|
1 /* glpmpl03.c */ |
|
2 |
|
3 /*********************************************************************** |
|
4 * This code is part of GLPK (GNU Linear Programming Kit). |
|
5 * |
|
6 * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
|
7 * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
|
8 * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
|
9 * E-mail: <mao@gnu.org>. |
|
10 * |
|
11 * GLPK is free software: you can redistribute it and/or modify it |
|
12 * under the terms of the GNU General Public License as published by |
|
13 * the Free Software Foundation, either version 3 of the License, or |
|
14 * (at your option) any later version. |
|
15 * |
|
16 * GLPK is distributed in the hope that it will be useful, but WITHOUT |
|
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
|
19 * License for more details. |
|
20 * |
|
21 * You should have received a copy of the GNU General Public License |
|
22 * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
|
23 ***********************************************************************/ |
|
24 |
|
25 #define _GLPSTD_ERRNO |
|
26 #define _GLPSTD_STDIO |
|
27 #include "glpenv.h" |
|
28 #include "glpmpl.h" |
|
29 |
|
30 /**********************************************************************/ |
|
31 /* * * FLOATING-POINT NUMBERS * * */ |
|
32 /**********************************************************************/ |
|
33 |
|
34 /*---------------------------------------------------------------------- |
|
35 -- fp_add - floating-point addition. |
|
36 -- |
|
37 -- This routine computes the sum x + y. */ |
|
38 |
|
39 double fp_add(MPL *mpl, double x, double y) |
|
40 { if (x > 0.0 && y > 0.0 && x > + 0.999 * DBL_MAX - y || |
|
41 x < 0.0 && y < 0.0 && x < - 0.999 * DBL_MAX - y) |
|
42 error(mpl, "%.*g + %.*g; floating-point overflow", |
|
43 DBL_DIG, x, DBL_DIG, y); |
|
44 return x + y; |
|
45 } |
|
46 |
|
47 /*---------------------------------------------------------------------- |
|
48 -- fp_sub - floating-point subtraction. |
|
49 -- |
|
50 -- This routine computes the difference x - y. */ |
|
51 |
|
52 double fp_sub(MPL *mpl, double x, double y) |
|
53 { if (x > 0.0 && y < 0.0 && x > + 0.999 * DBL_MAX + y || |
|
54 x < 0.0 && y > 0.0 && x < - 0.999 * DBL_MAX + y) |
|
55 error(mpl, "%.*g - %.*g; floating-point overflow", |
|
56 DBL_DIG, x, DBL_DIG, y); |
|
57 return x - y; |
|
58 } |
|
59 |
|
60 /*---------------------------------------------------------------------- |
|
61 -- fp_less - floating-point non-negative subtraction. |
|
62 -- |
|
63 -- This routine computes the non-negative difference max(0, x - y). */ |
|
64 |
|
65 double fp_less(MPL *mpl, double x, double y) |
|
66 { if (x < y) return 0.0; |
|
67 if (x > 0.0 && y < 0.0 && x > + 0.999 * DBL_MAX + y) |
|
68 error(mpl, "%.*g less %.*g; floating-point overflow", |
|
69 DBL_DIG, x, DBL_DIG, y); |
|
70 return x - y; |
|
71 } |
|
72 |
|
73 /*---------------------------------------------------------------------- |
|
74 -- fp_mul - floating-point multiplication. |
|
75 -- |
|
76 -- This routine computes the product x * y. */ |
|
77 |
|
78 double fp_mul(MPL *mpl, double x, double y) |
|
79 { if (fabs(y) > 1.0 && fabs(x) > (0.999 * DBL_MAX) / fabs(y)) |
|
80 error(mpl, "%.*g * %.*g; floating-point overflow", |
|
81 DBL_DIG, x, DBL_DIG, y); |
|
82 return x * y; |
|
83 } |
|
84 |
|
85 /*---------------------------------------------------------------------- |
|
86 -- fp_div - floating-point division. |
|
87 -- |
|
88 -- This routine computes the quotient x / y. */ |
|
89 |
|
90 double fp_div(MPL *mpl, double x, double y) |
|
91 { if (fabs(y) < DBL_MIN) |
|
92 error(mpl, "%.*g / %.*g; floating-point zero divide", |
|
93 DBL_DIG, x, DBL_DIG, y); |
|
94 if (fabs(y) < 1.0 && fabs(x) > (0.999 * DBL_MAX) * fabs(y)) |
|
95 error(mpl, "%.*g / %.*g; floating-point overflow", |
|
96 DBL_DIG, x, DBL_DIG, y); |
|
97 return x / y; |
|
98 } |
|
99 |
|
100 /*---------------------------------------------------------------------- |
|
101 -- fp_idiv - floating-point quotient of exact division. |
|
102 -- |
|
103 -- This routine computes the quotient of exact division x div y. */ |
|
104 |
|
105 double fp_idiv(MPL *mpl, double x, double y) |
|
106 { if (fabs(y) < DBL_MIN) |
|
107 error(mpl, "%.*g div %.*g; floating-point zero divide", |
|
108 DBL_DIG, x, DBL_DIG, y); |
|
109 if (fabs(y) < 1.0 && fabs(x) > (0.999 * DBL_MAX) * fabs(y)) |
|
110 error(mpl, "%.*g div %.*g; floating-point overflow", |
|
111 DBL_DIG, x, DBL_DIG, y); |
|
112 x /= y; |
|
113 return x > 0.0 ? floor(x) : x < 0.0 ? ceil(x) : 0.0; |
|
114 } |
|
115 |
|
116 /*---------------------------------------------------------------------- |
|
117 -- fp_mod - floating-point remainder of exact division. |
|
118 -- |
|
119 -- This routine computes the remainder of exact division x mod y. |
|
120 -- |
|
121 -- NOTE: By definition x mod y = x - y * floor(x / y). */ |
|
122 |
|
123 double fp_mod(MPL *mpl, double x, double y) |
|
124 { double r; |
|
125 xassert(mpl == mpl); |
|
126 if (x == 0.0) |
|
127 r = 0.0; |
|
128 else if (y == 0.0) |
|
129 r = x; |
|
130 else |
|
131 { r = fmod(fabs(x), fabs(y)); |
|
132 if (r != 0.0) |
|
133 { if (x < 0.0) r = - r; |
|
134 if (x > 0.0 && y < 0.0 || x < 0.0 && y > 0.0) r += y; |
|
135 } |
|
136 } |
|
137 return r; |
|
138 } |
|
139 |
|
140 /*---------------------------------------------------------------------- |
|
141 -- fp_power - floating-point exponentiation (raise to power). |
|
142 -- |
|
143 -- This routine computes the exponentiation x ** y. */ |
|
144 |
|
145 double fp_power(MPL *mpl, double x, double y) |
|
146 { double r; |
|
147 if (x == 0.0 && y <= 0.0 || x < 0.0 && y != floor(y)) |
|
148 error(mpl, "%.*g ** %.*g; result undefined", |
|
149 DBL_DIG, x, DBL_DIG, y); |
|
150 if (x == 0.0) goto eval; |
|
151 if (fabs(x) > 1.0 && y > +1.0 && |
|
152 +log(fabs(x)) > (0.999 * log(DBL_MAX)) / y || |
|
153 fabs(x) < 1.0 && y < -1.0 && |
|
154 +log(fabs(x)) < (0.999 * log(DBL_MAX)) / y) |
|
155 error(mpl, "%.*g ** %.*g; floating-point overflow", |
|
156 DBL_DIG, x, DBL_DIG, y); |
|
157 if (fabs(x) > 1.0 && y < -1.0 && |
|
158 -log(fabs(x)) < (0.999 * log(DBL_MAX)) / y || |
|
159 fabs(x) < 1.0 && y > +1.0 && |
|
160 -log(fabs(x)) > (0.999 * log(DBL_MAX)) / y) |
|
161 r = 0.0; |
|
162 else |
|
163 eval: r = pow(x, y); |
|
164 return r; |
|
165 } |
|
166 |
|
167 /*---------------------------------------------------------------------- |
|
168 -- fp_exp - floating-point base-e exponential. |
|
169 -- |
|
170 -- This routine computes the base-e exponential e ** x. */ |
|
171 |
|
172 double fp_exp(MPL *mpl, double x) |
|
173 { if (x > 0.999 * log(DBL_MAX)) |
|
174 error(mpl, "exp(%.*g); floating-point overflow", DBL_DIG, x); |
|
175 return exp(x); |
|
176 } |
|
177 |
|
178 /*---------------------------------------------------------------------- |
|
179 -- fp_log - floating-point natural logarithm. |
|
180 -- |
|
181 -- This routine computes the natural logarithm log x. */ |
|
182 |
|
183 double fp_log(MPL *mpl, double x) |
|
184 { if (x <= 0.0) |
|
185 error(mpl, "log(%.*g); non-positive argument", DBL_DIG, x); |
|
186 return log(x); |
|
187 } |
|
188 |
|
189 /*---------------------------------------------------------------------- |
|
190 -- fp_log10 - floating-point common (decimal) logarithm. |
|
191 -- |
|
192 -- This routine computes the common (decimal) logarithm lg x. */ |
|
193 |
|
194 double fp_log10(MPL *mpl, double x) |
|
195 { if (x <= 0.0) |
|
196 error(mpl, "log10(%.*g); non-positive argument", DBL_DIG, x); |
|
197 return log10(x); |
|
198 } |
|
199 |
|
200 /*---------------------------------------------------------------------- |
|
201 -- fp_sqrt - floating-point square root. |
|
202 -- |
|
203 -- This routine computes the square root x ** 0.5. */ |
|
204 |
|
205 double fp_sqrt(MPL *mpl, double x) |
|
206 { if (x < 0.0) |
|
207 error(mpl, "sqrt(%.*g); negative argument", DBL_DIG, x); |
|
208 return sqrt(x); |
|
209 } |
|
210 |
|
211 /*---------------------------------------------------------------------- |
|
212 -- fp_sin - floating-point trigonometric sine. |
|
213 -- |
|
214 -- This routine computes the trigonometric sine sin(x). */ |
|
215 |
|
216 double fp_sin(MPL *mpl, double x) |
|
217 { if (!(-1e6 <= x && x <= +1e6)) |
|
218 error(mpl, "sin(%.*g); argument too large", DBL_DIG, x); |
|
219 return sin(x); |
|
220 } |
|
221 |
|
222 /*---------------------------------------------------------------------- |
|
223 -- fp_cos - floating-point trigonometric cosine. |
|
224 -- |
|
225 -- This routine computes the trigonometric cosine cos(x). */ |
|
226 |
|
227 double fp_cos(MPL *mpl, double x) |
|
228 { if (!(-1e6 <= x && x <= +1e6)) |
|
229 error(mpl, "cos(%.*g); argument too large", DBL_DIG, x); |
|
230 return cos(x); |
|
231 } |
|
232 |
|
233 /*---------------------------------------------------------------------- |
|
234 -- fp_atan - floating-point trigonometric arctangent. |
|
235 -- |
|
236 -- This routine computes the trigonometric arctangent atan(x). */ |
|
237 |
|
238 double fp_atan(MPL *mpl, double x) |
|
239 { xassert(mpl == mpl); |
|
240 return atan(x); |
|
241 } |
|
242 |
|
243 /*---------------------------------------------------------------------- |
|
244 -- fp_atan2 - floating-point trigonometric arctangent. |
|
245 -- |
|
246 -- This routine computes the trigonometric arctangent atan(y / x). */ |
|
247 |
|
248 double fp_atan2(MPL *mpl, double y, double x) |
|
249 { xassert(mpl == mpl); |
|
250 return atan2(y, x); |
|
251 } |
|
252 |
|
253 /*---------------------------------------------------------------------- |
|
254 -- fp_round - round floating-point value to n fractional digits. |
|
255 -- |
|
256 -- This routine rounds given floating-point value x to n fractional |
|
257 -- digits with the formula: |
|
258 -- |
|
259 -- round(x, n) = floor(x * 10^n + 0.5) / 10^n. |
|
260 -- |
|
261 -- The parameter n is assumed to be integer. */ |
|
262 |
|
263 double fp_round(MPL *mpl, double x, double n) |
|
264 { double ten_to_n; |
|
265 if (n != floor(n)) |
|
266 error(mpl, "round(%.*g, %.*g); non-integer second argument", |
|
267 DBL_DIG, x, DBL_DIG, n); |
|
268 if (n <= DBL_DIG + 2) |
|
269 { ten_to_n = pow(10.0, n); |
|
270 if (fabs(x) < (0.999 * DBL_MAX) / ten_to_n) |
|
271 { x = floor(x * ten_to_n + 0.5); |
|
272 if (x != 0.0) x /= ten_to_n; |
|
273 } |
|
274 } |
|
275 return x; |
|
276 } |
|
277 |
|
278 /*---------------------------------------------------------------------- |
|
279 -- fp_trunc - truncate floating-point value to n fractional digits. |
|
280 -- |
|
281 -- This routine truncates given floating-point value x to n fractional |
|
282 -- digits with the formula: |
|
283 -- |
|
284 -- ( floor(x * 10^n) / 10^n, if x >= 0 |
|
285 -- trunc(x, n) = < |
|
286 -- ( ceil(x * 10^n) / 10^n, if x < 0 |
|
287 -- |
|
288 -- The parameter n is assumed to be integer. */ |
|
289 |
|
290 double fp_trunc(MPL *mpl, double x, double n) |
|
291 { double ten_to_n; |
|
292 if (n != floor(n)) |
|
293 error(mpl, "trunc(%.*g, %.*g); non-integer second argument", |
|
294 DBL_DIG, x, DBL_DIG, n); |
|
295 if (n <= DBL_DIG + 2) |
|
296 { ten_to_n = pow(10.0, n); |
|
297 if (fabs(x) < (0.999 * DBL_MAX) / ten_to_n) |
|
298 { x = (x >= 0.0 ? floor(x * ten_to_n) : ceil(x * ten_to_n)); |
|
299 if (x != 0.0) x /= ten_to_n; |
|
300 } |
|
301 } |
|
302 return x; |
|
303 } |
|
304 |
|
305 /**********************************************************************/ |
|
306 /* * * PSEUDO-RANDOM NUMBER GENERATORS * * */ |
|
307 /**********************************************************************/ |
|
308 |
|
309 /*---------------------------------------------------------------------- |
|
310 -- fp_irand224 - pseudo-random integer in the range [0, 2^24). |
|
311 -- |
|
312 -- This routine returns a next pseudo-random integer (converted to |
|
313 -- floating-point) which is uniformly distributed between 0 and 2^24-1, |
|
314 -- inclusive. */ |
|
315 |
|
316 #define two_to_the_24 0x1000000 |
|
317 |
|
318 double fp_irand224(MPL *mpl) |
|
319 { return |
|
320 (double)rng_unif_rand(mpl->rand, two_to_the_24); |
|
321 } |
|
322 |
|
323 /*---------------------------------------------------------------------- |
|
324 -- fp_uniform01 - pseudo-random number in the range [0, 1). |
|
325 -- |
|
326 -- This routine returns a next pseudo-random number which is uniformly |
|
327 -- distributed in the range [0, 1). */ |
|
328 |
|
329 #define two_to_the_31 ((unsigned int)0x80000000) |
|
330 |
|
331 double fp_uniform01(MPL *mpl) |
|
332 { return |
|
333 (double)rng_next_rand(mpl->rand) / (double)two_to_the_31; |
|
334 } |
|
335 |
|
336 /*---------------------------------------------------------------------- |
|
337 -- fp_uniform - pseudo-random number in the range [a, b). |
|
338 -- |
|
339 -- This routine returns a next pseudo-random number which is uniformly |
|
340 -- distributed in the range [a, b). */ |
|
341 |
|
342 double fp_uniform(MPL *mpl, double a, double b) |
|
343 { double x; |
|
344 if (a >= b) |
|
345 error(mpl, "Uniform(%.*g, %.*g); invalid range", |
|
346 DBL_DIG, a, DBL_DIG, b); |
|
347 x = fp_uniform01(mpl); |
|
348 #if 0 |
|
349 x = a * (1.0 - x) + b * x; |
|
350 #else |
|
351 x = fp_add(mpl, a * (1.0 - x), b * x); |
|
352 #endif |
|
353 return x; |
|
354 } |
|
355 |
|
356 /*---------------------------------------------------------------------- |
|
357 -- fp_normal01 - Gaussian random variate with mu = 0 and sigma = 1. |
|
358 -- |
|
359 -- This routine returns a Gaussian random variate with zero mean and |
|
360 -- unit standard deviation. The polar (Box-Mueller) method is used. |
|
361 -- |
|
362 -- This code is a modified version of the routine gsl_ran_gaussian from |
|
363 -- the GNU Scientific Library Version 1.0. */ |
|
364 |
|
365 double fp_normal01(MPL *mpl) |
|
366 { double x, y, r2; |
|
367 do |
|
368 { /* choose x, y in uniform square (-1,-1) to (+1,+1) */ |
|
369 x = -1.0 + 2.0 * fp_uniform01(mpl); |
|
370 y = -1.0 + 2.0 * fp_uniform01(mpl); |
|
371 /* see if it is in the unit circle */ |
|
372 r2 = x * x + y * y; |
|
373 } while (r2 > 1.0 || r2 == 0.0); |
|
374 /* Box-Muller transform */ |
|
375 return y * sqrt(-2.0 * log (r2) / r2); |
|
376 } |
|
377 |
|
378 /*---------------------------------------------------------------------- |
|
379 -- fp_normal - Gaussian random variate with specified mu and sigma. |
|
380 -- |
|
381 -- This routine returns a Gaussian random variate with mean mu and |
|
382 -- standard deviation sigma. */ |
|
383 |
|
384 double fp_normal(MPL *mpl, double mu, double sigma) |
|
385 { double x; |
|
386 #if 0 |
|
387 x = mu + sigma * fp_normal01(mpl); |
|
388 #else |
|
389 x = fp_add(mpl, mu, fp_mul(mpl, sigma, fp_normal01(mpl))); |
|
390 #endif |
|
391 return x; |
|
392 } |
|
393 |
|
394 /**********************************************************************/ |
|
395 /* * * SEGMENTED CHARACTER STRINGS * * */ |
|
396 /**********************************************************************/ |
|
397 |
|
398 /*---------------------------------------------------------------------- |
|
399 -- create_string - create character string. |
|
400 -- |
|
401 -- This routine creates a segmented character string, which is exactly |
|
402 -- equivalent to specified character string. */ |
|
403 |
|
404 STRING *create_string |
|
405 ( MPL *mpl, |
|
406 char buf[MAX_LENGTH+1] /* not changed */ |
|
407 ) |
|
408 #if 0 |
|
409 { STRING *head, *tail; |
|
410 int i, j; |
|
411 xassert(buf != NULL); |
|
412 xassert(strlen(buf) <= MAX_LENGTH); |
|
413 head = tail = dmp_get_atom(mpl->strings, sizeof(STRING)); |
|
414 for (i = j = 0; ; i++) |
|
415 { if ((tail->seg[j++] = buf[i]) == '\0') break; |
|
416 if (j == STRSEG_SIZE) |
|
417 tail = (tail->next = dmp_get_atom(mpl->strings, sizeof(STRING))), j = 0; |
|
418 } |
|
419 tail->next = NULL; |
|
420 return head; |
|
421 } |
|
422 #else |
|
423 { STRING *str; |
|
424 xassert(strlen(buf) <= MAX_LENGTH); |
|
425 str = dmp_get_atom(mpl->strings, strlen(buf)+1); |
|
426 strcpy(str, buf); |
|
427 return str; |
|
428 } |
|
429 #endif |
|
430 |
|
431 /*---------------------------------------------------------------------- |
|
432 -- copy_string - make copy of character string. |
|
433 -- |
|
434 -- This routine returns an exact copy of segmented character string. */ |
|
435 |
|
436 STRING *copy_string |
|
437 ( MPL *mpl, |
|
438 STRING *str /* not changed */ |
|
439 ) |
|
440 #if 0 |
|
441 { STRING *head, *tail; |
|
442 xassert(str != NULL); |
|
443 head = tail = dmp_get_atom(mpl->strings, sizeof(STRING)); |
|
444 for (; str != NULL; str = str->next) |
|
445 { memcpy(tail->seg, str->seg, STRSEG_SIZE); |
|
446 if (str->next != NULL) |
|
447 tail = (tail->next = dmp_get_atom(mpl->strings, sizeof(STRING))); |
|
448 } |
|
449 tail->next = NULL; |
|
450 return head; |
|
451 } |
|
452 #else |
|
453 { xassert(mpl == mpl); |
|
454 return create_string(mpl, str); |
|
455 } |
|
456 #endif |
|
457 |
|
458 /*---------------------------------------------------------------------- |
|
459 -- compare_strings - compare one character string with another. |
|
460 -- |
|
461 -- This routine compares one segmented character strings with another |
|
462 -- and returns the result of comparison as follows: |
|
463 -- |
|
464 -- = 0 - both strings are identical; |
|
465 -- < 0 - the first string precedes the second one; |
|
466 -- > 0 - the first string follows the second one. */ |
|
467 |
|
468 int compare_strings |
|
469 ( MPL *mpl, |
|
470 STRING *str1, /* not changed */ |
|
471 STRING *str2 /* not changed */ |
|
472 ) |
|
473 #if 0 |
|
474 { int j, c1, c2; |
|
475 xassert(mpl == mpl); |
|
476 for (;; str1 = str1->next, str2 = str2->next) |
|
477 { xassert(str1 != NULL); |
|
478 xassert(str2 != NULL); |
|
479 for (j = 0; j < STRSEG_SIZE; j++) |
|
480 { c1 = (unsigned char)str1->seg[j]; |
|
481 c2 = (unsigned char)str2->seg[j]; |
|
482 if (c1 < c2) return -1; |
|
483 if (c1 > c2) return +1; |
|
484 if (c1 == '\0') goto done; |
|
485 } |
|
486 } |
|
487 done: return 0; |
|
488 } |
|
489 #else |
|
490 { xassert(mpl == mpl); |
|
491 return strcmp(str1, str2); |
|
492 } |
|
493 #endif |
|
494 |
|
495 /*---------------------------------------------------------------------- |
|
496 -- fetch_string - extract content of character string. |
|
497 -- |
|
498 -- This routine returns a character string, which is exactly equivalent |
|
499 -- to specified segmented character string. */ |
|
500 |
|
501 char *fetch_string |
|
502 ( MPL *mpl, |
|
503 STRING *str, /* not changed */ |
|
504 char buf[MAX_LENGTH+1] /* modified */ |
|
505 ) |
|
506 #if 0 |
|
507 { int i, j; |
|
508 xassert(mpl == mpl); |
|
509 xassert(buf != NULL); |
|
510 for (i = 0; ; str = str->next) |
|
511 { xassert(str != NULL); |
|
512 for (j = 0; j < STRSEG_SIZE; j++) |
|
513 if ((buf[i++] = str->seg[j]) == '\0') goto done; |
|
514 } |
|
515 done: xassert(strlen(buf) <= MAX_LENGTH); |
|
516 return buf; |
|
517 } |
|
518 #else |
|
519 { xassert(mpl == mpl); |
|
520 return strcpy(buf, str); |
|
521 } |
|
522 #endif |
|
523 |
|
524 /*---------------------------------------------------------------------- |
|
525 -- delete_string - delete character string. |
|
526 -- |
|
527 -- This routine deletes specified segmented character string. */ |
|
528 |
|
529 void delete_string |
|
530 ( MPL *mpl, |
|
531 STRING *str /* destroyed */ |
|
532 ) |
|
533 #if 0 |
|
534 { STRING *temp; |
|
535 xassert(str != NULL); |
|
536 while (str != NULL) |
|
537 { temp = str; |
|
538 str = str->next; |
|
539 dmp_free_atom(mpl->strings, temp, sizeof(STRING)); |
|
540 } |
|
541 return; |
|
542 } |
|
543 #else |
|
544 { dmp_free_atom(mpl->strings, str, strlen(str)+1); |
|
545 return; |
|
546 } |
|
547 #endif |
|
548 |
|
549 /**********************************************************************/ |
|
550 /* * * SYMBOLS * * */ |
|
551 /**********************************************************************/ |
|
552 |
|
553 /*---------------------------------------------------------------------- |
|
554 -- create_symbol_num - create symbol of numeric type. |
|
555 -- |
|
556 -- This routine creates a symbol, which has a numeric value specified |
|
557 -- as floating-point number. */ |
|
558 |
|
559 SYMBOL *create_symbol_num(MPL *mpl, double num) |
|
560 { SYMBOL *sym; |
|
561 sym = dmp_get_atom(mpl->symbols, sizeof(SYMBOL)); |
|
562 sym->num = num; |
|
563 sym->str = NULL; |
|
564 return sym; |
|
565 } |
|
566 |
|
567 /*---------------------------------------------------------------------- |
|
568 -- create_symbol_str - create symbol of abstract type. |
|
569 -- |
|
570 -- This routine creates a symbol, which has an abstract value specified |
|
571 -- as segmented character string. */ |
|
572 |
|
573 SYMBOL *create_symbol_str |
|
574 ( MPL *mpl, |
|
575 STRING *str /* destroyed */ |
|
576 ) |
|
577 { SYMBOL *sym; |
|
578 xassert(str != NULL); |
|
579 sym = dmp_get_atom(mpl->symbols, sizeof(SYMBOL)); |
|
580 sym->num = 0.0; |
|
581 sym->str = str; |
|
582 return sym; |
|
583 } |
|
584 |
|
585 /*---------------------------------------------------------------------- |
|
586 -- copy_symbol - make copy of symbol. |
|
587 -- |
|
588 -- This routine returns an exact copy of symbol. */ |
|
589 |
|
590 SYMBOL *copy_symbol |
|
591 ( MPL *mpl, |
|
592 SYMBOL *sym /* not changed */ |
|
593 ) |
|
