* RETURNS
|
alpar@1
|
374 |
*
|
alpar@1
|
375 |
* The routine lcmn returns lcm(x[1], x[2], ..., x[n]), the least
|
alpar@1
|
376 |
* common multiple of n positive integers given, n > 0. In case of
|
alpar@1
|
377 |
* integer overflow the routine returns zero.
|
alpar@1
|
378 |
*
|
alpar@1
|
379 |
* BACKGROUND
|
alpar@1
|
380 |
*
|
alpar@1
|
381 |
* The routine lcmn is based on the following identity:
|
alpar@1
|
382 |
*
|
alpar@1
|
383 |
* lcmn(x, y, z) = lcm(lcm(x, y), z),
|
alpar@1
|
384 |
*
|
alpar@1
|
385 |
* where lcm(x, y) is the least common multiple of x and y. */
|
alpar@1
|
386 |
|
alpar@1
|
387 |
int lcmn(int n, int x[])
|
alpar@1
|
388 |
{ int m, j;
|
alpar@1
|
389 |
xassert(n > 0);
|
alpar@1
|
390 |
for (j = 1; j <= n; j++)
|
alpar@1
|
391 |
{ xassert(x[j] > 0);
|
alpar@1
|
392 |
if (j == 1)
|
alpar@1
|
393 |
m = x[1];
|
alpar@1
|
394 |
else
|
alpar@1
|
395 |
m = lcm(m, x[j]);
|
alpar@1
|
396 |
if (m == 0) break;
|
alpar@1
|
397 |
}
|
alpar@1
|
398 |
return m;
|
alpar@1
|
399 |
}
|
alpar@1
|
400 |
|
alpar@1
|
401 |
/***********************************************************************
|
alpar@1
|
402 |
* NAME
|
alpar@1
|
403 |
*
|
alpar@1
|
404 |
* round2n - round floating-point number to nearest power of two
|
alpar@1
|
405 |
*
|
alpar@1
|
406 |
* SYNOPSIS
|
alpar@1
|
407 |
*
|
alpar@1
|
408 |
* #include "glplib.h"
|
alpar@1
|
409 |
* double round2n(double x);
|
alpar@1
|
410 |
*
|
alpar@1
|
411 |
* RETURNS
|
alpar@1
|
412 |
*
|
alpar@1
|
413 |
* Given a positive floating-point value x the routine round2n returns
|
alpar@1
|
414 |
* 2^n such that |x - 2^n| is minimal.
|
alpar@1
|
415 |
*
|
alpar@1
|
416 |
* EXAMPLES
|
alpar@1
|
417 |
*
|
alpar@1
|
418 |
* round2n(10.1) = 2^3 = 8
|
alpar@1
|
419 |
* round2n(15.3) = 2^4 = 16
|
alpar@1
|
420 |
* round2n(0.01) = 2^(-7) = 0.0078125
|
alpar@1
|
421 |
*
|
alpar@1
|
422 |
* BACKGROUND
|
alpar@1
|
423 |
*
|
alpar@1
|
424 |
* Let x = f * 2^e, where 0.5 <= f < 1 is a normalized fractional part,
|
alpar@1
|
425 |
* e is an integer exponent. Then, obviously, 0.5 * 2^e <= x < 2^e, so
|
alpar@1
|
426 |
* if x - 0.5 * 2^e <= 2^e - x, we choose 0.5 * 2^e = 2^(e-1), and 2^e
|
alpar@1
|
427 |
* otherwise. The latter condition can be written as 2 * x <= 1.5 * 2^e
|
alpar@1
|
428 |
* or 2 * f * 2^e <= 1.5 * 2^e or, finally, f <= 0.75. */
|
alpar@1
|
429 |
|
alpar@1
|
430 |
double round2n(double x)
|
alpar@1
|
431 |
{ int e;
|
alpar@1
|
432 |
double f;
|
alpar@1
|
433 |
xassert(x > 0.0);
|
alpar@1
|
434 |
f = frexp(x, &e);
|
alpar@1
|
435 |
return ldexp(1.0, f <= 0.75 ? e-1 : e);
|
alpar@1
|
436 |
}
|
alpar@1
|
437 |
|
alpar@1
|
438 |
/***********************************************************************
|
alpar@1
|
439 |
* NAME
|
alpar@1
|
440 |
*
|
alpar@1
|
441 |
* fp2rat - convert floating-point number to rational number
|
alpar@1
|
442 |
*
|
alpar@1
|
443 |
* SYNOPSIS
|
alpar@1
|
444 |
*
|
alpar@1
|
445 |
* #include "glplib.h"
|
alpar@1
|
446 |
* int fp2rat(double x, double eps, double *p, double *q);
|
alpar@1
|
447 |
*
|
alpar@1
|
448 |
* DESCRIPTION
|
alpar@1
|
449 |
*
|
alpar@1
|
450 |
* Given a floating-point number 0 <= x < 1 the routine fp2rat finds
|
alpar@1
|
451 |
* its "best" rational approximation p / q, where p >= 0 and q > 0 are
|
alpar@1
|
452 |
* integer numbers, such that |x - p / q| <= eps.