594 { SYMBOL *copy; |
|
595 xassert(sym != NULL); |
|
596 copy = dmp_get_atom(mpl->symbols, sizeof(SYMBOL)); |
|
597 if (sym->str == NULL) |
|
598 { copy->num = sym->num; |
|
599 copy->str = NULL; |
|
600 } |
|
601 else |
|
602 { copy->num = 0.0; |
|
603 copy->str = copy_string(mpl, sym->str); |
|
604 } |
|
605 return copy; |
|
606 } |
|
607 |
|
608 /*---------------------------------------------------------------------- |
|
609 -- compare_symbols - compare one symbol with another. |
|
610 -- |
|
611 -- This routine compares one symbol with another and returns the result |
|
612 -- of comparison as follows: |
|
613 -- |
|
614 -- = 0 - both symbols are identical; |
|
615 -- < 0 - the first symbol precedes the second one; |
|
616 -- > 0 - the first symbol follows the second one. |
|
617 -- |
|
618 -- Note that the linear order, in which symbols follow each other, is |
|
619 -- implementation-dependent. It may be not an alphabetical order. */ |
|
620 |
|
621 int compare_symbols |
|
622 ( MPL *mpl, |
|
623 SYMBOL *sym1, /* not changed */ |
|
624 SYMBOL *sym2 /* not changed */ |
|
625 ) |
|
626 { xassert(sym1 != NULL); |
|
627 xassert(sym2 != NULL); |
|
628 /* let all numeric quantities precede all symbolic quantities */ |
|
629 if (sym1->str == NULL && sym2->str == NULL) |
|
630 { if (sym1->num < sym2->num) return -1; |
|
631 if (sym1->num > sym2->num) return +1; |
|
632 return 0; |
|
633 } |
|
634 if (sym1->str == NULL) return -1; |
|
635 if (sym2->str == NULL) return +1; |
|
636 return compare_strings(mpl, sym1->str, sym2->str); |
|
637 } |
|
638 |
|
639 /*---------------------------------------------------------------------- |
|
640 -- delete_symbol - delete symbol. |
|
641 -- |
|
642 -- This routine deletes specified symbol. */ |
|
643 |
|
644 void delete_symbol |
|
645 ( MPL *mpl, |
|
646 SYMBOL *sym /* destroyed */ |
|
647 ) |
|
648 { xassert(sym != NULL); |
|
649 if (sym->str != NULL) delete_string(mpl, sym->str); |
|
650 dmp_free_atom(mpl->symbols, sym, sizeof(SYMBOL)); |
|
651 return; |
|
652 } |
|
653 |
|
654 /*---------------------------------------------------------------------- |
|
655 -- format_symbol - format symbol for displaying or printing. |
|
656 -- |
|
657 -- This routine converts specified symbol to a charater string, which |
|
658 -- is suitable for displaying or printing. |
|
659 -- |
|
660 -- The resultant string is never longer than 255 characters. If it gets |
|
661 -- longer, it is truncated from the right and appended by dots. */ |
|
662 |
|
663 char *format_symbol |
|
664 ( MPL *mpl, |
|
665 SYMBOL *sym /* not changed */ |
|
666 ) |
|
667 { char *buf = mpl->sym_buf; |
|
668 xassert(sym != NULL); |
|
669 if (sym->str == NULL) |
|
670 sprintf(buf, "%.*g", DBL_DIG, sym->num); |
|
671 else |
|
672 { char str[MAX_LENGTH+1]; |
|
673 int quoted, j, len; |
|
674 fetch_string(mpl, sym->str, str); |
|
675 if (!(isalpha((unsigned char)str[0]) || str[0] == '_')) |
|
676 quoted = 1; |
|
677 else |
|
678 { quoted = 0; |
|
679 for (j = 1; str[j] != '\0'; j++) |
|
680 { if (!(isalnum((unsigned char)str[j]) || |
|
681 strchr("+-._", (unsigned char)str[j]) != NULL)) |
|
682 { quoted = 1; |
|
683 break; |
|
684 } |
|
685 } |
|
686 } |
|
687 # define safe_append(c) \ |
|
688 (void)(len < 255 ? (buf[len++] = (char)(c)) : 0) |
|
689 buf[0] = '\0', len = 0; |
|
690 if (quoted) safe_append('\''); |
|
691 for (j = 0; str[j] != '\0'; j++) |
|
692 { if (quoted && str[j] == '\'') safe_append('\''); |
|
693 safe_append(str[j]); |
|
694 } |
|
695 if (quoted) safe_append('\''); |
|
696 # undef safe_append |
|
697 buf[len] = '\0'; |
|
698 if (len == 255) strcpy(buf+252, "..."); |
|
699 } |
|
700 xassert(strlen(buf) <= 255); |
|
701 return buf; |
|
702 } |
|
703 |
|
704 /*---------------------------------------------------------------------- |
|
705 -- concat_symbols - concatenate one symbol with another. |
|
706 -- |
|
707 -- This routine concatenates values of two given symbols and assigns |
|
708 -- the resultant character string to a new symbol, which is returned on |
|
709 -- exit. Both original symbols are destroyed. */ |
|
710 |
|
711 SYMBOL *concat_symbols |
|
712 ( MPL *mpl, |
|
713 SYMBOL *sym1, /* destroyed */ |
|
714 SYMBOL *sym2 /* destroyed */ |
|
715 ) |
|
716 { char str1[MAX_LENGTH+1], str2[MAX_LENGTH+1]; |
|
717 xassert(MAX_LENGTH >= DBL_DIG + DBL_DIG); |
|
718 if (sym1->str == NULL) |
|
719 sprintf(str1, "%.*g", DBL_DIG, sym1->num); |
|
720 else |
|
721 fetch_string(mpl, sym1->str, str1); |
|
722 if (sym2->str == NULL) |
|
723 sprintf(str2, "%.*g", DBL_DIG, sym2->num); |
|
724 else |
|
725 fetch_string(mpl, sym2->str, str2); |
|
726 if (strlen(str1) + strlen(str2) > MAX_LENGTH) |
|
727 { char buf[255+1]; |
|
728 strcpy(buf, format_symbol(mpl, sym1)); |
|
729 xassert(strlen(buf) < sizeof(buf)); |
|
730 error(mpl, "%s & %s; resultant symbol exceeds %d characters", |
|
731 buf, format_symbol(mpl, sym2), MAX_LENGTH); |
|
732 } |
|
733 delete_symbol(mpl, sym1); |
|
734 delete_symbol(mpl, sym2); |
|
735 return create_symbol_str(mpl, create_string(mpl, strcat(str1, |
|
736 str2))); |
|
737 } |
|
738 |
|
739 /**********************************************************************/ |
|
740 /* * * N-TUPLES * * */ |
|
741 /**********************************************************************/ |
|
742 |
|
743 /*---------------------------------------------------------------------- |
|
744 -- create_tuple - create n-tuple. |
|
745 -- |
|
746 -- This routine creates a n-tuple, which initially has no components, |
|
747 -- i.e. which is 0-tuple. */ |
|
748 |
|
749 TUPLE *create_tuple(MPL *mpl) |
|
750 { TUPLE *tuple; |
|
751 xassert(mpl == mpl); |
|
752 tuple = NULL; |
|
753 return tuple; |
|
754 } |
|
755 |
|
756 /*---------------------------------------------------------------------- |
|
757 -- expand_tuple - append symbol to n-tuple. |
|
758 -- |
|
759 -- This routine expands n-tuple appending to it a given symbol, which |
|
760 -- becomes its new last component. */ |
|
761 |
|
762 TUPLE *expand_tuple |
|
763 ( MPL *mpl, |
|
764 TUPLE *tuple, /* destroyed */ |
|
765 SYMBOL *sym /* destroyed */ |
|
766 ) |
|
767 { TUPLE *tail, *temp; |
|
768 xassert(sym != NULL); |
|
769 /* create a new component */ |
|
770 tail = dmp_get_atom(mpl->tuples, sizeof(TUPLE)); |
|
771 tail->sym = sym; |
|
772 tail->next = NULL; |
|
773 /* and append it to the component list */ |
|
774 if (tuple == NULL) |
|
775 tuple = tail; |
|
776 else |
|
777 { for (temp = tuple; temp->next != NULL; temp = temp->next); |
|
778 temp->next = tail; |
|
779 } |
|
780 return tuple; |
|
781 } |
|
782 |
|
783 /*---------------------------------------------------------------------- |
|
784 -- tuple_dimen - determine dimension of n-tuple. |
|
785 -- |
|
786 -- This routine returns dimension of n-tuple, i.e. number of components |
|
787 -- in the n-tuple. */ |
|
788 |
|
789 int tuple_dimen |
|
790 ( MPL *mpl, |
|
791 TUPLE *tuple /* not changed */ |
|
792 ) |
|
793 { TUPLE *temp; |
|
794 int dim = 0; |
|
795 xassert(mpl == mpl); |
|
796 for (temp = tuple; temp != NULL; temp = temp->next) dim++; |
|
797 return dim; |
|
798 } |
|
799 |
|
800 /*---------------------------------------------------------------------- |
|
801 -- copy_tuple - make copy of n-tuple. |
|
802 -- |
|
803 -- This routine returns an exact copy of n-tuple. */ |
|
804 |
|
805 TUPLE *copy_tuple |
|
806 ( MPL *mpl, |
|
807 TUPLE *tuple /* not changed */ |
|
808 ) |
|
809 { TUPLE *head, *tail; |
|
810 if (tuple == NULL) |
|
811 head = NULL; |
|
812 else |
|
813 { head = tail = dmp_get_atom(mpl->tuples, sizeof(TUPLE)); |
|
814 for (; tuple != NULL; tuple = tuple->next) |
|
815 { xassert(tuple->sym != NULL); |
|
816 tail->sym = copy_symbol(mpl, tuple->sym); |
|
817 if (tuple->next != NULL) |
|
818 tail = (tail->next = dmp_get_atom(mpl->tuples, sizeof(TUPLE))); |
|
819 } |
|
820 tail->next = NULL; |
|
821 } |
|
822 return head; |
|
823 } |
|
824 |
|
825 /*---------------------------------------------------------------------- |
|
826 -- compare_tuples - compare one n-tuple with another. |
|
827 -- |
|
828 -- This routine compares two given n-tuples, which must have the same |
|
829 -- dimension (not checked for the sake of efficiency), and returns one |
|
830 -- of the following codes: |
|
831 -- |
|
832 -- = 0 - both n-tuples are identical; |
|
833 -- < 0 - the first n-tuple precedes the second one; |
|
834 -- > 0 - the first n-tuple follows the second one. |
|
835 -- |
|
836 -- Note that the linear order, in which n-tuples follow each other, is |
|
837 -- implementation-dependent. It may be not an alphabetical order. */ |
|
838 |
|
839 int compare_tuples |
|
840 ( MPL *mpl, |
|
841 TUPLE *tuple1, /* not changed */ |
|
842 TUPLE *tuple2 /* not changed */ |
|
843 ) |
|
844 { TUPLE *item1, *item2; |
|
845 int ret; |
|
846 xassert(mpl == mpl); |
|
847 for (item1 = tuple1, item2 = tuple2; item1 != NULL; |
|
848 item1 = item1->next, item2 = item2->next) |
|
849 { xassert(item2 != NULL); |
|
850 xassert(item1->sym != NULL); |
|
851 xassert(item2->sym != NULL); |
|
852 ret = compare_symbols(mpl, item1->sym, item2->sym); |
|
853 if (ret != 0) return ret; |
|
854 } |
|
855 xassert(item2 == NULL); |
|
856 return 0; |
|
857 } |
|
858 |
|
859 /*---------------------------------------------------------------------- |
|
860 -- build_subtuple - build subtuple of given n-tuple. |
|
861 -- |
|
862 -- This routine builds subtuple, which consists of first dim components |
|
863 -- of given n-tuple. */ |
|
864 |
|
865 TUPLE *build_subtuple |
|
866 ( MPL *mpl, |
|
867 TUPLE *tuple, /* not changed */ |
|
868 int dim |
|
869 ) |
|
870 { TUPLE *head, *temp; |
|
871 int j; |
|
872 head = create_tuple(mpl); |
|
873 for (j = 1, temp = tuple; j <= dim; j++, temp = temp->next) |
|
874 { xassert(temp != NULL); |
|
875 head = expand_tuple(mpl, head, copy_symbol(mpl, temp->sym)); |
|
876 } |
|
877 return head; |
|
878 } |
|
879 |
|
880 /*---------------------------------------------------------------------- |
|
881 -- delete_tuple - delete n-tuple. |
|
882 -- |
|
883 -- This routine deletes specified n-tuple. */ |
|
884 |
|
885 void delete_tuple |
|
886 ( MPL *mpl, |
|
887 TUPLE *tuple /* destroyed */ |
|
888 ) |
|
889 { TUPLE *temp; |
|
890 while (tuple != NULL) |
|
891 { temp = tuple; |
|
892 tuple = temp->next; |
|
893 xassert(temp->sym != NULL); |
|
894 delete_symbol(mpl, temp->sym); |
|
895 dmp_free_atom(mpl->tuples, temp, sizeof(TUPLE)); |
|
896 } |
|
897 return; |
|
898 } |
|
899 |
|
900 /*---------------------------------------------------------------------- |
|
901 -- format_tuple - format n-tuple for displaying or printing. |
|
902 -- |
|
903 -- This routine converts specified n-tuple to a character string, which |
|
904 -- is suitable for displaying or printing. |
|
905 -- |
|
906 -- The resultant string is never longer than 255 characters. If it gets |
|
907 -- longer, it is truncated from the right and appended by dots. */ |
|
908 |
|
909 char *format_tuple |
|
910 ( MPL *mpl, |
|
911 int c, |
|
912 TUPLE *tuple /* not changed */ |
|
913 ) |
|
914 { TUPLE *temp; |
|
915 int dim, j, len; |
|
916 char *buf = mpl->tup_buf, str[255+1], *save; |
|
917 # define safe_append(c) \ |
|
918 (void)(len < 255 ? (buf[len++] = (char)(c)) : 0) |
|
919 buf[0] = '\0', len = 0; |
|
920 dim = tuple_dimen(mpl, tuple); |
|
921 if (c == '[' && dim > 0) safe_append('['); |
|
922 if (c == '(' && dim > 1) safe_append('('); |
|
923 for (temp = tuple; temp != NULL; temp = temp->next) |
|
924 { if (temp != tuple) safe_append(','); |
|
925 xassert(temp->sym != NULL); |
|
926 save = mpl->sym_buf; |
|
927 mpl->sym_buf = str; |
|
928 format_symbol(mpl, temp->sym); |
|
929 mpl->sym_buf = save; |
|
930 xassert(strlen(str) < sizeof(str)); |
|
931 for (j = 0; str[j] != '\0'; j++) safe_append(str[j]); |
|
932 } |
|
933 if (c == '[' && dim > 0) safe_append(']'); |
|
934 if (c == '(' && dim > 1) safe_append(')'); |
|
935 # undef safe_append |
|
936 buf[len] = '\0'; |
|
937 if (len == 255) strcpy(buf+252, "..."); |
|
938 xassert(strlen(buf) <= 255); |
|
939 return buf; |
|
940 } |
|
941 |
|
942 /**********************************************************************/ |
|
943 /* * * ELEMENTAL SETS * * */ |
|
944 /**********************************************************************/ |
|
945 |
|
946 /*---------------------------------------------------------------------- |
|
947 -- create_elemset - create elemental set. |
|
948 -- |
|
949 -- This routine creates an elemental set, whose members are n-tuples of |
|
950 -- specified dimension. Being created the set is initially empty. */ |
|
951 |
|
952 ELEMSET *create_elemset(MPL *mpl, int dim) |
|
953 { ELEMSET *set; |
|
954 xassert(dim > 0); |
|
955 set = create_array(mpl, A_NONE, dim); |
|
956 return set; |
|
957 } |
|
958 |
|
959 /*---------------------------------------------------------------------- |
|
960 -- find_tuple - check if elemental set contains given n-tuple. |
|
961 -- |
|
962 -- This routine finds given n-tuple in specified elemental set in order |
|
963 -- to check if the set contains that n-tuple. If the n-tuple is found, |
|
964 -- the routine returns pointer to corresponding array member. Otherwise |
|
965 -- null pointer is returned. */ |
|
966 |
|
967 MEMBER *find_tuple |
|
968 ( MPL *mpl, |
|
969 ELEMSET *set, /* not changed */ |
|
970 TUPLE *tuple /* not changed */ |
|
971 ) |
|
972 { xassert(set != NULL); |
|
973 xassert(set->type == A_NONE); |
|
974 xassert(set->dim == tuple_dimen(mpl, tuple)); |
|
975 return find_member(mpl, set, tuple); |
|
976 } |
|
977 |
|
978 /*---------------------------------------------------------------------- |
|
979 -- add_tuple - add new n-tuple to elemental set. |
|
980 -- |
|
981 -- This routine adds given n-tuple to specified elemental set. |
|
982 -- |
|
983 -- For the sake of efficiency this routine doesn't check whether the |
|
984 -- set already contains the same n-tuple or not. Therefore the calling |
|
985 -- program should use the routine find_tuple (if necessary) in order to |
|
986 -- make sure that the given n-tuple is not contained in the set, since |
|
987 -- duplicate n-tuples within the same set are not allowed. */ |
|
988 |
|
989 MEMBER *add_tuple |
|
990 ( MPL *mpl, |
|
991 ELEMSET *set, /* modified */ |
|
992 TUPLE *tuple /* destroyed */ |
|
993 ) |
|
994 { MEMBER *memb; |
|
995 xassert(set != NULL); |
|
996 xassert(set->type == A_NONE); |
|
997 xassert(set->dim == tuple_dimen(mpl, tuple)); |
|
998 memb = add_member(mpl, set, tuple); |
|
999 memb->value.none = NULL; |
|
1000 return memb; |
|
1001 } |
|
1002 |
|
1003 /*---------------------------------------------------------------------- |
|
1004 -- check_then_add - check and add new n-tuple to elemental set. |
|
1005 -- |
|
1006 -- This routine is equivalent to the routine add_tuple except that it |
|
1007 -- does check for duplicate n-tuples. */ |
|
1008 |
|
1009 MEMBER *check_then_add |
|
1010 ( MPL *mpl, |
|
1011 ELEMSET *set, /* modified */ |
|
1012 TUPLE *tuple /* destroyed */ |
|
1013 ) |
|
1014 { if (find_tuple(mpl, set, tuple) != NULL) |
|
1015 error(mpl, "duplicate tuple %s detected", format_tuple(mpl, |
|
1016 '(', tuple)); |
|
1017 return add_tuple(mpl, set, tuple); |
|
1018 } |
|
1019 |
|
1020 /*---------------------------------------------------------------------- |
|
1021 -- copy_elemset - make copy of elemental set. |
|
1022 -- |
|
1023 -- This routine makes an exact copy of elemental set. */ |
|
1024 |
|
1025 ELEMSET *copy_elemset |
|
1026 ( MPL *mpl, |
|
1027 ELEMSET *set /* not changed */ |
|
1028 ) |
|
1029 { ELEMSET *copy; |
|
1030 MEMBER *memb; |
|
1031 xassert(set != NULL); |
|
1032 xassert(set->type == A_NONE); |
|
1033 xassert(set->dim > 0); |
|
1034 copy = create_elemset(mpl, set->dim); |
|
1035 for (memb = set->head; memb != NULL; memb = memb->next) |
|
1036 add_tuple(mpl, copy, copy_tuple(mpl, memb->tuple)); |
|
1037 return copy; |
|
1038 } |
|
1039 |
|
1040 /*---------------------------------------------------------------------- |
|
1041 -- delete_elemset - delete elemental set. |
|
1042 -- |
|
1043 -- This routine deletes specified elemental set. */ |
|
1044 |
|
1045 void delete_elemset |
|
1046 ( MPL *mpl, |
|
1047 ELEMSET *set /* destroyed */ |
|
1048 ) |
|
1049 { xassert(set != NULL); |
|
1050 xassert(set->type == A_NONE); |
|
1051 delete_array(mpl, set); |
|
1052 return; |
|
1053 } |
|
1054 |
|
1055 /*---------------------------------------------------------------------- |
|
1056 -- arelset_size - compute size of "arithmetic" elemental set. |
|
1057 -- |
|
1058 -- This routine computes the size of "arithmetic" elemental set, which |
|
1059 -- is specified in the form of arithmetic progression: |
|
1060 -- |
|
1061 -- { t0 .. tf by dt }. |
|
1062 -- |
|
1063 -- The size is computed using the formula: |
|
1064 -- |
|
1065 -- n = max(0, floor((tf - t0) / dt) + 1). */ |
|
1066 |
|
1067 int arelset_size(MPL *mpl, double t0, double tf, double dt) |
|
1068 { double temp; |
|
1069 if (dt == 0.0) |
|
1070 error(mpl, "%.*g .. %.*g by %.*g; zero stride not allowed", |
|
1071 DBL_DIG, t0, DBL_DIG, tf, DBL_DIG, dt); |
|
1072 if (tf > 0.0 && t0 < 0.0 && tf > + 0.999 * DBL_MAX + t0) |
|
1073 temp = +DBL_MAX; |
|
1074 else if (tf < 0.0 && t0 > 0.0 && tf < - 0.999 * DBL_MAX + t0) |
|
1075 temp = -DBL_MAX; |
|
1076 else |
|
1077 temp = tf - t0; |
|
1078 if (fabs(dt) < 1.0 && fabs(temp) > (0.999 * DBL_MAX) * fabs(dt)) |
|
1079 { if (temp > 0.0 && dt > 0.0 || temp < 0.0 && dt < 0.0) |
|
1080 temp = +DBL_MAX; |
|
1081 else |
|
1082 temp = 0.0; |
|
1083 } |
|
1084 else |
|
1085 { temp = floor(temp / dt) + 1.0; |
|
1086 if (temp < 0.0) temp = 0.0; |
|
1087 } |
|
1088 xassert(temp >= 0.0); |
|
1089 if (temp > (double)(INT_MAX - 1)) |
|
1090 error(mpl, "%.*g .. %.*g by %.*g; set too large", |
|
1091 DBL_DIG, t0, DBL_DIG, tf, DBL_DIG, dt); |
|
1092 return (int)(temp + 0.5); |
|
1093 } |
|
1094 |
|
1095 /*---------------------------------------------------------------------- |
|
1096 -- arelset_member - compute member of "arithmetic" elemental set. |
|
1097 -- |
|
1098 -- This routine returns a numeric value of symbol, which is equivalent |
|
1099 -- to j-th member of given "arithmetic" elemental set specified in the |
|
1100 -- form of arithmetic progression: |
|
1101 -- |
|
1102 -- { t0 .. tf by dt }. |
|
1103 -- |
|
1104 -- The symbol value is computed with the formula: |
|
1105 -- |
|
1106 -- j-th member = t0 + (j - 1) * dt, |
|
1107 -- |
|
1108 -- The number j must satisfy to the restriction 1 <= j <= n, where n is |
|
1109 -- the set size computed by the routine arelset_size. */ |
|
1110 |
|
1111 double arelset_member(MPL *mpl, double t0, double tf, double dt, int j) |
|
1112 { xassert(1 <= j && j <= arelset_size(mpl, t0, tf, dt)); |
|
1113 return t0 + (double)(j - 1) * dt; |
|
1114 } |
|
1115 |
|
1116 /*---------------------------------------------------------------------- |
|
1117 -- create_arelset - create "arithmetic" elemental set. |
|
1118 -- |
|
1119 -- This routine creates "arithmetic" elemental set, which is specified |
|
1120 -- in the form of arithmetic progression: |
|
1121 -- |
|
1122 -- { t0 .. tf by dt }. |
|
1123 -- |
|
1124 -- Components of this set are 1-tuples. */ |
|
1125 |
|
1126 ELEMSET *create_arelset(MPL *mpl, double t0, double tf, double dt) |
|
1127 { ELEMSET *set; |
|
1128 int j, n; |
|
1129 set = create_elemset(mpl, 1); |
|
1130 n = arelset_size(mpl, t0, tf, dt); |
|
1131 for (j = 1; j <= n; j++) |
|
1132 { add_tuple |
|
1133 ( mpl, |
|
1134 set, |
|
1135 expand_tuple |
|
1136 ( mpl, |
|
1137 create_tuple(mpl), |
|
1138 create_symbol_num |
|
1139 ( mpl, |
|
1140 arelset_member(mpl, t0, tf, dt, j) |
|
1141 ) |
|
1142 ) |
|
1143 ); |
|
1144 } |
|
1145 return set; |
|
1146 } |
|
1147 |
|
1148 /*---------------------------------------------------------------------- |
|
1149 -- set_union - union of two elemental sets. |
|
1150 -- |
|
1151 -- This routine computes the union: |
|
1152 -- |
|
1153 -- X U Y = { j | (j in X) or (j in Y) }, |
|
1154 -- |
|
1155 -- where X and Y are given elemental sets (destroyed on exit). */ |
|
1156 |
|
1157 ELEMSET *set_union |
|
1158 ( MPL *mpl, |
|
1159 ELEMSET *X, /* destroyed */ |
|
1160 ELEMSET *Y /* destroyed */ |
|
1161 ) |
|
1162 { MEMBER *memb; |
|
1163 xassert(X != NULL); |
|
1164 xassert(X->type == A_NONE); |
|
1165 xassert(X->dim > 0); |
|
1166 xassert(Y != NULL); |
|
1167 xassert(Y->type == A_NONE); |
|
1168 xassert(Y->dim > 0); |
|
1169 xassert(X->dim == Y->dim); |
|
1170 for (memb = Y->head; memb != NULL; memb = memb->next) |
|
1171 { if (find_tuple(mpl, X, memb->tuple) == NULL) |
|
1172 add_tuple(mpl, X, copy_tuple(mpl, memb->tuple)); |
|
1173 } |
|
1174 delete_elemset(mpl, Y); |
|
1175 return X; |
|
1176 } |
|
1177 |
|
1178 /*---------------------------------------------------------------------- |
|
1179 -- set_diff - difference between two elemental sets. |
|
1180 -- |
|
1181 -- This routine computes the difference: |
|
1182 -- |
|
1183 -- X \ Y = { j | (j in X) and (j not in Y) }, |
|
1184 -- |
|
1185 -- where X and Y are given elemental sets (destroyed on exit). */ |
|
1186 |
|
1187 ELEMSET *set_diff |
|
1188 ( MPL *mpl, |
|
1189 ELEMSET *X, /* destroyed */ |
|
1190 ELEMSET *Y /* destroyed */ |
|
1191 ) |
|
1192 { ELEMSET *Z; |
|
1193 MEMBER *memb; |
|
1194 xassert(X != NULL); |
|
1195 xassert(X->type == A_NONE); |
|
1196 xassert(X->dim > 0); |
|
1197 xassert(Y != NULL); |
|
1198 xassert(Y->type == A_NONE); |
|
1199 xassert(Y->dim > 0); |
|
1200 xassert(X->dim == Y->dim); |
|
1201 Z = create_elemset(mpl, X->dim); |
|
1202 for (memb = X->head; memb != NULL; memb = memb->next) |
|
1203 { if (find_tuple(mpl, Y, memb->tuple) == NULL) |
|
1204 add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple)); |
|
1205 } |
|
1206 delete_elemset(mpl, X); |
|
1207 delete_elemset(mpl, Y); |
|
1208 return Z; |
|
1209 } |
|
1210 |
|
1211 /*---------------------------------------------------------------------- |
|
1212 -- set_symdiff - symmetric difference between two elemental sets. |
|
1213 -- |
|
1214 -- This routine computes the symmetric difference: |
|
1215 -- |
|
1216 -- X (+) Y = (X \ Y) U (Y \ X), |
|
1217 -- |
|
1218 -- where X and Y are given elemental sets (destroyed on exit). */ |
|
1219 |
|
1220 ELEMSET *set_symdiff |
|
1221 ( MPL *mpl, |
|
1222 ELEMSET *X, /* destroyed */ |
|
1223 ELEMSET *Y /* destroyed */ |
|
1224 ) |
|
1225 { ELEMSET *Z; |
|
1226 MEMBER *memb; |
|
1227 xassert(X != NULL); |
|
1228 xassert(X->type == A_NONE); |
|
1229 xassert(X->dim > 0); |
|
1230 xassert(Y != NULL); |
|
1231 xassert(Y->type == A_NONE); |
|
1232 xassert(Y->dim > 0); |
|
1233 xassert(X->dim == Y->dim); |
|
1234 /* Z := X \ Y */ |
|
1235 Z = create_elemset(mpl, X->dim); |
|
1236 for (memb = X->head; memb != NULL; memb = memb->next) |
|
1237 { if (find_tuple(mpl, Y, memb->tuple) == NULL) |
|
1238 add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple)); |
|
1239 } |
|
1240 /* Z := Z U (Y \ X) */ |
|
1241 for (memb = Y->head; memb != NULL; memb = memb->next) |
|
1242 { if (find_tuple(mpl, X, memb->tuple) == NULL) |
|
1243 add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple)); |
|
1244 } |
|
1245 delete_elemset(mpl, X); |
|
1246 delete_elemset(mpl, Y); |
|
1247 return Z; |
|
1248 } |
|
1249 |
|
1250 /*---------------------------------------------------------------------- |
|
1251 -- set_inter - intersection of two elemental sets. |
|
1252 -- |
|
1253 -- This routine computes the intersection: |
|
1254 -- |
|
1255 -- X ^ Y = { j | (j in X) and (j in Y) }, |
|
1256 -- |
|
1257 -- where X and Y are given elemental sets (destroyed on exit). */ |
|
1258 |
|
1259 ELEMSET *set_inter |
|
1260 ( MPL *mpl, |
|
1261 ELEMSET *X, /* destroyed */ |
|
1262 ELEMSET *Y /* destroyed */ |
|
1263 ) |
|
1264 { ELEMSET *Z; |
|
1265 MEMBER *memb; |
|
1266 xassert(X != NULL); |
|
1267 xassert(X->type == A_NONE); |
|
1268 xassert(X->dim > 0); |
|
1269 xassert(Y != NULL); |
|
1270 xassert(Y->type == A_NONE); |
|
1271 xassert(Y->dim > 0); |
|
1272 xassert(X->dim == Y->dim); |
|
1273 Z = create_elemset(mpl, X->dim); |
|
1274 for (memb = X->head; memb != NULL; memb = memb->next) |
|
1275 { if (find_tuple(mpl, Y, memb->tuple) != NULL) |
|
1276 add_tuple(mpl, Z, copy_tuple(mpl, memb->tuple)); |
|
1277 } |
|
1278 delete_elemset(mpl, X); |
|
1279 delete_elemset(mpl, Y); |
|
1280 return Z; |
|
1281 } |
|
1282 |
|
1283 /*---------------------------------------------------------------------- |
|
1284 -- set_cross - cross (Cartesian) product of two elemental sets. |
|
1285 -- |
|
1286 -- This routine computes the cross (Cartesian) product: |
|
1287 -- |
|
1288 -- X x Y = { (i,j) | (i in X) and (j in Y) }, |
|
1289 -- |
|
1290 -- where X and Y are given elemental sets (destroyed on exit). */ |
|
1291 |
|
1292 ELEMSET *set_cross |
|
1293 ( MPL *mpl, |
|
1294 ELEMSET *X, /* destroyed */ |
|
1295 ELEMSET *Y /* destroyed */ |
|
1296 ) |
|
1297 { ELEMSET *Z; |
|
1298 MEMBER *memx, *memy; |
|
1299 TUPLE *tuple, *temp; |
|
1300 xassert(X != NULL); |
|
1301 xassert(X->type == A_NONE); |
|
1302 xassert(X->dim > 0); |
|
1303 xassert(Y != NULL); |
|
1304 xassert(Y->type == A_NONE); |
|
1305 xassert(Y->dim > 0); |
|
1306 Z = create_elemset(mpl, X->dim + Y->dim); |
|
1307 for (memx = X->head; memx != NULL; memx = memx->next) |
|
1308 { for (memy = Y->head; memy != NULL; memy = memy->next) |
|
1309 { tuple = copy_tuple(mpl, memx->tuple); |
|
1310 for (temp = memy->tuple; temp != NULL; temp = temp->next) |
|
1311 tuple = expand_tuple(mpl, tuple, copy_symbol(mpl, |
|
1312 temp->sym)); |
|
1313 add_tuple(mpl, Z, tuple); |
|
1314 } |
|
1315 } |
|
1316 delete_elemset(mpl, X); |
|
1317 delete_elemset(mpl, Y); |
|
1318 return Z; |
|
1319 } |
|
1320 |
|
1321 /**********************************************************************/ |
|
1322 /* * * ELEMENTAL VARIABLES * * */ |
|
1323 /**********************************************************************/ |
|
1324 |
|
1325 /* (there are no specific routines for elemental variables) */ |
|
1326 |
|
1327 /**********************************************************************/ |
|
1328 /* * * LINEAR FORMS * * */ |
|
1329 /**********************************************************************/ |
|
1330 |
|
1331 /*---------------------------------------------------------------------- |
|
1332 -- constant_term - create constant term. |
|
1333 -- |
|
1334 -- This routine creates the linear form, which is a constant term. */ |
|
1335 |
|
1336 FORMULA *constant_term(MPL *mpl, double coef) |
|
1337 { FORMULA *form; |
|
1338 if (coef == 0.0) |
|
1339 form = NULL; |
|
1340 else |
|
1341 { form = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); |
|
1342 form->coef = coef; |
|
1343 form->var = NULL; |
|
1344 form->next = NULL; |
|
1345 } |
|
1346 return form; |
|
1347 } |
|
1348 |
|
1349 /*---------------------------------------------------------------------- |
|
1350 -- single_variable - create single variable. |
|
1351 -- |
|
1352 -- This routine creates the linear form, which is a single elemental |
|
1353 -- variable. */ |
|
1354 |
|
1355 FORMULA *single_variable |
|
1356 ( MPL *mpl, |
|
1357 ELEMVAR *var /* referenced */ |
|
1358 ) |
|
1359 { FORMULA *form; |
|
1360 xassert(var != NULL); |
|
1361 form = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); |
|
1362 form->coef = 1.0; |
|
1363 form->var = var; |
|
1364 form->next = NULL; |
|
1365 return form; |
|
1366 } |
|
1367 |
|
1368 /*---------------------------------------------------------------------- |
|
1369 -- copy_formula - make copy of linear form. |
|
1370 -- |
|
1371 -- This routine returns an exact copy of linear form. */ |
|
1372 |
|
1373 FORMULA *copy_formula |
|
1374 ( MPL *mpl, |
|
1375 FORMULA *form /* not changed */ |
|
1376 ) |
|
1377 { FORMULA *head, *tail; |
|
1378 if (form == NULL) |
|
1379 head = NULL; |
|
1380 else |
|
1381 { head = tail = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); |
|
1382 for (; form != NULL; form = form->next) |
|
1383 { tail->coef = form->coef; |
|
1384 tail->var = form->var; |
|
1385 if (form->next != NULL) |
|
1386 tail = (tail->next = dmp_get_atom(mpl->formulae, sizeof(FORMULA))); |
|
1387 } |
|
1388 tail->next = NULL; |
|
1389 } |
|
1390 return head; |
|
1391 } |
|
1392 |
|
1393 /*---------------------------------------------------------------------- |
|
1394 -- delete_formula - delete linear form. |
|
1395 -- |
|
1396 -- This routine deletes specified linear form. */ |
|
1397 |
|
1398 void delete_formula |
|
1399 ( MPL *mpl, |
|
1400 FORMULA *form /* destroyed */ |
|
1401 ) |
|
1402 { FORMULA *temp; |
|
1403 while (form != NULL) |
|
1404 { temp = form; |
|
1405 form = form->next; |
|
1406 dmp_free_atom(mpl->formulae, temp, sizeof(FORMULA)); |
|
1407 } |
|
1408 return; |
|
1409 } |
|
1410 |
|
1411 /*---------------------------------------------------------------------- |
|
1412 -- linear_comb - linear combination of two linear forms. |
|
1413 -- |
|
1414 -- This routine computes the linear combination: |
|
1415 -- |
|
1416 -- a * fx + b * fy, |
|
1417 -- |
|
1418 -- where a and b are numeric coefficients, fx and fy are linear forms |
|
1419 -- (destroyed on exit). */ |
|
1420 |
|
1421 FORMULA *linear_comb |
|
1422 ( MPL *mpl, |
|
1423 double a, FORMULA *fx, /* destroyed */ |
|
1424 double b, FORMULA *fy /* destroyed */ |
|
1425 ) |
|
1426 { FORMULA *form = NULL, *term, *temp; |
|
1427 double c0 = 0.0; |
|
1428 for (term = fx; term != NULL; term = term->next) |
|
1429 { if (term->var == NULL) |
|
1430 c0 = fp_add(mpl, c0, fp_mul(mpl, a, term->coef)); |
|
1431 else |
|
1432 term->var->temp = |
|
1433 fp_add(mpl, term->var->temp, fp_mul(mpl, a, term->coef)); |
|
1434 } |
|
1435 for (term = fy; term != NULL; term = term->next) |
|
1436 { if (term->var == NULL) |
|
1437 c0 = fp_add(mpl, c0, fp_mul(mpl, b, term->coef)); |
|
1438 else |
|
1439 term->var->temp = |
|
1440 fp_add(mpl, term->var->temp, fp_mul(mpl, b, term->coef)); |
|
1441 } |
|
1442 for (term = fx; term != NULL; term = term->next) |
|
1443 { if (term->var != NULL && term->var->temp != 0.0) |
|
1444 { temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); |
|
1445 temp->coef = term->var->temp, temp->var = term->var; |
|
1446 temp->next = form, form = temp; |
|
1447 term->var->temp = 0.0; |
|
1448 } |
|
1449 } |
|
1450 for (term = fy; term != NULL; term = term->next) |
|
1451 { if (term->var != NULL && term->var->temp != 0.0) |
|
1452 { temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); |
|
1453 temp->coef = term->var->temp, temp->var = term->var; |
|
1454 temp->next = form, form = temp; |
|
1455 term->var->temp = 0.0; |
|
1456 } |
|
1457 } |
|
1458 if (c0 != 0.0) |
|
1459 { temp = dmp_get_atom(mpl->formulae, sizeof(FORMULA)); |
|
1460 temp->coef = c0, temp->var = NULL; |
|
1461 temp->next = form, form = temp; |
|
1462 } |
|
1463 delete_formula(mpl, fx); |
|
1464 delete_formula(mpl, fy); |
|
1465 return form; |
|
1466 } |
|
1467 |
|
1468 /*---------------------------------------------------------------------- |
|
1469 -- remove_constant - remove constant term from linear form. |
|
1470 -- |
|
1471 -- This routine removes constant term from linear form and stores its |
|
1472 -- value to given location. */ |
|
1473 |
|
1474 FORMULA *remove_constant |
|
1475 ( MPL *mpl, |
|
1476 FORMULA *form, /* destroyed */ |
|
1477 double *coef /* modified */ |
|
1478 ) |
|
1479 { FORMULA *head = NULL, *temp; |
|
1480 *coef = 0.0; |
|
1481 while (form != NULL) |
|
1482 { temp = form; |
|
1483 form = form->next; |
|
1484 if (temp->var == NULL) |
|
1485 { /* constant term */ |
|
1486 *coef = fp_add(mpl, *coef, temp->coef); |
|
1487 dmp_free_atom(mpl->formulae, temp, sizeof(FORMULA)); |
|
1488 } |
|
1489 else |
|
1490 { /* linear term */ |
|
1491 temp->next = head; |
|
1492 head = temp; |
|
1493 } |
|
1494 } |
|
1495 return head; |
|
1496 } |
|
1497 |
|
1498 /*---------------------------------------------------------------------- |
|
1499 -- reduce_terms - reduce identical terms in linear form. |
|
1500 -- |
|
1501 -- This routine reduces identical terms in specified linear form. */ |
|
1502 |
|
1503 FORMULA *reduce_terms |
|
1504 ( MPL *mpl, |
|
1505 FORMULA *form /* destroyed */ |
|
1506 ) |
|
1507 { FORMULA *term, *next_term; |
|
1508 double c0 = 0.0; |
|
1509 for (term = form; term != NULL; term = term->next) |
|
1510 { if (term->var == NULL) |
|
1511 c0 = fp_add(mpl, c0, term->coef); |
|
1512 else |
|
1513 term->var->temp = fp_add(mpl, term->var->temp, term->coef); |
|
1514 } |
|
1515 next_term = form, form = NULL; |
|
1516 for (term = next_term; term != NULL; term = next_term) |
|
1517 { next_term = term->next; |
|
1518 if (term->var == NULL && c0 != 0.0) |
|
1519 { term->coef = c0, c0 = 0.0; |
|
1520 term->next = form, form = term; |
|
1521 } |
|
1522 else if (term->var != NULL && term->var->temp != 0.0) |
|
1523 { term->coef = term->var->temp, term->var->temp = 0.0; |
|
1524 term->next = form, form = term; |
|
1525 } |
|
1526 else |
|
1527 dmp_free_atom(mpl->formulae, term, sizeof(FORMULA)); |
|
1528 } |
|
1529 return form; |
|
1530 } |
|
1531 |
|
1532 /**********************************************************************/ |
|
1533 /* * * ELEMENTAL CONSTRAINTS * * */ |
|
1534 /**********************************************************************/ |
|
1535 |
|
1536 /* (there are no specific routines for elemental constraints) */ |
|
1537 |
|
1538 /**********************************************************************/ |
|
1539 /* * * GENERIC VALUES * * */ |
|
1540 /**********************************************************************/ |
|
1541 |
|
1542 /*---------------------------------------------------------------------- |
|
1543 -- delete_value - delete generic value. |
|
1544 -- |
|
1545 -- This routine deletes specified generic value. |
|
1546 -- |
|
1547 -- NOTE: The generic value to be deleted must be valid. */ |
|
1548 |
|
1549 void delete_value |
|
1550 ( MPL *mpl, |
|
1551 int type, |
|
1552 VALUE *value /* content destroyed */ |
|
1553 ) |
|
1554 { xassert(value != NULL); |
|
1555 switch (type) |
|
1556 { case A_NONE: |
|
1557 value->none = NULL; |
|
1558 break; |
|
1559 case A_NUMERIC: |
|
1560 value->num = 0.0; |
|
1561 break; |
|
1562 case A_SYMBOLIC: |
|
1563 delete_symbol(mpl, value->sym), value->sym = NULL; |
|
1564 break; |
|
1565 case A_LOGICAL: |
|
1566 value->bit = 0; |
|
1567 break; |
|
1568 case A_TUPLE: |
|
1569 delete_tuple(mpl, value->tuple), value->tuple = NULL; |
|
1570 break; |
|
1571 case A_ELEMSET: |
|
1572 delete_elemset(mpl, value->set), value->set = NULL; |
|
1573 break; |
|
1574 case A_ELEMVAR: |
|
1575 value->var = NULL; |
|
1576 break; |
|
1577 case A_FORMULA: |
|
1578 delete_formula(mpl, value->form), value->form = NULL; |
|
1579 break; |
|
1580 case A_ELEMCON: |
|
1581 value->con = NULL; |
|
1582 break; |
|
1583 default: |
|
1584 xassert(type != type); |
|
1585 } |
|
1586 return; |
|
1587 } |
|
1588 |
|
1589 /**********************************************************************/ |
|
1590 /* * * SYMBOLICALLY INDEXED ARRAYS * * */ |
|
1591 /**********************************************************************/ |
|
1592 |
|
1593 /*---------------------------------------------------------------------- |
|
1594 -- create_array - create array. |
|
1595 -- |
|
1596 -- This routine creates an array of specified type and dimension. Being |
|
1597 -- created the array is initially empty. |
|
1598 -- |
|
1599 -- The type indicator determines generic values, which can be assigned |
|
1600 -- to the array members: |
|
1601 -- |
|
1602 -- A_NONE - none (members have no assigned values) |
|
1603 -- A_NUMERIC - floating-point numbers |
|
1604 -- A_SYMBOLIC - symbols |
|
1605 -- A_ELEMSET - elemental sets |
|
1606 -- A_ELEMVAR - elemental variables |
|
1607 -- A_ELEMCON - elemental constraints |
|
1608 -- |
|
1609 -- The dimension may be 0, in which case the array consists of the only |
|
1610 -- member (such arrays represent 0-dimensional objects). */ |
|
1611 |
|
1612 ARRAY *create_array(MPL *mpl, int type, int dim) |
|
1613 { ARRAY *array; |
|
1614 xassert(type == A_NONE || type == A_NUMERIC || |
|
1615 type == A_SYMBOLIC || type == A_ELEMSET || |
|
1616 type == A_ELEMVAR || type == A_ELEMCON); |
|
1617 xassert(dim >= 0); |
|
1618 array = dmp_get_atom(mpl->arrays, sizeof(ARRAY)); |
|
1619 array->type = type; |
|
1620 array->dim = dim; |
|
1621 array->size = 0; |
|
1622 array->head = NULL; |
|
1623 array->tail = NULL; |
|
1624 array->tree = NULL; |
|
1625 array->prev = NULL; |
|
1626 array->next = mpl->a_list; |
|
1627 /* include the array in the global array list */ |
|
1628 if (array->next != NULL) array->next->prev = array; |
|
1629 mpl->a_list = array; |
|
1630 return array; |
|
1631 } |
|
1632 |
|
1633 /*---------------------------------------------------------------------- |
|
1634 -- find_member - find array member with given n-tuple. |
|
1635 -- |
|
1636 -- This routine finds an array member, which has given n-tuple. If the |
|
1637 -- array is short, the linear search is used. Otherwise the routine |
|
1638 -- autimatically creates the search tree (i.e. the array index) to find |
|
1639 -- members for logarithmic time. */ |
|
1640 |
|
1641 static int compare_member_tuples(void *info, const void *key1, |
|
1642 const void *key2) |
|
1643 { /* this is an auxiliary routine used to compare keys, which are |
|
1644 n-tuples assigned to array members */ |
|
1645 return compare_tuples((MPL *)info, (TUPLE *)key1, (TUPLE *)key2); |
|
1646 } |
|
1647 |
|
1648 MEMBER *find_member |
|
1649 ( MPL *mpl, |
|
1650 ARRAY *array, /* not changed */ |
|
1651 TUPLE *tuple /* not changed */ |
|
1652 ) |
|
1653 { MEMBER *memb; |
|
1654 xassert(array != NULL); |
|
1655 /* the n-tuple must have the same dimension as the array */ |
|
1656 xassert(tuple_dimen(mpl, tuple) == array->dim); |
|
1657 /* if the array is large enough, create the search tree and index |
|
1658 all existing members of the array */ |
|
1659 if (array->size > 30 && array->tree == NULL) |
|
1660 { array->tree = avl_create_tree(compare_member_tuples, mpl); |
|
1661 for (memb = array->head; memb != NULL; memb = memb->next) |
|
1662 avl_set_node_link(avl_insert_node(array->tree, memb->tuple), |
|
1663 (void *)memb); |
|
1664 } |
|
1665 /* find a member, which has the given tuple */ |
|
1666 if (array->tree == NULL) |
|
1667 { /* the search tree doesn't exist; use the linear search */ |
|
1668 for (memb = array->head; memb != NULL; memb = memb->next) |
|
1669 if (compare_tuples(mpl, memb->tuple, tuple) == 0) break; |
|
1670 } |
|
1671 else |
|
1672 { /* the search tree exists; use the binary search */ |
|
1673 AVLNODE *node; |
|
1674 node = avl_find_node(array->tree, tuple); |
|
1675 memb = (MEMBER *)(node == NULL ? NULL : avl_get_node_link(node)); |
|
1676 } |
|
1677 return memb; |
|
1678 } |
|
1679 |
|
1680 /*---------------------------------------------------------------------- |
|
1681 -- add_member - add new member to array. |
|
1682 -- |
|
1683 -- This routine creates a new member with given n-tuple and adds it to |
|
1684 -- specified array. |
|
1685 -- |
|
1686 -- For the sake of efficiency this routine doesn't check whether the |
|
1687 -- array already contains a member with the given n-tuple or not. Thus, |
|
1688 -- if necessary, the calling program should use the routine find_member |
|
1689 -- in order to be sure that the array contains no member with the same |
|
1690 -- n-tuple, because members with duplicate n-tuples are not allowed. |
|
1691 -- |
|
1692 -- This routine assigns no generic value to the new member, because the |
|
1693 -- calling program must do that. */ |
|
1694 |
|
1695 MEMBER *add_member |
|
1696 ( MPL *mpl, |
|
1697 ARRAY *array, /* modified */ |
|
1698 TUPLE *tuple /* destroyed */ |
|
1699 ) |
|
1700 { MEMBER *memb; |
|
1701 xassert(array != NULL); |
|
1702 /* the n-tuple must have the same dimension as the array */ |
|
1703 xassert(tuple_dimen(mpl, tuple) == array->dim); |
|
1704 /* create new member */ |
|
1705 memb = dmp_get_atom(mpl->members, sizeof(MEMBER)); |
|
1706 memb->tuple = tuple; |
|
1707 memb->next = NULL; |
|
1708 memset(&memb->value, '?', sizeof(VALUE)); |
|
1709 /* and append it to the member list */ |
|
1710 array->size++; |
|
1711 if (array->head == NULL) |
|
1712 array->head = memb; |
|
1713 else |
|
1714 array->tail->next = memb; |
|
1715 array->tail = memb; |
|
1716 /* if the search tree exists, index the new member */ |
|
1717 if (array->tree != NULL) |
|
1718 avl_set_node_link(avl_insert_node(array->tree, memb->tuple), |
|
1719 (void *)memb); |
|
1720 return memb; |
|
1721 } |
|
1722 |
|
1723 /*---------------------------------------------------------------------- |
|
1724 -- delete_array - delete array. |
|
1725 -- |
|
1726 -- This routine deletes specified array. |
|
1727 -- |
|
1728 -- Generic values assigned to the array members are not deleted by this |
|
1729 -- routine. The calling program itself must delete all assigned generic |
|
1730 -- values before deleting the array. */ |
|
1731 |
|
1732 void delete_array |
|
1733 ( MPL *mpl, |
|
1734 ARRAY *array /* destroyed */ |
|
1735 ) |
|
1736 { MEMBER *memb; |
|
1737 xassert(array != NULL); |
|
1738 /* delete all existing array members */ |
|
1739 while (array->head != NULL) |
|
1740 { memb = array->head; |
|
1741 array->head = memb->next; |
|
1742 delete_tuple(mpl, memb->tuple); |
|
1743 dmp_free_atom(mpl->members, memb, sizeof(MEMBER)); |
|
1744 } |
|
1745 /* if the search tree exists, also delete it */ |
|
1746 if (array->tree != NULL) avl_delete_tree(array->tree); |
|
1747 /* remove the array from the global array list */ |
|
1748 if (array->prev == NULL) |
|
1749 mpl->a_list = array->next; |
|
1750 else |
|
1751 array->prev->next = array->next; |
|
1752 if (array->next == NULL) |
|
1753 ; |
|
1754 else |
|
1755 array->next->prev = array->prev; |
|
1756 /* delete the array descriptor */ |
|
1757 dmp_free_atom(mpl->arrays, array, sizeof(ARRAY)); |
|
1758 return; |
|
1759 } |
|
1760 |
|
1761 /**********************************************************************/ |
|
1762 /* * * DOMAINS AND DUMMY INDICES * * */ |
|
1763 /**********************************************************************/ |
|
1764 |
|
1765 /*---------------------------------------------------------------------- |
|
1766 -- assign_dummy_index - assign new value to dummy index. |
|
1767 -- |
|
1768 -- This routine assigns new value to specified dummy index and, that is |
|
1769 -- important, invalidates all temporary resultant values, which depends |
|
1770 -- on that dummy index. */ |
|
1771 |
|
1772 void assign_dummy_index |
|
1773 ( MPL *mpl, |
|
1774 DOMAIN_SLOT *slot, /* modified */ |
|