|
alpar@1
|
453 |
*
|
alpar@1
|
454 |
* RETURNS
|
alpar@1
|
455 |
*
|
alpar@1
|
456 |
* The routine fp2rat returns the number of iterations used to achieve
|
alpar@1
|
457 |
* the specified precision eps.
|
alpar@1
|
458 |
*
|
alpar@1
|
459 |
* EXAMPLES
|
alpar@1
|
460 |
*
|
alpar@1
|
461 |
* For x = sqrt(2) - 1 = 0.414213562373095 and eps = 1e-6 the routine
|
alpar@1
|
462 |
* gives p = 408 and q = 985, where 408 / 985 = 0.414213197969543.
|
alpar@1
|
463 |
*
|
alpar@1
|
464 |
* BACKGROUND
|
alpar@1
|
465 |
*
|
alpar@1
|
466 |
* It is well known that every positive real number x can be expressed
|
alpar@1
|
467 |
* as the following continued fraction:
|
alpar@1
|
468 |
*
|
alpar@1
|
469 |
* x = b[0] + a[1]
|
alpar@1
|
470 |
* ------------------------
|
alpar@1
|
471 |
* b[1] + a[2]
|
alpar@1
|
472 |
* -----------------
|
alpar@1
|
473 |
* b[2] + a[3]
|
alpar@1
|
474 |
* ----------
|
alpar@1
|
475 |
* b[3] + ...
|
alpar@1
|
476 |
*
|
alpar@1
|
477 |
* where:
|
alpar@1
|
478 |
*
|
alpar@1
|
479 |
* a[k] = 1, k = 0, 1, 2, ...
|
alpar@1
|
480 |
*
|
alpar@1
|
481 |
* b[k] = floor(x[k]), k = 0, 1, 2, ...
|
alpar@1
|
482 |
*
|
alpar@1
|
483 |
* x[0] = x,
|
alpar@1
|
484 |
*
|
alpar@1
|
485 |
* x[k] = 1 / frac(x[k-1]), k = 1, 2, 3, ...
|
alpar@1
|
486 |
*
|
alpar@1
|
487 |
* To find the "best" rational approximation of x the routine computes
|
alpar@1
|
488 |
* partial fractions f[k] by dropping after k terms as follows:
|
alpar@1
|
489 |
*
|
alpar@1
|
490 |
* f[k] = A[k] / B[k],
|
alpar@1
|
491 |
*
|
alpar@1
|
492 |
* where:
|
alpar@1
|
493 |
*
|
alpar@1
|
494 |
* A[-1] = 1, A[0] = b[0], B[-1] = 0, B[0] = 1,
|
alpar@1
|
495 |
*
|
alpar@1
|
496 |
* A[k] = b[k] * A[k-1] + a[k] * A[k-2],
|
alpar@1
|
497 |
*
|
alpar@1
|
498 |
* B[k] = b[k] * B[k-1] + a[k] * B[k-2].
|
alpar@1
|
499 |
*
|
alpar@1
|
500 |
* Once the condition
|
alpar@1
|
501 |
*
|
alpar@1
|
502 |
* |x - f[k]| <= eps
|
alpar@1
|
503 |
*
|
alpar@1
|
504 |
* has been satisfied, the routine reports p = A[k] and q = B[k] as the
|
alpar@1
|
505 |
* final answer.