1775 SYMBOL *value /* not changed */ |
|
1776 ) |
|
1777 { CODE *leaf, *code; |
|
1778 xassert(slot != NULL); |
|
1779 xassert(value != NULL); |
|
1780 /* delete the current value assigned to the dummy index */ |
|
1781 if (slot->value != NULL) |
|
1782 { /* if the current value and the new one are identical, actual |
|
1783 assignment is not needed */ |
|
1784 if (compare_symbols(mpl, slot->value, value) == 0) goto done; |
|
1785 /* delete a symbol, which is the current value */ |
|
1786 delete_symbol(mpl, slot->value), slot->value = NULL; |
|
1787 } |
|
1788 /* now walk through all the pseudo-codes with op = O_INDEX, which |
|
1789 refer to the dummy index to be changed (these pseudo-codes are |
|
1790 leaves in the forest of *all* expressions in the database) */ |
|
1791 for (leaf = slot->list; leaf != NULL; leaf = leaf->arg.index. |
|
1792 next) |
|
1793 { xassert(leaf->op == O_INDEX); |
|
1794 /* invalidate all resultant values, which depend on the dummy |
|
1795 index, walking from the current leaf toward the root of the |
|
1796 corresponding expression tree */ |
|
1797 for (code = leaf; code != NULL; code = code->up) |
|
1798 { if (code->valid) |
|
1799 { /* invalidate and delete resultant value */ |
|
1800 code->valid = 0; |
|
1801 delete_value(mpl, code->type, &code->value); |
|
1802 } |
|
1803 } |
|
1804 } |
|
1805 /* assign new value to the dummy index */ |
|
1806 slot->value = copy_symbol(mpl, value); |
|
1807 done: return; |
|
1808 } |
|
1809 |
|
1810 /*---------------------------------------------------------------------- |
|
1811 -- update_dummy_indices - update current values of dummy indices. |
|
1812 -- |
|
1813 -- This routine assigns components of "backup" n-tuple to dummy indices |
|
1814 -- of specified domain block. If no "backup" n-tuple is defined for the |
|
1815 -- domain block, values of the dummy indices remain untouched. */ |
|
1816 |
|
1817 void update_dummy_indices |
|
1818 ( MPL *mpl, |
|
1819 DOMAIN_BLOCK *block /* not changed */ |
|
1820 ) |
|
1821 { DOMAIN_SLOT *slot; |
|
1822 TUPLE *temp; |
|
1823 if (block->backup != NULL) |
|
1824 { for (slot = block->list, temp = block->backup; slot != NULL; |
|
1825 slot = slot->next, temp = temp->next) |
|
1826 { xassert(temp != NULL); |
|
1827 xassert(temp->sym != NULL); |
|
1828 assign_dummy_index(mpl, slot, temp->sym); |
|
1829 } |
|
1830 } |
|
1831 return; |
|
1832 } |
|
1833 |
|
1834 /*---------------------------------------------------------------------- |
|
1835 -- enter_domain_block - enter domain block. |
|
1836 -- |
|
1837 -- Let specified domain block have the form: |
|
1838 -- |
|
1839 -- { ..., (j1, j2, ..., jn) in J, ... } |
|
1840 -- |
|
1841 -- where j1, j2, ..., jn are dummy indices, J is a basic set. |
|
1842 -- |
|
1843 -- This routine does the following: |
|
1844 -- |
|
1845 -- 1. Checks if the given n-tuple is a member of the basic set J. Note |
|
1846 -- that J being *out of the scope* of the domain block cannot depend |
|
1847 -- on the dummy indices in the same and inner domain blocks, so it |
|
1848 -- can be computed before the dummy indices are assigned new values. |
|
1849 -- If this check fails, the routine returns with non-zero code. |
|
1850 -- |
|
1851 -- 2. Saves current values of the dummy indices j1, j2, ..., jn. |
|
1852 -- |
|
1853 -- 3. Assigns new values, which are components of the given n-tuple, to |
|
1854 -- the dummy indices j1, j2, ..., jn. If dimension of the n-tuple is |
|
1855 -- larger than n, its extra components n+1, n+2, ... are not used. |
|
1856 -- |
|
1857 -- 4. Calls the formal routine func which either enters the next domain |
|
1858 -- block or evaluates some code within the domain scope. |
|
1859 -- |
|
1860 -- 5. Restores former values of the dummy indices j1, j2, ..., jn. |
|
1861 -- |
|
1862 -- Since current values assigned to the dummy indices on entry to this |
|
1863 -- routine are restored on exit, the formal routine func is allowed to |
|
1864 -- call this routine recursively. */ |
|
1865 |
|
1866 int enter_domain_block |
|
1867 ( MPL *mpl, |
|
1868 DOMAIN_BLOCK *block, /* not changed */ |
|
1869 TUPLE *tuple, /* not changed */ |
|
1870 void *info, void (*func)(MPL *mpl, void *info) |
|
1871 ) |
|
1872 { TUPLE *backup; |
|
1873 int ret = 0; |
|
1874 /* check if the given n-tuple is a member of the basic set */ |
|
1875 xassert(block->code != NULL); |
|
1876 if (!is_member(mpl, block->code, tuple)) |
|
1877 { ret = 1; |
|
1878 goto done; |
|
1879 } |
|
1880 /* save reference to "backup" n-tuple, which was used to assign |
|
1881 current values of the dummy indices (it is sufficient to save |
|
1882 reference, not value, because that n-tuple is defined in some |
|
1883 outer level of recursion and therefore cannot be changed on |
|
1884 this and deeper recursive calls) */ |
|
1885 backup = block->backup; |
|
1886 /* set up new "backup" n-tuple, which defines new values of the |
|
1887 dummy indices */ |
|
1888 block->backup = tuple; |
|
1889 /* assign new values to the dummy indices */ |
|
1890 update_dummy_indices(mpl, block); |
|
1891 /* call the formal routine that does the rest part of the job */ |
|
1892 func(mpl, info); |
|
1893 /* restore reference to the former "backup" n-tuple */ |
|
1894 block->backup = backup; |
|
1895 /* restore former values of the dummy indices; note that if the |
|
1896 domain block just escaped has no other active instances which |
|
1897 may exist due to recursion (it is indicated by a null pointer |
|
1898 to the former n-tuple), former values of the dummy indices are |
|
1899 undefined; therefore in this case the routine keeps currently |
|
1900 assigned values of the dummy indices that involves keeping all |
|
1901 dependent temporary results and thereby, if this domain block |
|
1902 is not used recursively, allows improving efficiency */ |
|
1903 update_dummy_indices(mpl, block); |
|
1904 done: return ret; |
|
1905 } |
|
1906 |
|
1907 /*---------------------------------------------------------------------- |
|
1908 -- eval_within_domain - perform evaluation within domain scope. |
|
1909 -- |
|
1910 -- This routine assigns new values (symbols) to all dummy indices of |
|
1911 -- specified domain and calls the formal routine func, which is used to |
|
1912 -- evaluate some code in the domain scope. Each free dummy index in the |
|
1913 -- domain is assigned a value specified in the corresponding component |
|
1914 -- of given n-tuple. Non-free dummy indices are assigned values, which |
|
1915 -- are computed by this routine. |
|
1916 -- |
|
1917 -- Number of components in the given n-tuple must be the same as number |
|
1918 -- of free indices in the domain. |
|
1919 -- |
|
1920 -- If the given n-tuple is not a member of the domain set, the routine |
|
1921 -- func is not called, and non-zero code is returned. |
|
1922 -- |
|
1923 -- For the sake of convenience it is allowed to specify domain as NULL |
|
1924 -- (then n-tuple also must be 0-tuple, i.e. empty), in which case this |
|
1925 -- routine just calls the routine func and returns zero. |
|
1926 -- |
|
1927 -- This routine allows recursive calls from the routine func providing |
|
1928 -- correct values of dummy indices for each instance. |
|
1929 -- |
|
1930 -- NOTE: The n-tuple passed to this routine must not be changed by any |
|
1931 -- other routines called from the formal routine func until this |
|
1932 -- routine has returned. */ |
|
1933 |
|
1934 struct eval_domain_info |
|
1935 { /* working info used by the routine eval_within_domain */ |
|
1936 DOMAIN *domain; |
|
1937 /* domain, which has to be entered */ |
|
1938 DOMAIN_BLOCK *block; |
|
1939 /* domain block, which is currently processed */ |
|
1940 TUPLE *tuple; |
|
1941 /* tail of original n-tuple, whose components have to be assigned |
|
1942 to free dummy indices in the current domain block */ |
|
1943 void *info; |
|
1944 /* transit pointer passed to the formal routine func */ |
|
1945 void (*func)(MPL *mpl, void *info); |
|
1946 /* routine, which has to be executed in the domain scope */ |
|
1947 int failure; |
|
1948 /* this flag indicates that given n-tuple is not a member of the |
|
1949 domain set */ |
|
1950 }; |
|
1951 |
|
1952 static void eval_domain_func(MPL *mpl, void *_my_info) |
|
1953 { /* this routine recursively enters into the domain scope and then |
|
1954 calls the routine func */ |
|
1955 struct eval_domain_info *my_info = _my_info; |
|
1956 if (my_info->block != NULL) |
|
1957 { /* the current domain block to be entered exists */ |
|
1958 DOMAIN_BLOCK *block; |
|
1959 DOMAIN_SLOT *slot; |
|
1960 TUPLE *tuple = NULL, *temp = NULL; |
|
1961 /* save pointer to the current domain block */ |
|
1962 block = my_info->block; |
|
1963 /* and get ready to enter the next block (if it exists) */ |
|
1964 my_info->block = block->next; |
|
1965 /* construct temporary n-tuple, whose components correspond to |
|
1966 dummy indices (slots) of the current domain; components of |
|
1967 the temporary n-tuple that correspond to free dummy indices |
|
1968 are assigned references (not values!) to symbols specified |
|
1969 in the corresponding components of the given n-tuple, while |
|
1970 other components that correspond to non-free dummy indices |
|
1971 are assigned symbolic values computed here */ |
|
1972 for (slot = block->list; slot != NULL; slot = slot->next) |
|
1973 { /* create component that corresponds to the current slot */ |
|
1974 if (tuple == NULL) |
|
1975 tuple = temp = dmp_get_atom(mpl->tuples, sizeof(TUPLE)); |
|
1976 else |
|
1977 temp = (temp->next = dmp_get_atom(mpl->tuples, sizeof(TUPLE))); |
|
1978 if (slot->code == NULL) |
|
1979 { /* dummy index is free; take reference to symbol, which |
|
1980 is specified in the corresponding component of given |
|
1981 n-tuple */ |
|
1982 xassert(my_info->tuple != NULL); |
|
1983 temp->sym = my_info->tuple->sym; |
|
1984 xassert(temp->sym != NULL); |
|
1985 my_info->tuple = my_info->tuple->next; |
|
1986 } |
|
1987 else |
|
1988 { /* dummy index is non-free; compute symbolic value to be |
|
1989 temporarily assigned to the dummy index */ |
|
1990 temp->sym = eval_symbolic(mpl, slot->code); |
|
1991 } |
|
1992 } |
|
1993 temp->next = NULL; |
|
1994 /* enter the current domain block */ |
|
1995 if (enter_domain_block(mpl, block, tuple, my_info, |
|
1996 eval_domain_func)) my_info->failure = 1; |
|
1997 /* delete temporary n-tuple as well as symbols that correspond |
|
1998 to non-free dummy indices (they were computed here) */ |
|
1999 for (slot = block->list; slot != NULL; slot = slot->next) |
|
2000 { xassert(tuple != NULL); |
|
2001 temp = tuple; |
|
2002 tuple = tuple->next; |
|
2003 if (slot->code != NULL) |
|
2004 { /* dummy index is non-free; delete symbolic value */ |
|
2005 delete_symbol(mpl, temp->sym); |
|
2006 } |
|
2007 /* delete component that corresponds to the current slot */ |
|
2008 dmp_free_atom(mpl->tuples, temp, sizeof(TUPLE)); |
|
2009 } |
|
2010 } |
|
2011 else |
|
2012 { /* there are no more domain blocks, i.e. we have reached the |
|
2013 domain scope */ |
|
2014 xassert(my_info->tuple == NULL); |
|
2015 /* check optional predicate specified for the domain */ |
|
2016 if (my_info->domain->code != NULL && !eval_logical(mpl, |
|
2017 my_info->domain->code)) |
|
2018 { /* the predicate is false */ |
|
2019 my_info->failure = 2; |
|
2020 } |
|
2021 else |
|
2022 { /* the predicate is true; do the job */ |
|
2023 my_info->func(mpl, my_info->info); |
|
2024 } |
|
2025 } |
|
2026 return; |
|
2027 } |
|
2028 |
|
2029 int eval_within_domain |
|
2030 ( MPL *mpl, |
|
2031 DOMAIN *domain, /* not changed */ |
|
2032 TUPLE *tuple, /* not changed */ |
|
2033 void *info, void (*func)(MPL *mpl, void *info) |
|
2034 ) |
|
2035 { /* this routine performs evaluation within domain scope */ |
|
2036 struct eval_domain_info _my_info, *my_info = &_my_info; |
|
2037 if (domain == NULL) |
|
2038 { xassert(tuple == NULL); |
|
2039 func(mpl, info); |
|
2040 my_info->failure = 0; |
|
2041 } |
|
2042 else |
|
2043 { xassert(tuple != NULL); |
|
2044 my_info->domain = domain; |
|
2045 my_info->block = domain->list; |
|
2046 my_info->tuple = tuple; |
|
2047 my_info->info = info; |
|
2048 my_info->func = func; |
|
2049 my_info->failure = 0; |
|
2050 /* enter the very first domain block */ |
|
2051 eval_domain_func(mpl, my_info); |
|
2052 } |
|
2053 return my_info->failure; |
|
2054 } |
|
2055 |
|
2056 /*---------------------------------------------------------------------- |
|
2057 -- loop_within_domain - perform iterations within domain scope. |
|
2058 -- |
|
2059 -- This routine iteratively assigns new values (symbols) to the dummy |
|
2060 -- indices of specified domain by enumerating all n-tuples, which are |
|
2061 -- members of the domain set, and for every n-tuple it calls the formal |
|
2062 -- routine func to evaluate some code within the domain scope. |
|
2063 -- |
|
2064 -- If the routine func returns non-zero, enumeration within the domain |
|
2065 -- is prematurely terminated. |
|
2066 -- |
|
2067 -- For the sake of convenience it is allowed to specify domain as NULL, |
|
2068 -- in which case this routine just calls the routine func only once and |
|
2069 -- returns zero. |
|
2070 -- |
|
2071 -- This routine allows recursive calls from the routine func providing |
|
2072 -- correct values of dummy indices for each instance. */ |
|
2073 |
|
2074 struct loop_domain_info |
|
2075 { /* working info used by the routine loop_within_domain */ |
|
2076 DOMAIN *domain; |
|
2077 /* domain, which has to be entered */ |
|
2078 DOMAIN_BLOCK *block; |
|
2079 /* domain block, which is currently processed */ |
|
2080 int looping; |
|
2081 /* clearing this flag leads to terminating enumeration */ |
|
2082 void *info; |
|
2083 /* transit pointer passed to the formal routine func */ |
|
2084 int (*func)(MPL *mpl, void *info); |
|
2085 /* routine, which needs to be executed in the domain scope */ |
|
2086 }; |
|
2087 |
|
2088 static void loop_domain_func(MPL *mpl, void *_my_info) |
|
2089 { /* this routine enumerates all n-tuples in the basic set of the |
|
2090 current domain block, enters recursively into the domain scope |
|
2091 for every n-tuple, and then calls the routine func */ |
|
2092 struct loop_domain_info *my_info = _my_info; |
|
2093 if (my_info->block != NULL) |
|
2094 { /* the current domain block to be entered exists */ |
|
2095 DOMAIN_BLOCK *block; |
|
2096 DOMAIN_SLOT *slot; |
|
2097 TUPLE *bound; |
|
2098 /* save pointer to the current domain block */ |
|
2099 block = my_info->block; |
|
2100 /* and get ready to enter the next block (if it exists) */ |
|
2101 my_info->block = block->next; |
|
2102 /* compute symbolic values, at which non-free dummy indices of |
|
2103 the current domain block are bound; since that values don't |
|
2104 depend on free dummy indices of the current block, they can |
|
2105 be computed once out of the enumeration loop */ |
|
2106 bound = create_tuple(mpl); |
|
2107 for (slot = block->list; slot != NULL; slot = slot->next) |
|
2108 { if (slot->code != NULL) |
|
2109 bound = expand_tuple(mpl, bound, eval_symbolic(mpl, |
|
2110 slot->code)); |
|
2111 } |
|
2112 /* start enumeration */ |
|
2113 xassert(block->code != NULL); |
|
2114 if (block->code->op == O_DOTS) |
|
2115 { /* the basic set is "arithmetic", in which case it doesn't |
|
2116 need to be computed explicitly */ |
|
2117 TUPLE *tuple; |
|
2118 int n, j; |
|
2119 double t0, tf, dt; |
|
2120 /* compute "parameters" of the basic set */ |
|
2121 t0 = eval_numeric(mpl, block->code->arg.arg.x); |
|
2122 tf = eval_numeric(mpl, block->code->arg.arg.y); |
|
2123 if (block->code->arg.arg.z == NULL) |
|
2124 dt = 1.0; |
|
2125 else |
|
2126 dt = eval_numeric(mpl, block->code->arg.arg.z); |
|
2127 /* determine cardinality of the basic set */ |
|
2128 n = arelset_size(mpl, t0, tf, dt); |
|
2129 /* create dummy 1-tuple for members of the basic set */ |
|
2130 tuple = expand_tuple(mpl, create_tuple(mpl), |
|
2131 create_symbol_num(mpl, 0.0)); |
|
2132 /* in case of "arithmetic" set there is exactly one dummy |
|
2133 index, which cannot be non-free */ |
|
2134 xassert(bound == NULL); |
|
2135 /* walk through 1-tuples of the basic set */ |
|
2136 for (j = 1; j <= n && my_info->looping; j++) |
|
2137 { /* construct dummy 1-tuple for the current member */ |
|
2138 tuple->sym->num = arelset_member(mpl, t0, tf, dt, j); |
|
2139 /* enter the current domain block */ |
|
2140 enter_domain_block(mpl, block, tuple, my_info, |
|
2141 loop_domain_func); |
|
2142 } |
|
2143 /* delete dummy 1-tuple */ |
|
2144 delete_tuple(mpl, tuple); |
|
2145 } |
|
2146 else |
|
2147 { /* the basic set is of general kind, in which case it needs |
|
2148 to be explicitly computed */ |
|
2149 ELEMSET *set; |
|
2150 MEMBER *memb; |
|
2151 TUPLE *temp1, *temp2; |
|
2152 /* compute the basic set */ |
|
2153 set = eval_elemset(mpl, block->code); |
|
2154 /* walk through all n-tuples of the basic set */ |
|
2155 for (memb = set->head; memb != NULL && my_info->looping; |
|
2156 memb = memb->next) |
|
2157 { /* all components of the current n-tuple that correspond |
|
2158 to non-free dummy indices must be feasible; otherwise |
|
2159 the n-tuple is not in the basic set */ |
|
2160 temp1 = memb->tuple; |
|
2161 temp2 = bound; |
|
2162 for (slot = block->list; slot != NULL; slot = slot->next) |
|
2163 { xassert(temp1 != NULL); |
|
2164 if (slot->code != NULL) |
|
2165 { /* non-free dummy index */ |
|
2166 xassert(temp2 != NULL); |
|
2167 if (compare_symbols(mpl, temp1->sym, temp2->sym) |
|
2168 != 0) |
|
2169 { /* the n-tuple is not in the basic set */ |
|
2170 goto skip; |
|
2171 } |
|
2172 temp2 = temp2->next; |
|
2173 } |
|
2174 temp1 = temp1->next; |
|
2175 } |
|
2176 xassert(temp1 == NULL); |
|
2177 xassert(temp2 == NULL); |
|
2178 /* enter the current domain block */ |
|
2179 enter_domain_block(mpl, block, memb->tuple, my_info, |
|
2180 loop_domain_func); |
|
2181 skip: ; |
|
2182 } |
|
2183 /* delete the basic set */ |
|
2184 delete_elemset(mpl, set); |
|
2185 } |
|
2186 /* delete symbolic values binding non-free dummy indices */ |
|
2187 delete_tuple(mpl, bound); |
|
2188 /* restore pointer to the current domain block */ |
|
2189 my_info->block = block; |
|
2190 } |
|
2191 else |
|
2192 { /* there are no more domain blocks, i.e. we have reached the |
|
2193 domain scope */ |
|
2194 /* check optional predicate specified for the domain */ |
|
2195 if (my_info->domain->code != NULL && !eval_logical(mpl, |
|
2196 my_info->domain->code)) |
|
2197 { /* the predicate is false */ |
|
2198 /* nop */; |
|
2199 } |
|
2200 else |
|
2201 { /* the predicate is true; do the job */ |
|
2202 my_info->looping = !my_info->func(mpl, my_info->info); |
|
2203 } |
|
2204 } |
|
2205 return; |
|
2206 } |
|
2207 |
|
2208 void loop_within_domain |
|
2209 ( MPL *mpl, |
|
2210 DOMAIN *domain, /* not changed */ |
|
2211 void *info, int (*func)(MPL *mpl, void *info) |
|
2212 ) |
|
2213 { /* this routine performs iterations within domain scope */ |
|
2214 struct loop_domain_info _my_info, *my_info = &_my_info; |
|
2215 if (domain == NULL) |
|
2216 func(mpl, info); |
|
2217 else |
|
2218 { my_info->domain = domain; |
|
2219 my_info->block = domain->list; |
|
2220 my_info->looping = 1; |
|
2221 my_info->info = info; |
|
2222 my_info->func = func; |
|
2223 /* enter the very first domain block */ |
|
2224 loop_domain_func(mpl, my_info); |
|
2225 } |
|
2226 return; |
|
2227 } |
|
2228 |
|
2229 /*---------------------------------------------------------------------- |
|
2230 -- out_of_domain - raise domain exception. |
|
2231 -- |
|
2232 -- This routine is called when a reference is made to a member of some |
|
2233 -- model object, but its n-tuple is out of the object domain. */ |
|
2234 |
|
2235 void out_of_domain |
|
2236 ( MPL *mpl, |
|
2237 char *name, /* not changed */ |
|
2238 TUPLE *tuple /* not changed */ |
|
2239 ) |
|
2240 { xassert(name != NULL); |
|
2241 xassert(tuple != NULL); |
|
2242 error(mpl, "%s%s out of domain", name, format_tuple(mpl, '[', |
|
2243 tuple)); |
|
2244 /* no return */ |
|
2245 } |
|
2246 |
|
2247 /*---------------------------------------------------------------------- |
|
2248 -- get_domain_tuple - obtain current n-tuple from domain. |
|
2249 -- |
|
2250 -- This routine constructs n-tuple, whose components are current values |
|
2251 -- assigned to *free* dummy indices of specified domain. |
|
2252 -- |
|
2253 -- For the sake of convenience it is allowed to specify domain as NULL, |
|
2254 -- in which case this routine returns 0-tuple. |
|
2255 -- |
|
2256 -- NOTE: This routine must not be called out of domain scope. */ |
|
2257 |
|
2258 TUPLE *get_domain_tuple |
|
2259 ( MPL *mpl, |
|
2260 DOMAIN *domain /* not changed */ |
|
2261 ) |
|
2262 { DOMAIN_BLOCK *block; |
|
2263 DOMAIN_SLOT *slot; |
|
2264 TUPLE *tuple; |
|
2265 tuple = create_tuple(mpl); |
|
2266 if (domain != NULL) |
|
2267 { for (block = domain->list; block != NULL; block = block->next) |
|
2268 { for (slot = block->list; slot != NULL; slot = slot->next) |
|
2269 { if (slot->code == NULL) |
|
2270 { xassert(slot->value != NULL); |
|
2271 tuple = expand_tuple(mpl, tuple, copy_symbol(mpl, |
|
2272 slot->value)); |
|
2273 } |
|
2274 } |
|
2275 } |
|
2276 } |
|
2277 return tuple; |
|
2278 } |
|
2279 |
|
2280 /*---------------------------------------------------------------------- |
|
2281 -- clean_domain - clean domain. |
|
2282 -- |
|
2283 -- This routine cleans specified domain that assumes deleting all stuff |
|
2284 -- dynamically allocated during the generation phase. */ |
|
2285 |
|
2286 void clean_domain(MPL *mpl, DOMAIN *domain) |
|
2287 { DOMAIN_BLOCK *block; |
|
2288 DOMAIN_SLOT *slot; |
|
2289 /* if no domain is specified, do nothing */ |
|
2290 if (domain == NULL) goto done; |
|
2291 /* clean all domain blocks */ |
|
2292 for (block = domain->list; block != NULL; block = block->next) |
|
2293 { /* clean all domain slots */ |
|
2294 for (slot = block->list; slot != NULL; slot = slot->next) |
|
2295 { /* clean pseudo-code for computing bound value */ |
|
2296 clean_code(mpl, slot->code); |
|
2297 /* delete symbolic value assigned to dummy index */ |
|
2298 if (slot->value != NULL) |
|
2299 delete_symbol(mpl, slot->value), slot->value = NULL; |
|
2300 } |
|
2301 /* clean pseudo-code for computing basic set */ |
|
2302 clean_code(mpl, block->code); |
|
2303 } |
|
2304 /* clean pseudo-code for computing domain predicate */ |
|
2305 clean_code(mpl, domain->code); |
|
2306 done: return; |
|
2307 } |
|
2308 |
|
2309 /**********************************************************************/ |
|
2310 /* * * MODEL SETS * * */ |
|
2311 /**********************************************************************/ |
|
2312 |
|
2313 /*---------------------------------------------------------------------- |
|
2314 -- check_elem_set - check elemental set assigned to set member. |
|
2315 -- |
|
2316 -- This routine checks if given elemental set being assigned to member |
|
2317 -- of specified model set satisfies to all restrictions. |
|
2318 -- |
|
2319 -- NOTE: This routine must not be called out of domain scope. */ |
|
2320 |
|
2321 void check_elem_set |
|
2322 ( MPL *mpl, |
|
2323 SET *set, /* not changed */ |
|
2324 TUPLE *tuple, /* not changed */ |
|
2325 ELEMSET *refer /* not changed */ |
|
2326 ) |
|
2327 { WITHIN *within; |
|
2328 MEMBER *memb; |
|
2329 int eqno; |
|
2330 /* elemental set must be within all specified supersets */ |
|
2331 for (within = set->within, eqno = 1; within != NULL; within = |
|
2332 within->next, eqno++) |
|
2333 { xassert(within->code != NULL); |
|
2334 for (memb = refer->head; memb != NULL; memb = memb->next) |
|
2335 { if (!is_member(mpl, within->code, memb->tuple)) |
|
2336 { char buf[255+1]; |
|
2337 strcpy(buf, format_tuple(mpl, '(', memb->tuple)); |
|
2338 xassert(strlen(buf) < sizeof(buf)); |
|
2339 error(mpl, "%s%s contains %s which not within specified " |
|
2340 "set; see (%d)", set->name, format_tuple(mpl, '[', |
|
2341 tuple), buf, eqno); |
|
2342 } |
|
2343 } |
|
2344 } |
|
2345 return; |
|
2346 } |
|
2347 |
|
2348 /*---------------------------------------------------------------------- |
|
2349 -- take_member_set - obtain elemental set assigned to set member. |
|
2350 -- |
|
2351 -- This routine obtains a reference to elemental set assigned to given |
|
2352 -- member of specified model set and returns it on exit. |
|
2353 -- |
|
2354 -- NOTE: This routine must not be called out of domain scope. */ |
|
2355 |
|
2356 ELEMSET *take_member_set /* returns reference, not value */ |
|
2357 ( MPL *mpl, |
|
2358 SET *set, /* not changed */ |
|
2359 TUPLE *tuple /* not changed */ |
|
2360 ) |
|
2361 { MEMBER *memb; |
|
2362 ELEMSET *refer; |
|
2363 /* find member in the set array */ |
|
2364 memb = find_member(mpl, set->array, tuple); |
|
2365 if (memb != NULL) |
|
2366 { /* member exists, so just take the reference */ |
|
2367 refer = memb->value.set; |
|
2368 } |
|
2369 else if (set->assign != NULL) |
|
2370 { /* compute value using assignment expression */ |
|
2371 refer = eval_elemset(mpl, set->assign); |
|
2372 add: /* check that the elemental set satisfies to all restrictions, |
|
2373 assign it to new member, and add the member to the array */ |
|
2374 check_elem_set(mpl, set, tuple, refer); |
|
2375 memb = add_member(mpl, set->array, copy_tuple(mpl, tuple)); |
|
2376 memb->value.set = refer; |
|
2377 } |
|
2378 else if (set->option != NULL) |
|
2379 { /* compute default elemental set */ |
|
2380 refer = eval_elemset(mpl, set->option); |
|
2381 goto add; |
|
2382 } |
|
2383 else |
|
2384 { /* no value (elemental set) is provided */ |
|
2385 error(mpl, "no value for %s%s", set->name, format_tuple(mpl, |
|
2386 '[', tuple)); |
|
2387 } |
|
2388 return refer; |
|
2389 } |
|
2390 |
|
2391 /*---------------------------------------------------------------------- |
|
2392 -- eval_member_set - evaluate elemental set assigned to set member. |
|
2393 -- |
|
2394 -- This routine evaluates a reference to elemental set assigned to given |
|
2395 -- member of specified model set and returns it on exit. */ |
|
2396 |
|
2397 struct eval_set_info |
|
2398 { /* working info used by the routine eval_member_set */ |
|
2399 SET *set; |
|
2400 /* model set */ |
|
2401 TUPLE *tuple; |
|
2402 /* n-tuple, which defines set member */ |
|
2403 MEMBER *memb; |
|
2404 /* normally this pointer is NULL; the routine uses this pointer |
|
2405 to check data provided in the data section, in which case it |
|
2406 points to a member currently checked; this check is performed |
|
2407 automatically only once when a reference to any member occurs |
|
2408 for the first time */ |
|
2409 ELEMSET *refer; |
|
2410 /* evaluated reference to elemental set */ |
|
2411 }; |
|
2412 |
|
2413 static void eval_set_func(MPL *mpl, void *_info) |
|
2414 { /* this is auxiliary routine to work within domain scope */ |
|
2415 struct eval_set_info *info = _info; |
|
2416 if (info->memb != NULL) |
|
2417 { /* checking call; check elemental set being assigned */ |
|
2418 check_elem_set(mpl, info->set, info->memb->tuple, |
|
2419 info->memb->value.set); |
|
2420 } |
|
2421 else |
|
2422 { /* normal call; evaluate member, which has given n-tuple */ |
|
2423 info->refer = take_member_set(mpl, info->set, info->tuple); |
|
2424 } |
|
2425 return; |
|
2426 } |
|
2427 |
|
2428 #if 1 /* 12/XII-2008 */ |
|
2429 static void saturate_set(MPL *mpl, SET *set) |
|
2430 { GADGET *gadget = set->gadget; |
|
2431 ELEMSET *data; |
|
2432 MEMBER *elem, *memb; |
|
2433 TUPLE *tuple, *work[20]; |
|
2434 int i; |
|
2435 xprintf("Generating %s...\n", set->name); |
|
2436 eval_whole_set(mpl, gadget->set); |
|
2437 /* gadget set must have exactly one member */ |
|
2438 xassert(gadget->set->array != NULL); |
|
2439 xassert(gadget->set->array->head != NULL); |
|
2440 xassert(gadget->set->array->head == gadget->set->array->tail); |
|
2441 data = gadget->set->array->head->value.set; |
|
2442 xassert(data->type == A_NONE); |
|
2443 xassert(data->dim == gadget->set->dimen); |
|
2444 /* walk thru all elements of the plain set */ |
|
2445 for (elem = data->head; elem != NULL; elem = elem->next) |
|
2446 { /* create a copy of n-tuple */ |
|
2447 tuple = copy_tuple(mpl, elem->tuple); |
|
2448 /* rearrange component of the n-tuple */ |
|
2449 for (i = 0; i < gadget->set->dimen; i++) |
|
2450 work[i] = NULL; |
|
2451 for (i = 0; tuple != NULL; tuple = tuple->next) |
|
2452 work[gadget->ind[i++]-1] = tuple; |
|
2453 xassert(i == gadget->set->dimen); |
|
2454 for (i = 0; i < gadget->set->dimen; i++) |
|
2455 { xassert(work[i] != NULL); |
|
2456 work[i]->next = work[i+1]; |
|
2457 } |
|
2458 /* construct subscript list from first set->dim components */ |
|
2459 if (set->dim == 0) |
|
2460 tuple = NULL; |
|
2461 else |
|
2462 tuple = work[0], work[set->dim-1]->next = NULL; |
|
2463 /* find corresponding member of the set to be initialized */ |
|
2464 memb = find_member(mpl, set->array, tuple); |
|
2465 if (memb == NULL) |
|
2466 { /* not found; add new member to the set and assign it empty |
|
2467 elemental set */ |
|
2468 memb = add_member(mpl, set->array, tuple); |
|
2469 memb->value.set = create_elemset(mpl, set->dimen); |
|
2470 } |
|
2471 else |
|
2472 { /* found; free subscript list */ |
|
2473 delete_tuple(mpl, tuple); |
|
2474 } |
|
2475 /* construct new n-tuple from rest set->dimen components */ |
|
2476 tuple = work[set->dim]; |
|
2477 xassert(set->dim + set->dimen == gadget->set->dimen); |
|
2478 work[gadget->set->dimen-1]->next = NULL; |
|
2479 /* and add it to the elemental set assigned to the member |
|
2480 (no check for duplicates is needed) */ |
|
2481 add_tuple(mpl, memb->value.set, tuple); |
|
2482 } |
|
2483 /* the set has been saturated with data */ |
|
2484 set->data = 1; |
|
2485 return; |
|
2486 } |
|
2487 #endif |
|
2488 |
|
2489 ELEMSET *eval_member_set /* returns reference, not value */ |
|
2490 ( MPL *mpl, |
|
2491 SET *set, /* not changed */ |
|
2492 TUPLE *tuple /* not changed */ |
|
2493 ) |
|
2494 { /* this routine evaluates set member */ |
|
2495 struct eval_set_info _info, *info = &_info; |
|
2496 xassert(set->dim == tuple_dimen(mpl, tuple)); |
|
2497 info->set = set; |
|
2498 info->tuple = tuple; |
|
2499 #if 1 /* 12/XII-2008 */ |
|
2500 if (set->gadget != NULL && set->data == 0) |
|
2501 { /* initialize the set with data from a plain set */ |
|
2502 saturate_set(mpl, set); |
|
2503 } |
|
2504 #endif |
|
2505 if (set->data == 1) |
|
2506 { /* check data, which are provided in the data section, but not |
|
2507 checked yet */ |
|
2508 /* save pointer to the last array member; note that during the |
|
2509 check new members may be added beyond the last member due to |
|
2510 references to the same parameter from default expression as |
|
2511 well as from expressions that define restricting supersets; |
|
2512 however, values assigned to the new members will be checked |
|
2513 by other routine, so we don't need to check them here */ |
|
2514 MEMBER *tail = set->array->tail; |
|
2515 /* change the data status to prevent infinite recursive loop |
|
2516 due to references to the same set during the check */ |
|
2517 set->data = 2; |
|
2518 /* check elemental sets assigned to array members in the data |
|
2519 section until the marked member has been reached */ |
|
2520 for (info->memb = set->array->head; info->memb != NULL; |
|
2521 info->memb = info->memb->next) |
|
2522 { if (eval_within_domain(mpl, set->domain, info->memb->tuple, |
|
2523 info, eval_set_func)) |
|
2524 out_of_domain(mpl, set->name, info->memb->tuple); |
|
2525 if (info->memb == tail) break; |
|
2526 } |
|
2527 /* the check has been finished */ |
|
2528 } |
|
2529 /* evaluate member, which has given n-tuple */ |
|
2530 info->memb = NULL; |
|
2531 if (eval_within_domain(mpl, info->set->domain, info->tuple, info, |
|
2532 eval_set_func)) |
|
2533 out_of_domain(mpl, set->name, info->tuple); |
|
2534 /* bring evaluated reference to the calling program */ |
|
2535 return info->refer; |
|
2536 } |
|
2537 |
|
2538 /*---------------------------------------------------------------------- |
|
2539 -- eval_whole_set - evaluate model set over entire domain. |
|
2540 -- |
|
2541 -- This routine evaluates all members of specified model set over entire |
|
2542 -- domain. */ |
|
2543 |
|
2544 static int whole_set_func(MPL *mpl, void *info) |
|
2545 { /* this is auxiliary routine to work within domain scope */ |
|
2546 SET *set = (SET *)info; |
|
2547 TUPLE *tuple = get_domain_tuple(mpl, set->domain); |
|
2548 eval_member_set(mpl, set, tuple); |
|
2549 delete_tuple(mpl, tuple); |
|
2550 return 0; |
|
2551 } |
|
2552 |
|
2553 void eval_whole_set(MPL *mpl, SET *set) |
|
2554 { loop_within_domain(mpl, set->domain, set, whole_set_func); |
|
2555 return; |
|
2556 } |
|
2557 |
|
2558 /*---------------------------------------------------------------------- |
|
2559 -- clean set - clean model set. |
|
2560 -- |
|
2561 -- This routine cleans specified model set that assumes deleting all |
|
2562 -- stuff dynamically allocated during the generation phase. */ |
|
2563 |
|
2564 void clean_set(MPL *mpl, SET *set) |
|
2565 { WITHIN *within; |
|
2566 MEMBER *memb; |
|
2567 /* clean subscript domain */ |
|
2568 clean_domain(mpl, set->domain); |
|
2569 /* clean pseudo-code for computing supersets */ |
|
2570 for (within = set->within; within != NULL; within = within->next) |
|
2571 clean_code(mpl, within->code); |
|
2572 /* clean pseudo-code for computing assigned value */ |
|
2573 clean_code(mpl, set->assign); |
|
2574 /* clean pseudo-code for computing default value */ |
|
2575 clean_code(mpl, set->option); |
|
2576 /* reset data status flag */ |
|
2577 set->data = 0; |
|
2578 /* delete content array */ |
|
2579 for (memb = set->array->head; memb != NULL; memb = memb->next) |
|
2580 delete_value(mpl, set->array->type, &memb->value); |
|
2581 delete_array(mpl, set->array), set->array = NULL; |
|
2582 return; |
|
2583 } |
|
2584 |
|
2585 /**********************************************************************/ |
|
2586 /* * * MODEL PARAMETERS * * */ |
|
2587 /**********************************************************************/ |
|
2588 |
|
2589 /*---------------------------------------------------------------------- |
|
2590 -- check_value_num - check numeric value assigned to parameter member. |
|
2591 -- |
|
2592 -- This routine checks if numeric value being assigned to some member |
|
2593 -- of specified numeric model parameter satisfies to all restrictions. |
|
2594 -- |
|
2595 -- NOTE: This routine must not be called out of domain scope. */ |
|
2596 |
|
2597 void check_value_num |
|
2598 ( MPL *mpl, |
|
2599 PARAMETER *par, /* not changed */ |
|
2600 TUPLE *tuple, /* not changed */ |
|
2601 double value |
|
2602 ) |
|
2603 { CONDITION *cond; |
|
2604 WITHIN *in; |
|
2605 int eqno; |
|
2606 /* the value must satisfy to the parameter type */ |
|
2607 switch (par->type) |
|
2608 { case A_NUMERIC: |
|
2609 break; |
|
2610 case A_INTEGER: |
|
2611 if (value != floor(value)) |
|
2612 error(mpl, "%s%s = %.*g not integer", par->name, |
|
2613 format_tuple(mpl, '[', tuple), DBL_DIG, value); |
|
2614 break; |
|
2615 case A_BINARY: |
|
2616 if (!(value == 0.0 || value == 1.0)) |
|
2617 error(mpl, "%s%s = %.*g not binary", par->name, |
|
2618 format_tuple(mpl, '[', tuple), DBL_DIG, value); |
|
2619 break; |
|
2620 default: |
|
2621 xassert(par != par); |
|
2622 } |
|
2623 /* the value must satisfy to all specified conditions */ |
|
2624 for (cond = par->cond, eqno = 1; cond != NULL; cond = cond->next, |
|
2625 eqno++) |
|
2626 { double bound; |
|
2627 char *rho; |
|
2628 xassert(cond->code != NULL); |
|
2629 bound = eval_numeric(mpl, cond->code); |
|
2630 switch (cond->rho) |
|
2631 { case O_LT: |
|
2632 if (!(value < bound)) |
|
2633 { rho = "<"; |
|
2634 err: error(mpl, "%s%s = %.*g not %s %.*g; see (%d)", |
|
2635 par->name, format_tuple(mpl, '[', tuple), DBL_DIG, |
|
2636 value, rho, DBL_DIG, bound, eqno); |
|
2637 } |
|
2638 break; |
|
2639 case O_LE: |
|
2640 if (!(value <= bound)) { rho = "<="; goto err; } |
|
2641 break; |
|
2642 case O_EQ: |
|
2643 if (!(value == bound)) { rho = "="; goto err; } |
|
2644 break; |
|
2645 case O_GE: |
|
2646 if (!(value >= bound)) { rho = ">="; goto err; } |
|
2647 break; |
|
2648 case O_GT: |
|
2649 if (!(value > bound)) { rho = ">"; goto err; } |
|
2650 break; |
|
2651 case O_NE: |
|
2652 if (!(value != bound)) { rho = "<>"; goto err; } |
|
2653 break; |
|
2654 default: |
|
2655 xassert(cond != cond); |
|
2656 } |
|
2657 } |
|
2658 /* the value must be in all specified supersets */ |
|
2659 for (in = par->in, eqno = 1; in != NULL; in = in->next, eqno++) |
|
2660 { TUPLE *dummy; |
|
2661 xassert(in->code != NULL); |
|
2662 xassert(in->code->dim == 1); |
|
2663 dummy = expand_tuple(mpl, create_tuple(mpl), |
|
2664 create_symbol_num(mpl, value)); |
|
2665 if (!is_member(mpl, in->code, dummy)) |
|
2666 error(mpl, "%s%s = %.*g not in specified set; see (%d)", |
|
2667 par->name, format_tuple(mpl, '[', tuple), DBL_DIG, |
|
2668 value, eqno); |
|
2669 delete_tuple(mpl, dummy); |
|
2670 } |
|
2671 return; |
|
2672 } |
|
2673 |
|
2674 /*---------------------------------------------------------------------- |
|
2675 -- take_member_num - obtain num. value assigned to parameter member. |
|
2676 -- |
|
2677 -- This routine obtains a numeric value assigned to member of specified |
|
2678 -- numeric model parameter and returns it on exit. |
|
2679 -- |
|
2680 -- NOTE: This routine must not be called out of domain scope. */ |
|
2681 |
|
2682 double take_member_num |
|
2683 ( MPL *mpl, |
|
2684 PARAMETER *par, /* not changed */ |
|
2685 TUPLE *tuple /* not changed */ |
|
2686 ) |
|
2687 { MEMBER *memb; |
|
2688 double value; |
|
2689 /* find member in the parameter array */ |
|
2690 memb = find_member(mpl, par->array, tuple); |
|
2691 if (memb != NULL) |
|
2692 { /* member exists, so just take its value */ |
|
2693 value = memb->value.num; |
|
2694 } |
|
2695 else if (par->assign != NULL) |
|
2696 { /* compute value using assignment expression */ |
|
2697 value = eval_numeric(mpl, par->assign); |
|
2698 add: /* check that the value satisfies to all restrictions, assign |
|
2699 it to new member, and add the member to the array */ |
|
2700 check_value_num(mpl, par, tuple, value); |
|
2701 memb = add_member(mpl, par->array, copy_tuple(mpl, tuple)); |
|
2702 memb->value.num = value; |
|
2703 } |
|
2704 else if (par->option != NULL) |
|
2705 { /* compute default value */ |
|
2706 value = eval_numeric(mpl, par->option); |
|
2707 goto add; |
|
2708 } |
|
2709 else if (par->defval != NULL) |
|
2710 { /* take default value provided in the data section */ |
|
2711 if (par->defval->str != NULL) |
|
2712 error(mpl, "cannot convert %s to floating-point number", |
|
2713 format_symbol(mpl, par->defval)); |
|
2714 value = par->defval->num; |
|
2715 goto add; |
|
2716 } |
|
2717 else |
|
2718 { /* no value is provided */ |
|
2719 error(mpl, "no value for %s%s", par->name, format_tuple(mpl, |
|
2720 '[', tuple)); |
|
2721 } |
|
2722 return value; |
|
2723 } |
|
2724 |
|
2725 /*---------------------------------------------------------------------- |
|
2726 -- eval_member_num - evaluate num. value assigned to parameter member. |
|
2727 -- |
|
2728 -- This routine evaluates a numeric value assigned to given member of |
|
2729 -- specified numeric model parameter and returns it on exit. */ |
|
2730 |
|
2731 struct eval_num_info |
|
2732 { /* working info used by the routine eval_member_num */ |
|
2733 PARAMETER *par; |
|
2734 /* model parameter */ |
|
2735 TUPLE *tuple; |
|
2736 /* n-tuple, which defines parameter member */ |
|
2737 MEMBER *memb; |
|
2738 /* normally this pointer is NULL; the routine uses this pointer |
|
2739 to check data provided in the data section, in which case it |
|
2740 points to a member currently checked; this check is performed |
|
2741 automatically only once when a reference to any member occurs |
|
2742 for the first time */ |
|
2743 double value; |
|
2744 /* evaluated numeric value */ |
|
2745 }; |
|
2746 |
|
2747 static void eval_num_func(MPL *mpl, void *_info) |
|
2748 { /* this is auxiliary routine to work within domain scope */ |
|
2749 struct eval_num_info *info = _info; |
|
2750 if (info->memb != NULL) |
|
2751 { /* checking call; check numeric value being assigned */ |
|
2752 check_value_num(mpl, info->par, info->memb->tuple, |
|
2753 info->memb->value.num); |
|
2754 } |
|
2755 else |
|
2756 { /* normal call; evaluate member, which has given n-tuple */ |
|
2757 info->value = take_member_num(mpl, info->par, info->tuple); |
|
2758 } |
|
2759 return; |
|
2760 } |
|
2761 |
|
2762 double eval_member_num |
|
2763 ( MPL *mpl, |
|
2764 PARAMETER *par, /* not changed */ |
|
2765 TUPLE *tuple /* not changed */ |
|
2766 ) |
|
2767 { /* this routine evaluates numeric parameter member */ |
|
2768 struct eval_num_info _info, *info = &_info; |
|
2769 xassert(par->type == A_NUMERIC || par->type == A_INTEGER || |
|
2770 par->type == A_BINARY); |
|
2771 xassert(par->dim == tuple_dimen(mpl, tuple)); |
|
2772 info->par = par; |
|
2773 info->tuple = tuple; |
|
2774 if (par->data == 1) |
|
2775 { /* check data, which are provided in the data section, but not |
|
2776 checked yet */ |
|
2777 /* save pointer to the last array member; note that during the |
|
2778 check new members may be added beyond the last member due to |
|
2779 references to the same parameter from default expression as |
|
2780 well as from expressions that define restricting conditions; |
|
2781 however, values assigned to the new members will be checked |
|
2782 by other routine, so we don't need to check them here */ |
|
2783 MEMBER *tail = par->array->tail; |
|
2784 /* change the data status to prevent infinite recursive loop |
|
2785 due to references to the same parameter during the check */ |
|
2786 par->data = 2; |
|
2787 /* check values assigned to array members in the data section |
|
2788 until the marked member has been reached */ |
|
2789 for (info->memb = par->array->head; info->memb != NULL; |
|
2790 info->memb = info->memb->next) |
|
2791 { if (eval_within_domain(mpl, par->domain, info->memb->tuple, |
|
2792 info, eval_num_func)) |
|
2793 out_of_domain(mpl, par->name, info->memb->tuple); |
|
2794 if (info->memb == tail) break; |
|
2795 } |
|
2796 /* the check has been finished */ |
|
2797 } |
|
2798 /* evaluate member, which has given n-tuple */ |
|
2799 info->memb = NULL; |
|
2800 if (eval_within_domain(mpl, info->par->domain, info->tuple, info, |
|
2801 eval_num_func)) |
|
2802 out_of_domain(mpl, par->name, info->tuple); |
|