|
alpar@1
|
506 |
*
|
alpar@1
|
507 |
* In the table below here is some statistics obtained for one million
|
alpar@1
|
508 |
* random numbers uniformly distributed in the range [0, 1).
|
alpar@1
|
509 |
*
|
alpar@1
|
510 |
* eps max p mean p max q mean q max k mean k
|
alpar@1
|
511 |
* -------------------------------------------------------------
|
alpar@1
|
512 |
* 1e-1 8 1.6 9 3.2 3 1.4
|
alpar@1
|
513 |
* 1e-2 98 6.2 99 12.4 5 2.4
|
alpar@1
|
514 |
* 1e-3 997 20.7 998 41.5 8 3.4
|
alpar@1
|
515 |
* 1e-4 9959 66.6 9960 133.5 10 4.4
|
alpar@1
|
516 |
* 1e-5 97403 211.7 97404 424.2 13 5.3
|
alpar@1
|
517 |
* 1e-6 479669 669.9 479670 1342.9 15 6.3
|
alpar@1
|
518 |
* 1e-7 1579030 2127.3 3962146 4257.8 16 7.3
|
alpar@1
|
519 |
* 1e-8 26188823 6749.4 26188824 13503.4 19 8.2
|
alpar@1
|
520 |
*
|
alpar@1
|
521 |
* REFERENCES
|
alpar@1
|
522 |
*
|
alpar@1
|
523 |
* W. B. Jones and W. J. Thron, "Continued Fractions: Analytic Theory
|
alpar@1
|
524 |
* and Applications," Encyclopedia on Mathematics and Its Applications,
|
alpar@1
|
525 |
* Addison-Wesley, 1980. */
|
alpar@1
|
526 |
|
alpar@1
|
527 |
int fp2rat(double x, double eps, double *p, double *q)
|
alpar@1
|
528 |
{ int k;
|
alpar@1
|
529 |
double xk, Akm1, Ak, Bkm1, Bk, ak, bk, fk, temp;
|
alpar@1
|
530 |
if (!(0.0 <= x && x < 1.0))
|
alpar@1
|
531 |
xerror("fp2rat: x = %g; number out of range\n", x);
|
alpar@1
|
532 |
for (k = 0; ; k++)
|
alpar@1
|
533 |
{ xassert(k <= 100);
|
alpar@1
|
534 |
if (k == 0)
|
alpar@1
|
535 |
{ /* x[0] = x */
|
alpar@1
|
536 |
xk = x;
|
alpar@1
|
537 |
/* A[-1] = 1 */
|
alpar@1
|
538 |
Akm1 = 1.0;
|
alpar@1
|
539 |
/* A[0] = b[0] = floor(x[0]) = 0 */
|
alpar@1
|
540 |
Ak = 0.0;
|
alpar@1
|
541 |
/* B[-1] = 0 */
|
alpar@1
|
542 |
Bkm1 = 0.0;
|
alpar@1
|
543 |
/* B[0] = 1 */
|
alpar@1
|
544 |
Bk = 1.0;
|
alpar@1
|
545 |
}
|
alpar@1
|
546 |
else
|
alpar@1
|
547 |
{ /* x[k] = 1 / frac(x[k-1]) */
|
alpar@1
|
548 |
temp = xk - floor(xk);
|
alpar@1
|
549 |
xassert(temp != 0.0);
|
alpar@1
|
550 |
xk = 1.0 / temp;
|
alpar@1
|
551 |
/* a[k] = 1 */
|
alpar@1
|
552 |
ak = 1.0;
|
alpar@1
|
553 |
/* b[k] = floor(x[k]) */
|
alpar@1
|
554 |
bk = floor(xk);
|
alpar@1
|
555 |
/* A[k] = b[k] * A[k-1] + a[k] * A[k-2] */
|
alpar@1
|
556 |
temp = bk * Ak + ak * Akm1;
|
alpar@1
|
557 |
Akm1 = Ak, Ak = temp;
|
alpar@1
|
558 |
/* B[k] = b[k] * B[k-1] + a[k] * B[k-2] */
|
alpar@1
|
559 |
temp = bk * Bk + ak * Bkm1;
|
alpar@1
|
560 |
Bkm1 = Bk, Bk = temp;
|
alpar@1
|
561 |
}
|
alpar@1
|
562 |
/* f[k] = A[k] / B[k] */
|
alpar@1
|
563 |
fk = Ak / Bk;
|
alpar@1
|
564 |
#if 0
|
alpar@1
|
565 |
print("%.*g / %.*g = %.*g", DBL_DIG, Ak, DBL_DIG, Bk, DBL_DIG,
|
alpar@1
|
566 |
fk);
|
alpar@1
|
567 |
#endif
|
alpar@1
|
568 |