2803 /* bring evaluated value to the calling program */ |
|
2804 return info->value; |
|
2805 } |
|
2806 |
|
2807 /*---------------------------------------------------------------------- |
|
2808 -- check_value_sym - check symbolic value assigned to parameter member. |
|
2809 -- |
|
2810 -- This routine checks if symbolic value being assigned to some member |
|
2811 -- of specified symbolic model parameter satisfies to all restrictions. |
|
2812 -- |
|
2813 -- NOTE: This routine must not be called out of domain scope. */ |
|
2814 |
|
2815 void check_value_sym |
|
2816 ( MPL *mpl, |
|
2817 PARAMETER *par, /* not changed */ |
|
2818 TUPLE *tuple, /* not changed */ |
|
2819 SYMBOL *value /* not changed */ |
|
2820 ) |
|
2821 { CONDITION *cond; |
|
2822 WITHIN *in; |
|
2823 int eqno; |
|
2824 /* the value must satisfy to all specified conditions */ |
|
2825 for (cond = par->cond, eqno = 1; cond != NULL; cond = cond->next, |
|
2826 eqno++) |
|
2827 { SYMBOL *bound; |
|
2828 char buf[255+1]; |
|
2829 xassert(cond->code != NULL); |
|
2830 bound = eval_symbolic(mpl, cond->code); |
|
2831 switch (cond->rho) |
|
2832 { |
|
2833 #if 1 /* 13/VIII-2008 */ |
|
2834 case O_LT: |
|
2835 if (!(compare_symbols(mpl, value, bound) < 0)) |
|
2836 { strcpy(buf, format_symbol(mpl, bound)); |
|
2837 xassert(strlen(buf) < sizeof(buf)); |
|
2838 error(mpl, "%s%s = %s not < %s", |
|
2839 par->name, format_tuple(mpl, '[', tuple), |
|
2840 format_symbol(mpl, value), buf, eqno); |
|
2841 } |
|
2842 break; |
|
2843 case O_LE: |
|
2844 if (!(compare_symbols(mpl, value, bound) <= 0)) |
|
2845 { strcpy(buf, format_symbol(mpl, bound)); |
|
2846 xassert(strlen(buf) < sizeof(buf)); |
|
2847 error(mpl, "%s%s = %s not <= %s", |
|
2848 par->name, format_tuple(mpl, '[', tuple), |
|
2849 format_symbol(mpl, value), buf, eqno); |
|
2850 } |
|
2851 break; |
|
2852 #endif |
|
2853 case O_EQ: |
|
2854 if (!(compare_symbols(mpl, value, bound) == 0)) |
|
2855 { strcpy(buf, format_symbol(mpl, bound)); |
|
2856 xassert(strlen(buf) < sizeof(buf)); |
|
2857 error(mpl, "%s%s = %s not = %s", |
|
2858 par->name, format_tuple(mpl, '[', tuple), |
|
2859 format_symbol(mpl, value), buf, eqno); |
|
2860 } |
|
2861 break; |
|
2862 #if 1 /* 13/VIII-2008 */ |
|
2863 case O_GE: |
|
2864 if (!(compare_symbols(mpl, value, bound) >= 0)) |
|
2865 { strcpy(buf, format_symbol(mpl, bound)); |
|
2866 xassert(strlen(buf) < sizeof(buf)); |
|
2867 error(mpl, "%s%s = %s not >= %s", |
|
2868 par->name, format_tuple(mpl, '[', tuple), |
|
2869 format_symbol(mpl, value), buf, eqno); |
|
2870 } |
|
2871 break; |
|
2872 case O_GT: |
|
2873 if (!(compare_symbols(mpl, value, bound) > 0)) |
|
2874 { strcpy(buf, format_symbol(mpl, bound)); |
|
2875 xassert(strlen(buf) < sizeof(buf)); |
|
2876 error(mpl, "%s%s = %s not > %s", |
|
2877 par->name, format_tuple(mpl, '[', tuple), |
|
2878 format_symbol(mpl, value), buf, eqno); |
|
2879 } |
|
2880 break; |
|
2881 #endif |
|
2882 case O_NE: |
|
2883 if (!(compare_symbols(mpl, value, bound) != 0)) |
|
2884 { strcpy(buf, format_symbol(mpl, bound)); |
|
2885 xassert(strlen(buf) < sizeof(buf)); |
|
2886 error(mpl, "%s%s = %s not <> %s", |
|
2887 par->name, format_tuple(mpl, '[', tuple), |
|
2888 format_symbol(mpl, value), buf, eqno); |
|
2889 } |
|
2890 break; |
|
2891 default: |
|
2892 xassert(cond != cond); |
|
2893 } |
|
2894 delete_symbol(mpl, bound); |
|
2895 } |
|
2896 /* the value must be in all specified supersets */ |
|
2897 for (in = par->in, eqno = 1; in != NULL; in = in->next, eqno++) |
|
2898 { TUPLE *dummy; |
|
2899 xassert(in->code != NULL); |
|
2900 xassert(in->code->dim == 1); |
|
2901 dummy = expand_tuple(mpl, create_tuple(mpl), copy_symbol(mpl, |
|
2902 value)); |
|
2903 if (!is_member(mpl, in->code, dummy)) |
|
2904 error(mpl, "%s%s = %s not in specified set; see (%d)", |
|
2905 par->name, format_tuple(mpl, '[', tuple), |
|
2906 format_symbol(mpl, value), eqno); |
|
2907 delete_tuple(mpl, dummy); |
|
2908 } |
|
2909 return; |
|
2910 } |
|
2911 |
|
2912 /*---------------------------------------------------------------------- |
|
2913 -- take_member_sym - obtain symb. value assigned to parameter member. |
|
2914 -- |
|
2915 -- This routine obtains a symbolic value assigned to member of specified |
|
2916 -- symbolic model parameter and returns it on exit. |
|
2917 -- |
|
2918 -- NOTE: This routine must not be called out of domain scope. */ |
|
2919 |
|
2920 SYMBOL *take_member_sym /* returns value, not reference */ |
|
2921 ( MPL *mpl, |
|
2922 PARAMETER *par, /* not changed */ |
|
2923 TUPLE *tuple /* not changed */ |
|
2924 ) |
|
2925 { MEMBER *memb; |
|
2926 SYMBOL *value; |
|
2927 /* find member in the parameter array */ |
|
2928 memb = find_member(mpl, par->array, tuple); |
|
2929 if (memb != NULL) |
|
2930 { /* member exists, so just take its value */ |
|
2931 value = copy_symbol(mpl, memb->value.sym); |
|
2932 } |
|
2933 else if (par->assign != NULL) |
|
2934 { /* compute value using assignment expression */ |
|
2935 value = eval_symbolic(mpl, par->assign); |
|
2936 add: /* check that the value satisfies to all restrictions, assign |
|
2937 it to new member, and add the member to the array */ |
|
2938 check_value_sym(mpl, par, tuple, value); |
|
2939 memb = add_member(mpl, par->array, copy_tuple(mpl, tuple)); |
|
2940 memb->value.sym = copy_symbol(mpl, value); |
|
2941 } |
|
2942 else if (par->option != NULL) |
|
2943 { /* compute default value */ |
|
2944 value = eval_symbolic(mpl, par->option); |
|
2945 goto add; |
|
2946 } |
|
2947 else if (par->defval != NULL) |
|
2948 { /* take default value provided in the data section */ |
|
2949 value = copy_symbol(mpl, par->defval); |
|
2950 goto add; |
|
2951 } |
|
2952 else |
|
2953 { /* no value is provided */ |
|
2954 error(mpl, "no value for %s%s", par->name, format_tuple(mpl, |
|
2955 '[', tuple)); |
|
2956 } |
|
2957 return value; |
|
2958 } |
|
2959 |
|
2960 /*---------------------------------------------------------------------- |
|
2961 -- eval_member_sym - evaluate symb. value assigned to parameter member. |
|
2962 -- |
|
2963 -- This routine evaluates a symbolic value assigned to given member of |
|
2964 -- specified symbolic model parameter and returns it on exit. */ |
|
2965 |
|
2966 struct eval_sym_info |
|
2967 { /* working info used by the routine eval_member_sym */ |
|
2968 PARAMETER *par; |
|
2969 /* model parameter */ |
|
2970 TUPLE *tuple; |
|
2971 /* n-tuple, which defines parameter member */ |
|
2972 MEMBER *memb; |
|
2973 /* normally this pointer is NULL; the routine uses this pointer |
|
2974 to check data provided in the data section, in which case it |
|
2975 points to a member currently checked; this check is performed |
|
2976 automatically only once when a reference to any member occurs |
|
2977 for the first time */ |
|
2978 SYMBOL *value; |
|
2979 /* evaluated symbolic value */ |
|
2980 }; |
|
2981 |
|
2982 static void eval_sym_func(MPL *mpl, void *_info) |
|
2983 { /* this is auxiliary routine to work within domain scope */ |
|
2984 struct eval_sym_info *info = _info; |
|
2985 if (info->memb != NULL) |
|
2986 { /* checking call; check symbolic value being assigned */ |
|
2987 check_value_sym(mpl, info->par, info->memb->tuple, |
|
2988 info->memb->value.sym); |
|
2989 } |
|
2990 else |
|
2991 { /* normal call; evaluate member, which has given n-tuple */ |
|
2992 info->value = take_member_sym(mpl, info->par, info->tuple); |
|
2993 } |
|
2994 return; |
|
2995 } |
|
2996 |
|
2997 SYMBOL *eval_member_sym /* returns value, not reference */ |
|
2998 ( MPL *mpl, |
|
2999 PARAMETER *par, /* not changed */ |
|
3000 TUPLE *tuple /* not changed */ |
|
3001 ) |
|
3002 { /* this routine evaluates symbolic parameter member */ |
|
3003 struct eval_sym_info _info, *info = &_info; |
|
3004 xassert(par->type == A_SYMBOLIC); |
|
3005 xassert(par->dim == tuple_dimen(mpl, tuple)); |
|
3006 info->par = par; |
|
3007 info->tuple = tuple; |
|
3008 if (par->data == 1) |
|
3009 { /* check data, which are provided in the data section, but not |
|
3010 checked yet */ |
|
3011 /* save pointer to the last array member; note that during the |
|
3012 check new members may be added beyond the last member due to |
|
3013 references to the same parameter from default expression as |
|
3014 well as from expressions that define restricting conditions; |
|
3015 however, values assigned to the new members will be checked |
|
3016 by other routine, so we don't need to check them here */ |
|
3017 MEMBER *tail = par->array->tail; |
|
3018 /* change the data status to prevent infinite recursive loop |
|
3019 due to references to the same parameter during the check */ |
|
3020 par->data = 2; |
|
3021 /* check values assigned to array members in the data section |
|
3022 until the marked member has been reached */ |
|
3023 for (info->memb = par->array->head; info->memb != NULL; |
|
3024 info->memb = info->memb->next) |
|
3025 { if (eval_within_domain(mpl, par->domain, info->memb->tuple, |
|
3026 info, eval_sym_func)) |
|
3027 out_of_domain(mpl, par->name, info->memb->tuple); |
|
3028 if (info->memb == tail) break; |
|
3029 } |
|
3030 /* the check has been finished */ |
|
3031 } |
|
3032 /* evaluate member, which has given n-tuple */ |
|
3033 info->memb = NULL; |
|
3034 if (eval_within_domain(mpl, info->par->domain, info->tuple, info, |
|
3035 eval_sym_func)) |
|
3036 out_of_domain(mpl, par->name, info->tuple); |
|
3037 /* bring evaluated value to the calling program */ |
|
3038 return info->value; |
|
3039 } |
|
3040 |
|
3041 /*---------------------------------------------------------------------- |
|
3042 -- eval_whole_par - evaluate model parameter over entire domain. |
|
3043 -- |
|
3044 -- This routine evaluates all members of specified model parameter over |
|
3045 -- entire domain. */ |
|
3046 |
|
3047 static int whole_par_func(MPL *mpl, void *info) |
|
3048 { /* this is auxiliary routine to work within domain scope */ |
|
3049 PARAMETER *par = (PARAMETER *)info; |
|
3050 TUPLE *tuple = get_domain_tuple(mpl, par->domain); |
|
3051 switch (par->type) |
|
3052 { case A_NUMERIC: |
|
3053 case A_INTEGER: |
|
3054 case A_BINARY: |
|
3055 eval_member_num(mpl, par, tuple); |
|
3056 break; |
|
3057 case A_SYMBOLIC: |
|
3058 delete_symbol(mpl, eval_member_sym(mpl, par, tuple)); |
|
3059 break; |
|
3060 default: |
|
3061 xassert(par != par); |
|
3062 } |
|
3063 delete_tuple(mpl, tuple); |
|
3064 return 0; |
|
3065 } |
|
3066 |
|
3067 void eval_whole_par(MPL *mpl, PARAMETER *par) |
|
3068 { loop_within_domain(mpl, par->domain, par, whole_par_func); |
|
3069 return; |
|
3070 } |
|
3071 |
|
3072 /*---------------------------------------------------------------------- |
|
3073 -- clean_parameter - clean model parameter. |
|
3074 -- |
|
3075 -- This routine cleans specified model parameter that assumes deleting |
|
3076 -- all stuff dynamically allocated during the generation phase. */ |
|
3077 |
|
3078 void clean_parameter(MPL *mpl, PARAMETER *par) |
|
3079 { CONDITION *cond; |
|
3080 WITHIN *in; |
|
3081 MEMBER *memb; |
|
3082 /* clean subscript domain */ |
|
3083 clean_domain(mpl, par->domain); |
|
3084 /* clean pseudo-code for computing restricting conditions */ |
|
3085 for (cond = par->cond; cond != NULL; cond = cond->next) |
|
3086 clean_code(mpl, cond->code); |
|
3087 /* clean pseudo-code for computing restricting supersets */ |
|
3088 for (in = par->in; in != NULL; in = in->next) |
|
3089 clean_code(mpl, in->code); |
|
3090 /* clean pseudo-code for computing assigned value */ |
|
3091 clean_code(mpl, par->assign); |
|
3092 /* clean pseudo-code for computing default value */ |
|
3093 clean_code(mpl, par->option); |
|
3094 /* reset data status flag */ |
|
3095 par->data = 0; |
|
3096 /* delete default symbolic value */ |
|
3097 if (par->defval != NULL) |
|
3098 delete_symbol(mpl, par->defval), par->defval = NULL; |
|
3099 /* delete content array */ |
|
3100 for (memb = par->array->head; memb != NULL; memb = memb->next) |
|
3101 delete_value(mpl, par->array->type, &memb->value); |
|
3102 delete_array(mpl, par->array), par->array = NULL; |
|
3103 return; |
|
3104 } |
|
3105 |
|
3106 /**********************************************************************/ |
|
3107 /* * * MODEL VARIABLES * * */ |
|
3108 /**********************************************************************/ |
|
3109 |
|
3110 /*---------------------------------------------------------------------- |
|
3111 -- take_member_var - obtain reference to elemental variable. |
|
3112 -- |
|
3113 -- This routine obtains a reference to elemental variable assigned to |
|
3114 -- given member of specified model variable and returns it on exit. If |
|
3115 -- necessary, new elemental variable is created. |
|
3116 -- |
|
3117 -- NOTE: This routine must not be called out of domain scope. */ |
|
3118 |
|
3119 ELEMVAR *take_member_var /* returns reference */ |
|
3120 ( MPL *mpl, |
|
3121 VARIABLE *var, /* not changed */ |
|
3122 TUPLE *tuple /* not changed */ |
|
3123 ) |
|
3124 { MEMBER *memb; |
|
3125 ELEMVAR *refer; |
|
3126 /* find member in the variable array */ |
|
3127 memb = find_member(mpl, var->array, tuple); |
|
3128 if (memb != NULL) |
|
3129 { /* member exists, so just take the reference */ |
|
3130 refer = memb->value.var; |
|
3131 } |
|
3132 else |
|
3133 { /* member is referenced for the first time and therefore does |
|
3134 not exist; create new elemental variable, assign it to new |
|
3135 member, and add the member to the variable array */ |
|
3136 memb = add_member(mpl, var->array, copy_tuple(mpl, tuple)); |
|
3137 refer = (memb->value.var = |
|
3138 dmp_get_atom(mpl->elemvars, sizeof(ELEMVAR))); |
|
3139 refer->j = 0; |
|
3140 refer->var = var; |
|
3141 refer->memb = memb; |
|
3142 /* compute lower bound */ |
|
3143 if (var->lbnd == NULL) |
|
3144 refer->lbnd = 0.0; |
|
3145 else |
|
3146 refer->lbnd = eval_numeric(mpl, var->lbnd); |
|
3147 /* compute upper bound */ |
|
3148 if (var->ubnd == NULL) |
|
3149 refer->ubnd = 0.0; |
|
3150 else if (var->ubnd == var->lbnd) |
|
3151 refer->ubnd = refer->lbnd; |
|
3152 else |
|
3153 refer->ubnd = eval_numeric(mpl, var->ubnd); |
|
3154 /* nullify working quantity */ |
|
3155 refer->temp = 0.0; |
|
3156 #if 1 /* 15/V-2010 */ |
|
3157 /* solution has not been obtained by the solver yet */ |
|
3158 refer->stat = 0; |
|
3159 refer->prim = refer->dual = 0.0; |
|
3160 #endif |
|
3161 } |
|
3162 return refer; |
|
3163 } |
|
3164 |
|
3165 /*---------------------------------------------------------------------- |
|
3166 -- eval_member_var - evaluate reference to elemental variable. |
|
3167 -- |
|
3168 -- This routine evaluates a reference to elemental variable assigned to |
|
3169 -- member of specified model variable and returns it on exit. */ |
|
3170 |
|
3171 struct eval_var_info |
|
3172 { /* working info used by the routine eval_member_var */ |
|
3173 VARIABLE *var; |
|
3174 /* model variable */ |
|
3175 TUPLE *tuple; |
|
3176 /* n-tuple, which defines variable member */ |
|
3177 ELEMVAR *refer; |
|
3178 /* evaluated reference to elemental variable */ |
|
3179 }; |
|
3180 |
|
3181 static void eval_var_func(MPL *mpl, void *_info) |
|
3182 { /* this is auxiliary routine to work within domain scope */ |
|
3183 struct eval_var_info *info = _info; |
|
3184 info->refer = take_member_var(mpl, info->var, info->tuple); |
|
3185 return; |
|
3186 } |
|
3187 |
|
3188 ELEMVAR *eval_member_var /* returns reference */ |
|
3189 ( MPL *mpl, |
|
3190 VARIABLE *var, /* not changed */ |
|
3191 TUPLE *tuple /* not changed */ |
|
3192 ) |
|
3193 { /* this routine evaluates variable member */ |
|
3194 struct eval_var_info _info, *info = &_info; |
|
3195 xassert(var->dim == tuple_dimen(mpl, tuple)); |
|
3196 info->var = var; |
|
3197 info->tuple = tuple; |
|
3198 /* evaluate member, which has given n-tuple */ |
|
3199 if (eval_within_domain(mpl, info->var->domain, info->tuple, info, |
|
3200 eval_var_func)) |
|
3201 out_of_domain(mpl, var->name, info->tuple); |
|
3202 /* bring evaluated reference to the calling program */ |
|
3203 return info->refer; |
|
3204 } |
|
3205 |
|
3206 /*---------------------------------------------------------------------- |
|
3207 -- eval_whole_var - evaluate model variable over entire domain. |
|
3208 -- |
|
3209 -- This routine evaluates all members of specified model variable over |
|
3210 -- entire domain. */ |
|
3211 |
|
3212 static int whole_var_func(MPL *mpl, void *info) |
|
3213 { /* this is auxiliary routine to work within domain scope */ |
|
3214 VARIABLE *var = (VARIABLE *)info; |
|
3215 TUPLE *tuple = get_domain_tuple(mpl, var->domain); |
|
3216 eval_member_var(mpl, var, tuple); |
|
3217 delete_tuple(mpl, tuple); |
|
3218 return 0; |
|
3219 } |
|
3220 |
|
3221 void eval_whole_var(MPL *mpl, VARIABLE *var) |
|
3222 { loop_within_domain(mpl, var->domain, var, whole_var_func); |
|
3223 return; |
|
3224 } |
|
3225 |
|
3226 /*---------------------------------------------------------------------- |
|
3227 -- clean_variable - clean model variable. |
|
3228 -- |
|
3229 -- This routine cleans specified model variable that assumes deleting |
|
3230 -- all stuff dynamically allocated during the generation phase. */ |
|
3231 |
|
3232 void clean_variable(MPL *mpl, VARIABLE *var) |
|
3233 { MEMBER *memb; |
|
3234 /* clean subscript domain */ |
|
3235 clean_domain(mpl, var->domain); |
|
3236 /* clean code for computing lower bound */ |
|
3237 clean_code(mpl, var->lbnd); |
|
3238 /* clean code for computing upper bound */ |
|
3239 if (var->ubnd != var->lbnd) clean_code(mpl, var->ubnd); |
|
3240 /* delete content array */ |
|
3241 for (memb = var->array->head; memb != NULL; memb = memb->next) |
|
3242 dmp_free_atom(mpl->elemvars, memb->value.var, sizeof(ELEMVAR)); |
|
3243 delete_array(mpl, var->array), var->array = NULL; |
|
3244 return; |
|
3245 } |
|
3246 |
|
3247 /**********************************************************************/ |
|
3248 /* * * MODEL CONSTRAINTS AND OBJECTIVES * * */ |
|
3249 /**********************************************************************/ |
|
3250 |
|
3251 /*---------------------------------------------------------------------- |
|
3252 -- take_member_con - obtain reference to elemental constraint. |
|
3253 -- |
|
3254 -- This routine obtains a reference to elemental constraint assigned |
|
3255 -- to given member of specified model constraint and returns it on exit. |
|
3256 -- If necessary, new elemental constraint is created. |
|
3257 -- |
|
3258 -- NOTE: This routine must not be called out of domain scope. */ |
|
3259 |
|
3260 ELEMCON *take_member_con /* returns reference */ |
|
3261 ( MPL *mpl, |
|
3262 CONSTRAINT *con, /* not changed */ |
|
3263 TUPLE *tuple /* not changed */ |
|
3264 ) |
|
3265 { MEMBER *memb; |
|
3266 ELEMCON *refer; |
|
3267 /* find member in the constraint array */ |
|
3268 memb = find_member(mpl, con->array, tuple); |
|
3269 if (memb != NULL) |
|
3270 { /* member exists, so just take the reference */ |
|
3271 refer = memb->value.con; |
|
3272 } |
|
3273 else |
|
3274 { /* member is referenced for the first time and therefore does |
|
3275 not exist; create new elemental constraint, assign it to new |
|
3276 member, and add the member to the constraint array */ |
|
3277 memb = add_member(mpl, con->array, copy_tuple(mpl, tuple)); |
|
3278 refer = (memb->value.con = |
|
3279 dmp_get_atom(mpl->elemcons, sizeof(ELEMCON))); |
|
3280 refer->i = 0; |
|
3281 refer->con = con; |
|
3282 refer->memb = memb; |
|
3283 /* compute linear form */ |
|
3284 xassert(con->code != NULL); |
|
3285 refer->form = eval_formula(mpl, con->code); |
|
3286 /* compute lower and upper bounds */ |
|
3287 if (con->lbnd == NULL && con->ubnd == NULL) |
|
3288 { /* objective has no bounds */ |
|
3289 double temp; |
|
3290 xassert(con->type == A_MINIMIZE || con->type == A_MAXIMIZE); |
|
3291 /* carry the constant term to the right-hand side */ |
|
3292 refer->form = remove_constant(mpl, refer->form, &temp); |
|
3293 refer->lbnd = refer->ubnd = - temp; |
|
3294 } |
|
3295 else if (con->lbnd != NULL && con->ubnd == NULL) |
|
3296 { /* constraint a * x + b >= c * y + d is transformed to the |
|
3297 standard form a * x - c * y >= d - b */ |
|
3298 double temp; |
|
3299 xassert(con->type == A_CONSTRAINT); |
|
3300 refer->form = linear_comb(mpl, |
|
3301 +1.0, refer->form, |
|
3302 -1.0, eval_formula(mpl, con->lbnd)); |
|
3303 refer->form = remove_constant(mpl, refer->form, &temp); |
|
3304 refer->lbnd = - temp; |
|
3305 refer->ubnd = 0.0; |
|
3306 } |
|
3307 else if (con->lbnd == NULL && con->ubnd != NULL) |
|
3308 { /* constraint a * x + b <= c * y + d is transformed to the |
|
3309 standard form a * x - c * y <= d - b */ |
|
3310 double temp; |
|
3311 xassert(con->type == A_CONSTRAINT); |
|
3312 refer->form = linear_comb(mpl, |
|
3313 +1.0, refer->form, |
|
3314 -1.0, eval_formula(mpl, con->ubnd)); |
|
3315 refer->form = remove_constant(mpl, refer->form, &temp); |
|
3316 refer->lbnd = 0.0; |
|
3317 refer->ubnd = - temp; |
|
3318 } |
|
3319 else if (con->lbnd == con->ubnd) |
|
3320 { /* constraint a * x + b = c * y + d is transformed to the |
|
3321 standard form a * x - c * y = d - b */ |
|
3322 double temp; |
|
3323 xassert(con->type == A_CONSTRAINT); |
|
3324 refer->form = linear_comb(mpl, |
|
3325 +1.0, refer->form, |
|
3326 -1.0, eval_formula(mpl, con->lbnd)); |
|