if (fabs(x - fk) <= eps) break;
|
alpar@1
|
569 |
}
|
alpar@1
|
570 |
*p = Ak;
|
alpar@1
|
571 |
*q = Bk;
|
alpar@1
|
572 |
return k;
|
alpar@1
|
573 |
}
|
alpar@1
|
574 |
|
alpar@1
|
575 |
/***********************************************************************
|
alpar@1
|
576 |
* NAME
|
alpar@1
|
577 |
*
|
alpar@1
|
578 |
* jday - convert calendar date to Julian day number
|
alpar@1
|
579 |
*
|
alpar@1
|
580 |
* SYNOPSIS
|
alpar@1
|
581 |
*
|
alpar@1
|
582 |
* #include "glplib.h"
|
alpar@1
|
583 |
* int jday(int d, int m, int y);
|
alpar@1
|
584 |
*
|
alpar@1
|
585 |
* DESCRIPTION
|
alpar@1
|
586 |
*
|
alpar@1
|
587 |
* The routine jday converts a calendar date, Gregorian calendar, to
|
alpar@1
|
588 |
* corresponding Julian day number j.
|
alpar@1
|
589 |
*
|
alpar@1
|
590 |
* From the given day d, month m, and year y, the Julian day number j
|
alpar@1
|
591 |
* is computed without using tables.
|
alpar@1
|
592 |
*
|
alpar@1
|
593 |
* The routine is valid for 1 <= y <= 4000.
|
alpar@1
|
594 |
*
|
alpar@1
|
595 |
* RETURNS
|
alpar@1
|
596 |
*
|
alpar@1
|
597 |
* The routine jday returns the Julian day number, or negative value if
|
alpar@1
|
598 |
* the specified date is incorrect.
|
alpar@1
|
599 |
*
|
alpar@1
|
600 |
* REFERENCES
|
alpar@1
|
601 |
*
|
alpar@1
|
602 |
* R. G. Tantzen, Algorithm 199: conversions between calendar date and
|
alpar@1
|
603 |
* Julian day number, Communications of the ACM, vol. 6, no. 8, p. 444,
|
alpar@1
|
604 |
* Aug. 1963. */
|
alpar@1
|
605 |
|
alpar@1
|
606 |
int jday(int d, int m, int y)
|
alpar@1
|
607 |
{ int c, ya, j, dd;
|
alpar@1
|
608 |
if (!(1 <= d && d <= 31 && 1 <= m && m <= 12 && 1 <= y &&
|
alpar@1
|
609 |
y <= 4000))
|
alpar@1
|
610 |
{ j = -1;
|
alpar@1
|
611 |
goto done;
|
alpar@1
|
612 |
}
|
alpar@1
|
613 |
if (m >= 3) m -= 3; else m += 9, y--;
|
alpar@1
|
614 |
c = y / 100;
|
alpar@1
|
615 |
ya = y - 100 * c;
|
alpar@1
|
616 |
j = (146097 * c) / 4 + (1461 * ya) / 4 + (153 * m + 2) / 5 + d +
|
alpar@1
|
617 |
1721119;
|
alpar@1
|
618 |
jdate(j, &dd, NULL, NULL);
|
alpar@1
|
619 |
if (d != dd) j = -1;
|
alpar@1
|
620 |
done: return j;
|
alpar@1
|
621 |
}
|
alpar@1
|
622 |
|
alpar@1
|
623 |
/***********************************************************************
|
alpar@1
|
624 |
* NAME
|
alpar@1
|
625 |
*
|
alpar@1
|
626 |
* jdate - convert Julian day number to calendar date
|
alpar@1
|
627 |
*
|
alpar@1
|
628 |
* SYNOPSIS
|
alpar@1
|
629 |
*
|
alpar@1
|
630 |
* #include "glplib.h"
|
alpar@1
|
631 |
* void jdate(int j, int *d, int *m, int *y);
|
alpar@1
|
632 |
*
|
alpar@1
|
633 |
* DESCRIPTION
|
alpar@1
|
634 |
*
|
alpar@1
|
635 |
* The routine jdate converts a Julian day number j to corresponding
|
alpar@1
|
636 |
* calendar date, Gregorian calendar.
|
alpar@1
|
637 |
*
|
alpar@1
|
638 |
* The day d, month m, and year y are computed without using tables and
|
alpar@1
|
639 |
* stored in corresponding locations.
|
alpar@1
|
640 |
*
|
alpar@1
|
641 |
* The routine is valid for 1721426 <= j <= 3182395.
|
alpar@1
|
642 |
*
|
alpar@1
|
643 |
* RETURNS
|
alpar@1
|
644 |
*
|
alpar@1
|
645 |
* If the conversion is successful, the routine returns zero, otherwise
|
alpar@1
|
646 |
* non-zero.
|
alpar@1
|
647 |
*
|
alpar@1
|
648 |
* REFERENCES
|
alpar@1
|
649 |
*
|
alpar@1
|
650 |
* R. G. Tantzen, Algorithm 199: conversions between calendar date and
|
alpar@1
|
651 |
* Julian day number, Communications of the ACM, vol. 6, no. 8, p. 444,
|
alpar@1
|
652 |
* Aug. 1963. */
|
alpar@1
|
653 |
|
alpar@1
|
654 |
int jdate(int j, int *_d, int *_m, int *_y)
|
alpar@1
|
655 |
{ int d, m, y, ret = 0;
|
alpar@1
|
656 |
if (!(1721426 <= j && j <= 3182395))
|
alpar@1
|
657 |
{ ret = 1;
|
alpar@1
|
658 |
goto done;
|
alpar@1
|
659 |
}
|
alpar@1
|
660 |
j -= 1721119;
|
alpar@1
|
661 |
y = (4 * j - 1) / 146097;
|
alpar@1
|
662 |
j = (4 * j - 1) % 146097;
|
alpar@1
|
663 |
d = j / 4;
|
alpar@1
|
664 |
j = (4 * d + 3) / 1461;
|
alpar@1
|
665 |
d = (4 * d + 3) % 1461;
|
alpar@1
|
666 |
d = (d + 4) / 4;
|
alpar@1
|
667 |
m = (5 * d - 3) / 153;
|
alpar@1
|
668 |
d = (5 * d - 3) % 153;
|
alpar@1
|
669 |
d = (d + 5) / 5;
|
alpar@1
|
670 |
y = 100 * y + j;
|
alpar@1
|
671 |
if (m <= 9) m += 3; else m -= 9, y++;
|
alpar@1
|
672 |
if (_d != NULL) *_d = d;
|
alpar@1
|
673 |
if (_m != NULL) *_m = m;
|
alpar@1
|
674 |
if (_y != NULL) *_y = y;
|
alpar@1
|
675 |
done: return ret;
|
alpar@1
|
676 |
}
|
alpar@1
|
677 |
|
alpar@1
|
678 |
#if 0
|
alpar@1
|
679 |
int main(void)
|
alpar@1
|
680 |
{ int jbeg, jend, j, d, m, y;
|
alpar@1
|
681 |
jbeg = jday(1, 1, 1);
|
alpar@1
|
682 |
jend = jday(31, 12, 4000);
|
alpar@1
|
683 |
for (j = jbeg; j <= jend; j++)
|
alpar@1
|
684 |
{ xassert(jdate(j, &d, &m, &y) == 0);
|
alpar@1
|
685 |
xassert(jday(d, m, y) == j);
|
alpar@1
|
686 |
}
|
alpar@1
|
687 |
xprintf("Routines jday and jdate work correctly.\n");
|
alpar@1
|
688 |
return 0;
|
alpar@1
|
689 |
}
|
alpar@1
|
690 |
#endif
|
alpar@1
|
691 |
|
alpar@1
|
692 |
/* eof */
|