3327 refer->form = remove_constant(mpl, refer->form, &temp); |
|
3328 refer->lbnd = refer->ubnd = - temp; |
|
3329 } |
|
3330 else |
|
3331 { /* ranged constraint c <= a * x + b <= d is transformed to |
|
3332 the standard form c - b <= a * x <= d - b */ |
|
3333 double temp, temp1, temp2; |
|
3334 xassert(con->type == A_CONSTRAINT); |
|
3335 refer->form = remove_constant(mpl, refer->form, &temp); |
|
3336 xassert(remove_constant(mpl, eval_formula(mpl, con->lbnd), |
|
3337 &temp1) == NULL); |
|
3338 xassert(remove_constant(mpl, eval_formula(mpl, con->ubnd), |
|
3339 &temp2) == NULL); |
|
3340 refer->lbnd = fp_sub(mpl, temp1, temp); |
|
3341 refer->ubnd = fp_sub(mpl, temp2, temp); |
|
3342 } |
|
3343 #if 1 /* 15/V-2010 */ |
|
3344 /* solution has not been obtained by the solver yet */ |
|
3345 refer->stat = 0; |
|
3346 refer->prim = refer->dual = 0.0; |
|
3347 #endif |
|
3348 } |
|
3349 return refer; |
|
3350 } |
|
3351 |
|
3352 /*---------------------------------------------------------------------- |
|
3353 -- eval_member_con - evaluate reference to elemental constraint. |
|
3354 -- |
|
3355 -- This routine evaluates a reference to elemental constraint assigned |
|
3356 -- to member of specified model constraint and returns it on exit. */ |
|
3357 |
|
3358 struct eval_con_info |
|
3359 { /* working info used by the routine eval_member_con */ |
|
3360 CONSTRAINT *con; |
|
3361 /* model constraint */ |
|
3362 TUPLE *tuple; |
|
3363 /* n-tuple, which defines constraint member */ |
|
3364 ELEMCON *refer; |
|
3365 /* evaluated reference to elemental constraint */ |
|
3366 }; |
|
3367 |
|
3368 static void eval_con_func(MPL *mpl, void *_info) |
|
3369 { /* this is auxiliary routine to work within domain scope */ |
|
3370 struct eval_con_info *info = _info; |
|
3371 info->refer = take_member_con(mpl, info->con, info->tuple); |
|
3372 return; |
|
3373 } |
|
3374 |
|
3375 ELEMCON *eval_member_con /* returns reference */ |
|
3376 ( MPL *mpl, |
|
3377 CONSTRAINT *con, /* not changed */ |
|
3378 TUPLE *tuple /* not changed */ |
|
3379 ) |
|
3380 { /* this routine evaluates constraint member */ |
|
3381 struct eval_con_info _info, *info = &_info; |
|
3382 xassert(con->dim == tuple_dimen(mpl, tuple)); |
|
3383 info->con = con; |
|
3384 info->tuple = tuple; |
|
3385 /* evaluate member, which has given n-tuple */ |
|
3386 if (eval_within_domain(mpl, info->con->domain, info->tuple, info, |
|
3387 eval_con_func)) |
|
3388 out_of_domain(mpl, con->name, info->tuple); |
|
3389 /* bring evaluated reference to the calling program */ |
|
3390 return info->refer; |
|
3391 } |
|
3392 |
|
3393 /*---------------------------------------------------------------------- |
|
3394 -- eval_whole_con - evaluate model constraint over entire domain. |
|
3395 -- |
|
3396 -- This routine evaluates all members of specified model constraint over |
|
3397 -- entire domain. */ |
|
3398 |
|
3399 static int whole_con_func(MPL *mpl, void *info) |
|
3400 { /* this is auxiliary routine to work within domain scope */ |
|
3401 CONSTRAINT *con = (CONSTRAINT *)info; |
|
3402 TUPLE *tuple = get_domain_tuple(mpl, con->domain); |
|
3403 eval_member_con(mpl, con, tuple); |
|
3404 delete_tuple(mpl, tuple); |
|
3405 return 0; |
|
3406 } |
|
3407 |
|
3408 void eval_whole_con(MPL *mpl, CONSTRAINT *con) |
|
3409 { loop_within_domain(mpl, con->domain, con, whole_con_func); |
|
3410 return; |
|
3411 } |
|
3412 |
|
3413 /*---------------------------------------------------------------------- |
|
3414 -- clean_constraint - clean model constraint. |
|
3415 -- |
|
3416 -- This routine cleans specified model constraint that assumes deleting |
|
3417 -- all stuff dynamically allocated during the generation phase. */ |
|
3418 |
|
3419 void clean_constraint(MPL *mpl, CONSTRAINT *con) |
|
3420 { MEMBER *memb; |
|
3421 /* clean subscript domain */ |
|
3422 clean_domain(mpl, con->domain); |
|
3423 /* clean code for computing main linear form */ |
|
3424 clean_code(mpl, con->code); |
|
3425 /* clean code for computing lower bound */ |
|
3426 clean_code(mpl, con->lbnd); |
|
3427 /* clean code for computing upper bound */ |
|
3428 if (con->ubnd != con->lbnd) clean_code(mpl, con->ubnd); |
|
3429 /* delete content array */ |
|
3430 for (memb = con->array->head; memb != NULL; memb = memb->next) |
|
3431 { delete_formula(mpl, memb->value.con->form); |
|
3432 dmp_free_atom(mpl->elemcons, memb->value.con, sizeof(ELEMCON)); |
|
3433 } |
|
3434 delete_array(mpl, con->array), con->array = NULL; |
|
3435 return; |
|
3436 } |
|
3437 |
|
3438 /**********************************************************************/ |
|
3439 /* * * PSEUDO-CODE * * */ |
|
3440 /**********************************************************************/ |
|
3441 |
|
3442 /*---------------------------------------------------------------------- |
|
3443 -- eval_numeric - evaluate pseudo-code to determine numeric value. |
|
3444 -- |
|
3445 -- This routine evaluates specified pseudo-code to determine resultant |
|
3446 -- numeric value, which is returned on exit. */ |
|
3447 |
|
3448 struct iter_num_info |
|
3449 { /* working info used by the routine iter_num_func */ |
|
3450 CODE *code; |
|
3451 /* pseudo-code for iterated operation to be performed */ |
|
3452 double value; |
|
3453 /* resultant value */ |
|
3454 }; |
|
3455 |
|
3456 static int iter_num_func(MPL *mpl, void *_info) |
|
3457 { /* this is auxiliary routine used to perform iterated operation |
|
3458 on numeric "integrand" within domain scope */ |
|
3459 struct iter_num_info *info = _info; |
|
3460 double temp; |
|
3461 temp = eval_numeric(mpl, info->code->arg.loop.x); |
|
3462 switch (info->code->op) |
|
3463 { case O_SUM: |
|
3464 /* summation over domain */ |
|
3465 info->value = fp_add(mpl, info->value, temp); |
|
3466 break; |
|
3467 case O_PROD: |
|
3468 /* multiplication over domain */ |
|
3469 info->value = fp_mul(mpl, info->value, temp); |
|
3470 break; |
|
3471 case O_MINIMUM: |
|
3472 /* minimum over domain */ |
|
3473 if (info->value > temp) info->value = temp; |
|
3474 break; |
|
3475 case O_MAXIMUM: |
|
3476 /* maximum over domain */ |
|
3477 if (info->value < temp) info->value = temp; |
|
3478 break; |
|
3479 default: |
|
3480 xassert(info != info); |
|
3481 } |
|
3482 return 0; |
|
3483 } |
|
3484 |
|
3485 double eval_numeric(MPL *mpl, CODE *code) |
|
3486 { double value; |
|
3487 xassert(code != NULL); |
|
3488 xassert(code->type == A_NUMERIC); |
|
3489 xassert(code->dim == 0); |
|
3490 /* if the operation has a side effect, invalidate and delete the |
|
3491 resultant value */ |
|
3492 if (code->vflag && code->valid) |
|
3493 { code->valid = 0; |
|
3494 delete_value(mpl, code->type, &code->value); |
|
3495 } |
|
3496 /* if resultant value is valid, no evaluation is needed */ |
|
3497 if (code->valid) |
|
3498 { value = code->value.num; |
|
3499 goto done; |
|
3500 } |
|
3501 /* evaluate pseudo-code recursively */ |
|
3502 switch (code->op) |
|
3503 { case O_NUMBER: |
|
3504 /* take floating-point number */ |
|
3505 value = code->arg.num; |
|
3506 break; |
|
3507 case O_MEMNUM: |
|
3508 /* take member of numeric parameter */ |
|
3509 { TUPLE *tuple; |
|
3510 ARG_LIST *e; |
|
3511 tuple = create_tuple(mpl); |
|
3512 for (e = code->arg.par.list; e != NULL; e = e->next) |
|
3513 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, |
|
3514 e->x)); |
|
3515 value = eval_member_num(mpl, code->arg.par.par, tuple); |
|
3516 delete_tuple(mpl, tuple); |
|
3517 } |
|
3518 break; |
|
3519 case O_MEMVAR: |
|
3520 /* take computed value of elemental variable */ |
|
3521 { TUPLE *tuple; |
|
3522 ARG_LIST *e; |
|
3523 #if 1 /* 15/V-2010 */ |
|
3524 ELEMVAR *var; |
|
3525 #endif |
|
3526 tuple = create_tuple(mpl); |
|
3527 for (e = code->arg.var.list; e != NULL; e = e->next) |
|
3528 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, |
|
3529 e->x)); |
|
3530 #if 0 /* 15/V-2010 */ |
|
3531 value = eval_member_var(mpl, code->arg.var.var, tuple) |
|
3532 ->value; |
|
3533 #else |
|
3534 var = eval_member_var(mpl, code->arg.var.var, tuple); |
|
3535 switch (code->arg.var.suff) |
|
3536 { case DOT_LB: |
|
3537 if (var->var->lbnd == NULL) |
|
3538 value = -DBL_MAX; |
|
3539 else |
|
3540 value = var->lbnd; |
|
3541 break; |
|
3542 case DOT_UB: |
|
3543 if (var->var->ubnd == NULL) |
|
3544 value = +DBL_MAX; |
|
3545 else |
|
3546 value = var->ubnd; |
|
3547 break; |
|
3548 case DOT_STATUS: |
|
3549 value = var->stat; |
|
3550 break; |
|
3551 case DOT_VAL: |
|
3552 value = var->prim; |
|
3553 break; |
|
3554 case DOT_DUAL: |
|
3555 value = var->dual; |
|
3556 break; |
|
3557 default: |
|
3558 xassert(code != code); |
|
3559 } |
|
3560 #endif |
|
3561 delete_tuple(mpl, tuple); |
|
3562 } |
|
3563 break; |
|
3564 #if 1 /* 15/V-2010 */ |
|
3565 case O_MEMCON: |
|
3566 /* take computed value of elemental constraint */ |
|
3567 { TUPLE *tuple; |
|
3568 ARG_LIST *e; |
|
3569 ELEMCON *con; |
|
3570 tuple = create_tuple(mpl); |
|
3571 for (e = code->arg.con.list; e != NULL; e = e->next) |
|
3572 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, |
|
3573 e->x)); |
|
3574 con = eval_member_con(mpl, code->arg.con.con, tuple); |
|
3575 switch (code->arg.con.suff) |
|
3576 { case DOT_LB: |
|
3577 if (con->con->lbnd == NULL) |
|
3578 value = -DBL_MAX; |
|
3579 else |
|
3580 value = con->lbnd; |
|
3581 break; |
|
3582 case DOT_UB: |
|
3583 if (con->con->ubnd == NULL) |
|
3584 value = +DBL_MAX; |
|
3585 else |
|
3586 value = con->ubnd; |
|
3587 break; |
|
3588 case DOT_STATUS: |
|
3589 value = con->stat; |
|
3590 break; |
|
3591 case DOT_VAL: |
|
3592 value = con->prim; |
|
3593 break; |
|
3594 case DOT_DUAL: |
|
3595 value = con->dual; |
|
3596 break; |
|
3597 default: |
|
3598 xassert(code != code); |
|
3599 } |
|
3600 delete_tuple(mpl, tuple); |
|
3601 } |
|
3602 break; |
|
3603 #endif |
|
3604 case O_IRAND224: |
|
3605 /* pseudo-random in [0, 2^24-1] */ |
|
3606 value = fp_irand224(mpl); |
|
3607 break; |
|
3608 case O_UNIFORM01: |
|
3609 /* pseudo-random in [0, 1) */ |
|
3610 value = fp_uniform01(mpl); |
|
3611 break; |
|
3612 case O_NORMAL01: |
|
3613 /* gaussian random, mu = 0, sigma = 1 */ |
|
3614 value = fp_normal01(mpl); |
|
3615 break; |
|
3616 case O_GMTIME: |
|
3617 /* current calendar time */ |
|
3618 value = fn_gmtime(mpl); |
|
3619 break; |
|
3620 case O_CVTNUM: |
|
3621 /* conversion to numeric */ |
|
3622 { SYMBOL *sym; |
|
3623 sym = eval_symbolic(mpl, code->arg.arg.x); |
|
3624 #if 0 /* 23/XI-2008 */ |
|
3625 if (sym->str != NULL) |
|
3626 error(mpl, "cannot convert %s to floating-point numbe" |
|
3627 "r", format_symbol(mpl, sym)); |
|
3628 value = sym->num; |
|
3629 #else |
|
3630 if (sym->str == NULL) |
|
3631 value = sym->num; |
|
3632 else |
|
3633 { if (str2num(sym->str, &value)) |
|
3634 error(mpl, "cannot convert %s to floating-point nu" |
|
3635 "mber", format_symbol(mpl, sym)); |
|
3636 } |
|
3637 #endif |
|
3638 delete_symbol(mpl, sym); |
|
3639 } |
|
3640 break; |
|
3641 case O_PLUS: |
|
3642 /* unary plus */ |
|
3643 value = + eval_numeric(mpl, code->arg.arg.x); |
|
3644 break; |
|
3645 case O_MINUS: |
|
3646 /* unary minus */ |
|
3647 value = - eval_numeric(mpl, code->arg.arg.x); |
|
3648 break; |
|
3649 case O_ABS: |
|
3650 /* absolute value */ |
|
3651 value = fabs(eval_numeric(mpl, code->arg.arg.x)); |
|
3652 break; |
|
3653 case O_CEIL: |
|
3654 /* round upward ("ceiling of x") */ |
|
3655 value = ceil(eval_numeric(mpl, code->arg.arg.x)); |
|
3656 break; |
|
3657 case O_FLOOR: |
|
3658 /* round downward ("floor of x") */ |
|
3659 value = floor(eval_numeric(mpl, code->arg.arg.x)); |
|
3660 break; |
|
3661 case O_EXP: |
|
3662 /* base-e exponential */ |
|
3663 value = fp_exp(mpl, eval_numeric(mpl, code->arg.arg.x)); |
|
3664 break; |
|
3665 case O_LOG: |
|
3666 /* natural logarithm */ |
|
3667 value = fp_log(mpl, eval_numeric(mpl, code->arg.arg.x)); |
|
3668 break; |
|
3669 case O_LOG10: |
|
3670 /* common (decimal) logarithm */ |
|
3671 value = fp_log10(mpl, eval_numeric(mpl, code->arg.arg.x)); |
|
3672 break; |
|
3673 case O_SQRT: |
|
3674 /* square root */ |
|
3675 value = fp_sqrt(mpl, eval_numeric(mpl, code->arg.arg.x)); |
|
3676 break; |
|
3677 case O_SIN: |
|
3678 /* trigonometric sine */ |
|
3679 value = fp_sin(mpl, eval_numeric(mpl, code->arg.arg.x)); |
|
3680 break; |
|
3681 case O_COS: |
|
3682 /* trigonometric cosine */ |
|
3683 value = fp_cos(mpl, eval_numeric(mpl, code->arg.arg.x)); |
|
3684 break; |
|
3685 case O_ATAN: |
|
3686 /* trigonometric arctangent (one argument) */ |
|
3687 value = fp_atan(mpl, eval_numeric(mpl, code->arg.arg.x)); |
|
3688 break; |
|
3689 case O_ATAN2: |
|
3690 /* trigonometric arctangent (two arguments) */ |
|
3691 value = fp_atan2(mpl, |
|
3692 eval_numeric(mpl, code->arg.arg.x), |
|
3693 eval_numeric(mpl, code->arg.arg.y)); |
|
3694 break; |
|
3695 case O_ROUND: |
|
3696 /* round to nearest integer */ |
|
3697 value = fp_round(mpl, |
|
3698 eval_numeric(mpl, code->arg.arg.x), 0.0); |
|
3699 break; |
|
3700 case O_ROUND2: |
|
3701 /* round to n fractional digits */ |
|
3702 value = fp_round(mpl, |
|
3703 eval_numeric(mpl, code->arg.arg.x), |
|
3704 eval_numeric(mpl, code->arg.arg.y)); |
|
3705 break; |
|
3706 case O_TRUNC: |
|
3707 /* truncate to nearest integer */ |
|
3708 value = fp_trunc(mpl, |
|
3709 eval_numeric(mpl, code->arg.arg.x), 0.0); |
|
3710 break; |
|
3711 case O_TRUNC2: |
|
3712 /* truncate to n fractional digits */ |
|
3713 value = fp_trunc(mpl, |
|
3714 eval_numeric(mpl, code->arg.arg.x), |
|
3715 eval_numeric(mpl, code->arg.arg.y)); |
|
3716 break; |
|
3717 case O_ADD: |
|
3718 /* addition */ |
|
3719 value = fp_add(mpl, |
|
3720 eval_numeric(mpl, code->arg.arg.x), |
|
3721 eval_numeric(mpl, code->arg.arg.y)); |
|
3722 break; |
|
3723 case O_SUB: |
|
3724 /* subtraction */ |
|
3725 value = fp_sub(mpl, |
|
3726 eval_numeric(mpl, code->arg.arg.x), |
|
3727 eval_numeric(mpl, code->arg.arg.y)); |
|
3728 break; |
|
3729 case O_LESS: |
|
3730 /* non-negative subtraction */ |
|
3731 value = fp_less(mpl, |
|
3732 eval_numeric(mpl, code->arg.arg.x), |
|
3733 eval_numeric(mpl, code->arg.arg.y)); |
|
3734 break; |
|
3735 case O_MUL: |
|
3736 /* multiplication */ |
|
3737 value = fp_mul(mpl, |
|
3738 eval_numeric(mpl, code->arg.arg.x), |
|
3739 eval_numeric(mpl, code->arg.arg.y)); |
|
3740 break; |
|
3741 case O_DIV: |
|
3742 /* division */ |
|
3743 value = fp_div(mpl, |
|
3744 eval_numeric(mpl, code->arg.arg.x), |
|
3745 eval_numeric(mpl, code->arg.arg.y)); |
|
3746 break; |
|
3747 case O_IDIV: |
|
3748 /* quotient of exact division */ |
|
3749 value = fp_idiv(mpl, |
|
3750 eval_numeric(mpl, code->arg.arg.x), |
|
3751 eval_numeric(mpl, code->arg.arg.y)); |
|
3752 break; |
|
3753 case O_MOD: |
|
3754 /* remainder of exact division */ |
|
3755 value = fp_mod(mpl, |
|
3756 eval_numeric(mpl, code->arg.arg.x), |
|
3757 eval_numeric(mpl, code->arg.arg.y)); |
|
3758 break; |
|
3759 case O_POWER: |
|
3760 /* exponentiation (raise to power) */ |
|
3761 value = fp_power(mpl, |
|
3762 eval_numeric(mpl, code->arg.arg.x), |
|
3763 eval_numeric(mpl, code->arg.arg.y)); |
|
3764 break; |
|
3765 case O_UNIFORM: |
|
3766 /* pseudo-random in [a, b) */ |
|
3767 value = fp_uniform(mpl, |
|
3768 eval_numeric(mpl, code->arg.arg.x), |
|
3769 eval_numeric(mpl, code->arg.arg.y)); |
|
3770 break; |
|
3771 case O_NORMAL: |
|
3772 /* gaussian random, given mu and sigma */ |
|
3773 value = fp_normal(mpl, |
|
3774 eval_numeric(mpl, code->arg.arg.x), |
|
3775 eval_numeric(mpl, code->arg.arg.y)); |
|
3776 break; |
|
3777 case O_CARD: |
|
3778 { ELEMSET *set; |
|
3779 set = eval_elemset(mpl, code->arg.arg.x); |
|
3780 value = set->size; |
|
3781 delete_array(mpl, set); |
|
3782 } |
|
3783 break; |
|
3784 case O_LENGTH: |
|
3785 { SYMBOL *sym; |
|
3786 char str[MAX_LENGTH+1]; |
|
3787 sym = eval_symbolic(mpl, code->arg.arg.x); |
|
3788 if (sym->str == NULL) |
|
3789 sprintf(str, "%.*g", DBL_DIG, sym->num); |
|
3790 else |
|
3791 fetch_string(mpl, sym->str, str); |
|
3792 delete_symbol(mpl, sym); |
|
3793 value = strlen(str); |
|
3794 } |
|
3795 break; |
|
3796 case O_STR2TIME: |
|
3797 { SYMBOL *sym; |
|
3798 char str[MAX_LENGTH+1], fmt[MAX_LENGTH+1]; |
|
3799 sym = eval_symbolic(mpl, code->arg.arg.x); |
|
3800 if (sym->str == NULL) |
|
3801 sprintf(str, "%.*g", DBL_DIG, sym->num); |
|
3802 else |
|
3803 fetch_string(mpl, sym->str, str); |
|
3804 delete_symbol(mpl, sym); |
|
3805 sym = eval_symbolic(mpl, code->arg.arg.y); |
|
3806 if (sym->str == NULL) |
|
3807 sprintf(fmt, "%.*g", DBL_DIG, sym->num); |
|
3808 else |
|
3809 fetch_string(mpl, sym->str, fmt); |
|
3810 delete_symbol(mpl, sym); |
|
3811 value = fn_str2time(mpl, str, fmt); |
|
3812 } |
|
3813 break; |
|
3814 case O_FORK: |
|
3815 /* if-then-else */ |
|
3816 if (eval_logical(mpl, code->arg.arg.x)) |
|
3817 value = eval_numeric(mpl, code->arg.arg.y); |
|
3818 else if (code->arg.arg.z == NULL) |
|
3819 value = 0.0; |
|
3820 else |
|
3821 value = eval_numeric(mpl, code->arg.arg.z); |
|
3822 break; |
|
3823 case O_MIN: |
|
3824 /* minimal value (n-ary) */ |
|
3825 { ARG_LIST *e; |
|
3826 double temp; |
|
3827 value = +DBL_MAX; |
|
3828 for (e = code->arg.list; e != NULL; e = e->next) |
|
3829 { temp = eval_numeric(mpl, e->x); |
|
3830 if (value > temp) value = temp; |
|
3831 } |
|
3832 } |
|
3833 break; |
|
3834 case O_MAX: |
|
3835 /* maximal value (n-ary) */ |
|
3836 { ARG_LIST *e; |
|
3837 double temp; |
|
3838 value = -DBL_MAX; |
|
3839 for (e = code->arg.list; e != NULL; e = e->next) |
|
3840 { temp = eval_numeric(mpl, e->x); |
|
3841 if (value < temp) value = temp; |
|
3842 } |
|
3843 } |
|
3844 break; |
|
3845 case O_SUM: |
|
3846 /* summation over domain */ |
|
3847 { struct iter_num_info _info, *info = &_info; |
|
3848 info->code = code; |
|
3849 info->value = 0.0; |
|
3850 loop_within_domain(mpl, code->arg.loop.domain, info, |
|
3851 iter_num_func); |
|
3852 value = info->value; |
|
3853 } |
|
3854 break; |
|
3855 case O_PROD: |
|
3856 /* multiplication over domain */ |
|
3857 { struct iter_num_info _info, *info = &_info; |
|
3858 info->code = code; |
|
3859 info->value = 1.0; |
|
3860 loop_within_domain(mpl, code->arg.loop.domain, info, |
|
3861 iter_num_func); |
|
3862 value = info->value; |
|
3863 } |
|
3864 break; |
|
3865 case O_MINIMUM: |
|
3866 /* minimum over domain */ |
|
3867 { struct iter_num_info _info, *info = &_info; |
|
3868 info->code = code; |
|
3869 info->value = +DBL_MAX; |
|
3870 loop_within_domain(mpl, code->arg.loop.domain, info, |
|
3871 iter_num_func); |
|
3872 if (info->value == +DBL_MAX) |
|
3873 error(mpl, "min{} over empty set; result undefined"); |
|
3874 value = info->value; |
|
3875 } |
|
3876 break; |
|
3877 case O_MAXIMUM: |
|
3878 /* maximum over domain */ |
|
3879 { struct iter_num_info _info, *info = &_info; |
|
3880 info->code = code; |
|
3881 info->value = -DBL_MAX; |
|
3882 loop_within_domain(mpl, code->arg.loop.domain, info, |
|
3883 iter_num_func); |
|
3884 if (info->value == -DBL_MAX) |
|
3885 error(mpl, "max{} over empty set; result undefined"); |
|
3886 value = info->value; |
|
3887 } |
|
3888 break; |
|
3889 default: |
|
3890 xassert(code != code); |
|
3891 } |
|
3892 /* save resultant value */ |
|
3893 xassert(!code->valid); |
|
3894 code->valid = 1; |
|
3895 code->value.num = value; |
|
3896 done: return value; |
|
3897 } |
|
3898 |
|
3899 /*---------------------------------------------------------------------- |
|
3900 -- eval_symbolic - evaluate pseudo-code to determine symbolic value. |
|
3901 -- |
|
3902 -- This routine evaluates specified pseudo-code to determine resultant |
|
3903 -- symbolic value, which is returned on exit. */ |
|
3904 |
|
3905 SYMBOL *eval_symbolic(MPL *mpl, CODE *code) |
|
3906 { SYMBOL *value; |
|
3907 xassert(code != NULL); |
|
3908 xassert(code->type == A_SYMBOLIC); |
|
3909 xassert(code->dim == 0); |
|
3910 /* if the operation has a side effect, invalidate and delete the |
|
3911 resultant value */ |
|
3912 if (code->vflag && code->valid) |
|
3913 { code->valid = 0; |
|
3914 delete_value(mpl, code->type, &code->value); |
|
3915 } |
|
3916 /* if resultant value is valid, no evaluation is needed */ |
|
3917 if (code->valid) |
|
3918 { value = copy_symbol(mpl, code->value.sym); |
|
3919 goto done; |
|
3920 } |
|
3921 /* evaluate pseudo-code recursively */ |
|
3922 switch (code->op) |
|
3923 { case O_STRING: |
|
3924 /* take character string */ |
|
3925 value = create_symbol_str(mpl, create_string(mpl, |
|
3926 code->arg.str)); |
|
3927 break; |
|
3928 case O_INDEX: |
|
3929 /* take dummy index */ |
|
3930 xassert(code->arg.index.slot->value != NULL); |
|
3931 value = copy_symbol(mpl, code->arg.index.slot->value); |
|
3932 break; |
|
3933 case O_MEMSYM: |
|
3934 /* take member of symbolic parameter */ |
|
3935 { TUPLE *tuple; |
|
3936 ARG_LIST *e; |
|
3937 tuple = create_tuple(mpl); |
|
3938 for (e = code->arg.par.list; e != NULL; e = e->next) |
|
3939 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, |
|
3940 e->x)); |
|
3941 value = eval_member_sym(mpl, code->arg.par.par, tuple); |
|
3942 delete_tuple(mpl, tuple); |
|
3943 } |
|
3944 break; |
|
3945 case O_CVTSYM: |
|
3946 /* conversion to symbolic */ |
|
3947 value = create_symbol_num(mpl, eval_numeric(mpl, |
|
3948 code->arg.arg.x)); |
|
3949 break; |
|
3950 case O_CONCAT: |
|
3951 /* concatenation */ |
|
3952 value = concat_symbols(mpl, |
|
3953 eval_symbolic(mpl, code->arg.arg.x), |
|
3954 eval_symbolic(mpl, code->arg.arg.y)); |
|
3955 break; |
|
3956 case O_FORK: |
|
3957 /* if-then-else */ |
|
3958 if (eval_logical(mpl, code->arg.arg.x)) |
|
3959 value = eval_symbolic(mpl, code->arg.arg.y); |
|
3960 else if (code->arg.arg.z == NULL) |
|
3961 value = create_symbol_num(mpl, 0.0); |
|
3962 else |
|
3963 value = eval_symbolic(mpl, code->arg.arg.z); |
|
3964 break; |
|
3965 case O_SUBSTR: |
|
3966 case O_SUBSTR3: |
|
3967 { double pos, len; |
|
3968 char str[MAX_LENGTH+1]; |
|
3969 value = eval_symbolic(mpl, code->arg.arg.x); |
|
3970 if (value->str == NULL) |
|
3971 sprintf(str, "%.*g", DBL_DIG, value->num); |
|
3972 else |
|
3973 fetch_string(mpl, value->str, str); |
|
3974 delete_symbol(mpl, value); |
|
3975 if (code->op == O_SUBSTR) |
|
3976 { pos = eval_numeric(mpl, code->arg.arg.y); |
|
3977 if (pos != floor(pos)) |
|
3978 error(mpl, "substr('...', %.*g); non-integer secon" |
|
3979 "d argument", DBL_DIG, pos); |
|
3980 if (pos < 1 || pos > strlen(str) + 1) |
|
3981 error(mpl, "substr('...', %.*g); substring out of " |
|
3982 "range", DBL_DIG, pos); |
|
3983 } |
|
3984 else |
|
3985 { pos = eval_numeric(mpl, code->arg.arg.y); |
|
3986 len = eval_numeric(mpl, code->arg.arg.z); |
|
3987 if (pos != floor(pos) || len != floor(len)) |
|
3988 error(mpl, "substr('...', %.*g, %.*g); non-integer" |
|
3989 " second and/or third argument", DBL_DIG, pos, |
|
3990 DBL_DIG, len); |
|
3991 if (pos < 1 || len < 0 || pos + len > strlen(str) + 1) |
|
3992 error(mpl, "substr('...', %.*g, %.*g); substring o" |
|
3993 "ut of range", DBL_DIG, pos, DBL_DIG, len); |
|
3994 str[(int)pos + (int)len - 1] = '\0'; |
|
3995 } |
|
3996 value = create_symbol_str(mpl, create_string(mpl, str + |
|
3997 (int)pos - 1)); |
|
3998 } |
|
3999 break; |
|
4000 case O_TIME2STR: |
|
4001 { double num; |
|
4002 SYMBOL *sym; |
|
4003 char str[MAX_LENGTH+1], fmt[MAX_LENGTH+1]; |
|
4004 num = eval_numeric(mpl, code->arg.arg.x); |
|
4005 sym = eval_symbolic(mpl, code->arg.arg.y); |
|
4006 if (sym->str == NULL) |
|
4007 sprintf(fmt, "%.*g", DBL_DIG, sym->num); |
|
4008 else |
|
4009 fetch_string(mpl, sym->str, fmt); |
|
4010 delete_symbol(mpl, sym); |
|
4011 fn_time2str(mpl, str, num, fmt); |
|
4012 value = create_symbol_str(mpl, create_string(mpl, str)); |
|
4013 } |
|
4014 break; |
|
4015 default: |
|
4016 xassert(code != code); |
|
4017 } |
|
4018 /* save resultant value */ |
|
4019 xassert(!code->valid); |
|
4020 code->valid = 1; |
|
4021 code->value.sym = copy_symbol(mpl, value); |
|
4022 done: return value; |
|
4023 } |
|
4024 |
|
4025 /*---------------------------------------------------------------------- |
|
4026 -- eval_logical - evaluate pseudo-code to determine logical value. |
|
4027 -- |
|
4028 -- This routine evaluates specified pseudo-code to determine resultant |
|
4029 -- logical value, which is returned on exit. */ |
|
4030 |
|
4031 struct iter_log_info |
|
4032 { /* working info used by the routine iter_log_func */ |
|
4033 CODE *code; |
|
4034 /* pseudo-code for iterated operation to be performed */ |
|
4035 int value; |
|
4036 /* resultant value */ |
|
4037 }; |
|
4038 |
|
4039 static int iter_log_func(MPL *mpl, void *_info) |
|
4040 { /* this is auxiliary routine used to perform iterated operation |
|
4041 on logical "integrand" within domain scope */ |
|
4042 struct iter_log_info *info = _info; |
|
4043 int ret = 0; |
|
4044 switch (info->code->op) |
|
4045 { case O_FORALL: |
|
4046 /* conjunction over domain */ |
|
4047 info->value &= eval_logical(mpl, info->code->arg.loop.x); |
|
4048 if (!info->value) ret = 1; |
|
4049 break; |
|
4050 case O_EXISTS: |
|
4051 /* disjunction over domain */ |
|
4052 info->value |= eval_logical(mpl, info->code->arg.loop.x); |
|
4053 if (info->value) ret = 1; |
|
4054 break; |
|
4055 default: |
|
4056 xassert(info != info); |
|
4057 } |
|
4058 return ret; |
|
4059 } |
|
4060 |
|
4061 int eval_logical(MPL *mpl, CODE *code) |
|
4062 { int value; |
|
4063 xassert(code->type == A_LOGICAL); |
|
4064 xassert(code->dim == 0); |
|
4065 /* if the operation has a side effect, invalidate and delete the |
|
4066 resultant value */ |
|
4067 if (code->vflag && code->valid) |
|
4068 { code->valid = 0; |
|
4069 delete_value(mpl, code->type, &code->value); |
|
4070 } |
|
4071 /* if resultant value is valid, no evaluation is needed */ |
|
4072 if (code->valid) |
|
4073 { value = code->value.bit; |
|
4074 goto done; |
|
4075 } |
|
4076 /* evaluate pseudo-code recursively */ |
|
4077 switch (code->op) |
|
4078 { case O_CVTLOG: |
|
4079 /* conversion to logical */ |
|
4080 value = (eval_numeric(mpl, code->arg.arg.x) != 0.0); |
|
4081 break; |
|
4082 case O_NOT: |
|
4083 /* negation (logical "not") */ |
|
4084 value = !eval_logical(mpl, code->arg.arg.x); |
|
4085 break; |
|
4086 case O_LT: |
|
4087 /* comparison on 'less than' */ |
|
4088 #if 0 /* 02/VIII-2008 */ |
|
4089 value = (eval_numeric(mpl, code->arg.arg.x) < |
|
4090 eval_numeric(mpl, code->arg.arg.y)); |
|
4091 #else |
|
4092 xassert(code->arg.arg.x != NULL); |
|
4093 if (code->arg.arg.x->type == A_NUMERIC) |
|
4094 value = (eval_numeric(mpl, code->arg.arg.x) < |
|
4095 eval_numeric(mpl, code->arg.arg.y)); |
|
4096 else |
|
4097 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); |
|
4098 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); |
|
4099 value = (compare_symbols(mpl, sym1, sym2) < 0); |
|
4100 delete_symbol(mpl, sym1); |
|
4101 delete_symbol(mpl, sym2); |
|
4102 } |
|
4103 #endif |
|
4104 break; |
|
4105 case O_LE: |
|
4106 /* comparison on 'not greater than' */ |
|
4107 #if 0 /* 02/VIII-2008 */ |
|
4108 value = (eval_numeric(mpl, code->arg.arg.x) <= |
|
4109 eval_numeric(mpl, code->arg.arg.y)); |
|
4110 #else |
|
4111 xassert(code->arg.arg.x != NULL); |
|
4112 if (code->arg.arg.x->type == A_NUMERIC) |
|
4113 value = (eval_numeric(mpl, code->arg.arg.x) <= |
|
4114 eval_numeric(mpl, code->arg.arg.y)); |
|
4115 else |
|
4116 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); |
|
4117 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); |
|
4118 value = (compare_symbols(mpl, sym1, sym2) <= 0); |
|
4119 delete_symbol(mpl, sym1); |
|
4120 delete_symbol(mpl, sym2); |
|
4121 } |
|
4122 #endif |
|
4123 break; |
|
4124 case O_EQ: |
|
4125 /* comparison on 'equal to' */ |
|
4126 xassert(code->arg.arg.x != NULL); |
|
4127 if (code->arg.arg.x->type == A_NUMERIC) |
|
4128 value = (eval_numeric(mpl, code->arg.arg.x) == |
|
4129 eval_numeric(mpl, code->arg.arg.y)); |
|
4130 else |
|
4131 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); |
|
4132 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); |
|
4133 value = (compare_symbols(mpl, sym1, sym2) == 0); |
|
4134 delete_symbol(mpl, sym1); |
|
4135 delete_symbol(mpl, sym2); |
|
4136 } |
|
4137 break; |
|
4138 case O_GE: |
|
4139 /* comparison on 'not less than' */ |
|
4140 #if 0 /* 02/VIII-2008 */ |
|
4141 value = (eval_numeric(mpl, code->arg.arg.x) >= |
|
4142 eval_numeric(mpl, code->arg.arg.y)); |
|
4143 #else |
|
4144 xassert(code->arg.arg.x != NULL); |
|
4145 if (code->arg.arg.x->type == A_NUMERIC) |
|
4146 value = (eval_numeric(mpl, code->arg.arg.x) >= |
|
4147 eval_numeric(mpl, code->arg.arg.y)); |
|
4148 else |
|
4149 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); |
|
4150 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); |
|
4151 value = (compare_symbols(mpl, sym1, sym2) >= 0); |
|
4152 delete_symbol(mpl, sym1); |
|
4153 delete_symbol(mpl, sym2); |
|
4154 } |
|
4155 #endif |
|
4156 break; |
|
4157 case O_GT: |
|
4158 /* comparison on 'greater than' */ |
|
4159 #if 0 /* 02/VIII-2008 */ |
|
4160 value = (eval_numeric(mpl, code->arg.arg.x) > |
|
4161 eval_numeric(mpl, code->arg.arg.y)); |
|
4162 #else |
|
4163 xassert(code->arg.arg.x != NULL); |
|
4164 if (code->arg.arg.x->type == A_NUMERIC) |
|
4165 value = (eval_numeric(mpl, code->arg.arg.x) > |
|
4166 eval_numeric(mpl, code->arg.arg.y)); |
|
4167 else |
|
4168 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); |
|
4169 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); |
|
4170 value = (compare_symbols(mpl, sym1, sym2) > 0); |
|
4171 delete_symbol(mpl, sym1); |
|
4172 delete_symbol(mpl, sym2); |
|
4173 } |
|
4174 #endif |
|
4175 break; |
|
4176 case O_NE: |
|
4177 /* comparison on 'not equal to' */ |
|
4178 xassert(code->arg.arg.x != NULL); |
|
4179 if (code->arg.arg.x->type == A_NUMERIC) |
|
4180 value = (eval_numeric(mpl, code->arg.arg.x) != |
|
4181 eval_numeric(mpl, code->arg.arg.y)); |
|
4182 else |
|
4183 { SYMBOL *sym1 = eval_symbolic(mpl, code->arg.arg.x); |
|
4184 SYMBOL *sym2 = eval_symbolic(mpl, code->arg.arg.y); |
|
4185 value = (compare_symbols(mpl, sym1, sym2) != 0); |
|
4186 delete_symbol(mpl, sym1); |
|
4187 delete_symbol(mpl, sym2); |
|
4188 } |
|
4189 break; |
|
4190 case O_AND: |
|
4191 /* conjunction (logical "and") */ |
|
4192 value = eval_logical(mpl, code->arg.arg.x) && |
|
4193 eval_logical(mpl, code->arg.arg.y); |
|
4194 break; |
|
4195 case O_OR: |
|
4196 /* disjunction (logical "or") */ |
|
4197 value = eval_logical(mpl, code->arg.arg.x) || |
|
4198 eval_logical(mpl, code->arg.arg.y); |
|
4199 break; |
|
4200 case O_IN: |
|
4201 /* test on 'x in Y' */ |
|
4202 { TUPLE *tuple; |
|
4203 tuple = eval_tuple(mpl, code->arg.arg.x); |
|
4204 value = is_member(mpl, code->arg.arg.y, tuple); |
|
4205 delete_tuple(mpl, tuple); |
|
4206 } |
|
4207 break; |
|
4208 case O_NOTIN: |
|
4209 /* test on 'x not in Y' */ |
|
4210 { TUPLE *tuple; |
|
4211 tuple = eval_tuple(mpl, code->arg.arg.x); |
|
4212 value = !is_member(mpl, code->arg.arg.y, tuple); |
|
4213 delete_tuple(mpl, tuple); |
|
4214 } |
|
4215 break; |
|
4216 case O_WITHIN: |
|
4217 /* test on 'X within Y' */ |
|
4218 { ELEMSET *set; |
|
4219 MEMBER *memb; |
|
4220 set = eval_elemset(mpl, code->arg.arg.x); |
|
4221 value = 1; |
|
4222 for (memb = set->head; memb != NULL; memb = memb->next) |
|
4223 { if (!is_member(mpl, code->arg.arg.y, memb->tuple)) |
|
4224 { value = 0; |
|
4225 break; |
|
4226 } |
|
4227 } |
|
4228 delete_elemset(mpl, set); |
|
4229 } |
|
4230 break; |
|
4231 case O_NOTWITHIN: |
|
4232 /* test on 'X not within Y' */ |
|
4233 { ELEMSET *set; |
|
4234 MEMBER *memb; |
|
4235 set = eval_elemset(mpl, code->arg.arg.x); |
|
4236 value = 1; |
|
4237 for (memb = set->head; memb != NULL; memb = memb->next) |
|
4238 { if (is_member(mpl, code->arg.arg.y, memb->tuple)) |
|
4239 { value = 0; |
|
4240 break; |
|
4241 } |
|
4242 } |
|
4243 delete_elemset(mpl, set); |
|
4244 } |
|
4245 break; |
|
4246 case O_FORALL: |
|
4247 /* conjunction (A-quantification) */ |
|
4248 { struct iter_log_info _info, *info = &_info; |
|
4249 info->code = code; |
|
4250 info->value = 1; |
|
4251 loop_within_domain(mpl, code->arg.loop.domain, info, |
|
4252 iter_log_func); |
|
4253 value = info->value; |
|
4254 } |
|
4255 break; |
|
4256 case O_EXISTS: |
|
4257 /* disjunction (E-quantification) */ |
|
4258 { struct iter_log_info _info, *info = &_info; |
|
4259 info->code = code; |
|
4260 info->value = 0; |
|
4261 loop_within_domain(mpl, code->arg.loop.domain, info, |
|
4262 iter_log_func); |
|
4263 value = info->value; |
|
4264 } |
|
4265 break; |
|
4266 default: |
|
4267 xassert(code != code); |
|
4268 } |
|
4269 /* save resultant value */ |
|
4270 xassert(!code->valid); |
|
4271 code->valid = 1; |
|
4272 code->value.bit = value; |
|
4273 done: return value; |
|
4274 } |
|
4275 |
|
4276 /*---------------------------------------------------------------------- |
|
4277 -- eval_tuple - evaluate pseudo-code to construct n-tuple. |
|
4278 -- |
|
4279 -- This routine evaluates specified pseudo-code to construct resultant |
|
4280 -- n-tuple, which is returned on exit. */ |
|
4281 |
|
4282 TUPLE *eval_tuple(MPL *mpl, CODE *code) |
|
4283 { TUPLE *value; |
|
4284 xassert(code != NULL); |
|
4285 xassert(code->type == A_TUPLE); |
|
4286 xassert(code->dim > 0); |
|
4287 /* if the operation has a side effect, invalidate and delete the |
|
4288 resultant value */ |
|
4289 if (code->vflag && code->valid) |
|
4290 { code->valid = 0; |
|
4291 delete_value(mpl, code->type, &code->value); |
|
4292 } |
|
4293 /* if resultant value is valid, no evaluation is needed */ |
|
4294 if (code->valid) |
|
4295 { value = copy_tuple(mpl, code->value.tuple); |
|
4296 goto done; |
|
4297 } |
|
4298 /* evaluate pseudo-code recursively */ |
|
4299 switch (code->op) |
|
4300 { case O_TUPLE: |
|
4301 /* make n-tuple */ |
|
4302 { ARG_LIST *e; |
|
4303 value = create_tuple(mpl); |
|
4304 for (e = code->arg.list; e != NULL; e = e->next) |
|
4305 value = expand_tuple(mpl, value, eval_symbolic(mpl, |
|
4306 e->x)); |
|
4307 } |
|
4308 break; |
|
4309 case O_CVTTUP: |
|
4310 /* convert to 1-tuple */ |
|
4311 value = expand_tuple(mpl, create_tuple(mpl), |
|
4312 eval_symbolic(mpl, code->arg.arg.x)); |
|
4313 break; |
|
4314 default: |
|
4315 xassert(code != code); |
|
4316 } |
|
4317 /* save resultant value */ |
|
4318 xassert(!code->valid); |
|
4319 code->valid = 1; |
|
4320 code->value.tuple = copy_tuple(mpl, value); |
|
4321 done: return value; |
|
4322 } |
|
4323 |
|
4324 /*---------------------------------------------------------------------- |
|
4325 -- eval_elemset - evaluate pseudo-code to construct elemental set. |
|
4326 -- |
|
4327 -- This routine evaluates specified pseudo-code to construct resultant |
|
4328 -- elemental set, which is returned on exit. */ |
|
4329 |
|
4330 struct iter_set_info |
|
4331 { /* working info used by the routine iter_set_func */ |
|
4332 CODE *code; |
|
4333 /* pseudo-code for iterated operation to be performed */ |
|
4334 ELEMSET *value; |
|
4335 /* resultant value */ |
|
4336 }; |
|
4337 |
|
4338 static int iter_set_func(MPL *mpl, void *_info) |
|
4339 { /* this is auxiliary routine used to perform iterated operation |
|
4340 on n-tuple "integrand" within domain scope */ |
|
4341 struct iter_set_info *info = _info; |
|
4342 TUPLE *tuple; |
|
4343 switch (info->code->op) |
|
4344 { case O_SETOF: |
|
4345 /* compute next n-tuple and add it to the set; in this case |
|
4346 duplicate n-tuples are silently ignored */ |
|
4347 tuple = eval_tuple(mpl, info->code->arg.loop.x); |
|
4348 if (find_tuple(mpl, info->value, tuple) == NULL) |
|
4349 add_tuple(mpl, info->value, tuple); |
|
4350 else |
|
4351 delete_tuple(mpl, tuple); |
|
4352 break; |
|
4353 case O_BUILD: |
|
4354 /* construct next n-tuple using current values assigned to |
|
4355 *free* dummy indices as its components and add it to the |
|
4356 set; in this case duplicate n-tuples cannot appear */ |
|
4357 add_tuple(mpl, info->value, get_domain_tuple(mpl, |
|
4358 info->code->arg.loop.domain)); |
|
4359 break; |
|
4360 default: |
|
4361 xassert(info != info); |
|
4362 } |
|
4363 return 0; |
|
4364 } |
|
4365 |
|
4366 ELEMSET *eval_elemset(MPL *mpl, CODE *code) |
|
4367 { ELEMSET *value; |
|
4368 xassert(code != NULL); |
|
4369 xassert(code->type == A_ELEMSET); |
|
4370 xassert(code->dim > 0); |
|
4371 /* if the operation has a side effect, invalidate and delete the |
|
4372 resultant value */ |
|
4373 if (code->vflag && code->valid) |
|
4374 { code->valid = 0; |
|
4375 delete_value(mpl, code->type, &code->value); |
|
4376 } |
|
4377 /* if resultant value is valid, no evaluation is needed */ |
|
4378 if (code->valid) |
|
4379 { value = copy_elemset(mpl, code->value.set); |
|
4380 goto done; |
|
4381 } |
|
4382 /* evaluate pseudo-code recursively */ |
|
4383 switch (code->op) |
|
4384 { case O_MEMSET: |
|
4385 /* take member of set */ |
|
4386 { TUPLE *tuple; |
|
4387 ARG_LIST *e; |
|
4388 tuple = create_tuple(mpl); |
|
4389 for (e = code->arg.set.list; e != NULL; e = e->next) |
|
4390 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, |
|
4391 e->x)); |
|
4392 value = copy_elemset(mpl, |
|
4393 eval_member_set(mpl, code->arg.set.set, tuple)); |
|
4394 delete_tuple(mpl, tuple); |
|
4395 } |
|
4396 break; |
|
4397 case O_MAKE: |
|
4398 /* make elemental set of n-tuples */ |
|
4399 { ARG_LIST *e; |
|
4400 value = create_elemset(mpl, code->dim); |
|
4401 for (e = code->arg.list; e != NULL; e = e->next) |
|
4402 check_then_add(mpl, value, eval_tuple(mpl, e->x)); |
|
4403 } |
|
4404 break; |
|
4405 case O_UNION: |
|
4406 /* union of two elemental sets */ |
|
4407 value = set_union(mpl, |
|
4408 eval_elemset(mpl, code->arg.arg.x), |
|
4409 eval_elemset(mpl, code->arg.arg.y)); |
|
4410 break; |
|
4411 case O_DIFF: |
|
4412 /* difference between two elemental sets */ |
|
4413 value = set_diff(mpl, |
|
4414 eval_elemset(mpl, code->arg.arg.x), |
|
4415 eval_elemset(mpl, code->arg.arg.y)); |
|
4416 break; |
|
4417 case O_SYMDIFF: |
|
4418 /* symmetric difference between two elemental sets */ |
|
4419 value = set_symdiff(mpl, |
|
4420 eval_elemset(mpl, code->arg.arg.x), |
|
4421 eval_elemset(mpl, code->arg.arg.y)); |
|
4422 break; |
|
4423 case O_INTER: |
|
4424 /* intersection of two elemental sets */ |
|
4425 value = set_inter(mpl, |
|
4426 eval_elemset(mpl, code->arg.arg.x), |
|
4427 eval_elemset(mpl, code->arg.arg.y)); |
|
4428 break; |
|
4429 case O_CROSS: |
|
4430 /* cross (Cartesian) product of two elemental sets */ |
|
4431 value = set_cross(mpl, |
|
4432 eval_elemset(mpl, code->arg.arg.x), |
|
4433 eval_elemset(mpl, code->arg.arg.y)); |
|
4434 break; |
|
4435 case O_DOTS: |
|
4436 /* build "arithmetic" elemental set */ |
|
4437 value = create_arelset(mpl, |
|
4438 eval_numeric(mpl, code->arg.arg.x), |
|
4439 eval_numeric(mpl, code->arg.arg.y), |
|
4440 code->arg.arg.z == NULL ? 1.0 : eval_numeric(mpl, |
|
4441 code->arg.arg.z)); |
|
4442 break; |
|
4443 case O_FORK: |
|
4444 /* if-then-else */ |
|
4445 if (eval_logical(mpl, code->arg.arg.x)) |
|
4446 value = eval_elemset(mpl, code->arg.arg.y); |
|
4447 else |
|
4448 value = eval_elemset(mpl, code->arg.arg.z); |
|
4449 break; |
|
4450 case O_SETOF: |
|
4451 /* compute elemental set */ |
|
4452 { struct iter_set_info _info, *info = &_info; |
|
4453 info->code = code; |
|
4454 info->value = create_elemset(mpl, code->dim); |
|
4455 loop_within_domain(mpl, code->arg.loop.domain, info, |
|
4456 iter_set_func); |
|
4457 value = info->value; |
|
4458 } |
|
4459 break; |
|
4460 case O_BUILD: |
|
4461 /* build elemental set identical to domain set */ |
|
4462 { struct iter_set_info _info, *info = &_info; |
|
4463 info->code = code; |
|
4464 info->value = create_elemset(mpl, code->dim); |
|
4465 loop_within_domain(mpl, code->arg.loop.domain, info, |
|
4466 iter_set_func); |
|
4467 value = info->value; |
|
4468 } |
|
4469 break; |
|
4470 default: |
|
4471 xassert(code != code); |
|
4472 } |
|
4473 /* save resultant value */ |
|
4474 xassert(!code->valid); |
|
4475 code->valid = 1; |
|
4476 code->value.set = copy_elemset(mpl, value); |
|
4477 done: return value; |
|
4478 } |
|
4479 |
|
4480 /*---------------------------------------------------------------------- |
|
4481 -- is_member - check if n-tuple is in set specified by pseudo-code. |
|
4482 -- |
|
4483 -- This routine checks if given n-tuple is a member of elemental set |
|
4484 -- specified in the form of pseudo-code (i.e. by expression). |
|
4485 -- |
|
4486 -- The n-tuple may have more components that dimension of the elemental |
|
4487 -- set, in which case the extra components are ignored. */ |
|
4488 |
|
4489 static void null_func(MPL *mpl, void *info) |
|
4490 { /* this is dummy routine used to enter the domain scope */ |
|
4491 xassert(mpl == mpl); |
|
4492 xassert(info == NULL); |
|
4493 return; |
|
4494 } |
|
4495 |
|
4496 int is_member(MPL *mpl, CODE *code, TUPLE *tuple) |
|
4497 { int value; |
|
4498 xassert(code != NULL); |
|
4499 xassert(code->type == A_ELEMSET); |
|
4500 xassert(code->dim > 0); |
|
4501 xassert(tuple != NULL); |
|
4502 switch (code->op) |
|
4503 { case O_MEMSET: |
|
4504 /* check if given n-tuple is member of elemental set, which |
|
4505 is assigned to member of model set */ |
|
4506 { ARG_LIST *e; |
|
4507 TUPLE *temp; |
|
4508 ELEMSET *set; |
|
4509 /* evaluate reference to elemental set */ |
|
4510 temp = create_tuple(mpl); |
|
4511 for (e = code->arg.set.list; e != NULL; e = e->next) |
|
4512 temp = expand_tuple(mpl, temp, eval_symbolic(mpl, |
|
4513 e->x)); |
|
4514 set = eval_member_set(mpl, code->arg.set.set, temp); |
|
4515 delete_tuple(mpl, temp); |
|
4516 /* check if the n-tuple is contained in the set array */ |
|
4517 temp = build_subtuple(mpl, tuple, set->dim); |
|
4518 value = (find_tuple(mpl, set, temp) != NULL); |
|
4519 delete_tuple(mpl, temp); |
|
4520 } |
|
4521 break; |
|
4522 case O_MAKE: |
|
4523 /* check if given n-tuple is member of literal set */ |
|
4524 { ARG_LIST *e; |
|
4525 TUPLE *temp, *that; |
|
4526 value = 0; |
|
4527 temp = build_subtuple(mpl, tuple, code->dim); |
|
4528 for (e = code->arg.list; e != NULL; e = e->next) |
|
4529 { that = eval_tuple(mpl, e->x); |
|
4530 value = (compare_tuples(mpl, temp, that) == 0); |
|
4531 delete_tuple(mpl, that); |
|
4532 if (value) break; |
|
4533 } |
|
4534 delete_tuple(mpl, temp); |
|
4535 } |
|
4536 break; |
|
4537 case O_UNION: |
|
4538 value = is_member(mpl, code->arg.arg.x, tuple) || |
|
4539 is_member(mpl, code->arg.arg.y, tuple); |
|
4540 break; |
|
4541 case O_DIFF: |
|
4542 value = is_member(mpl, code->arg.arg.x, tuple) && |
|
4543 !is_member(mpl, code->arg.arg.y, tuple); |
|
4544 break; |
|
4545 case O_SYMDIFF: |
|
4546 { int in1 = is_member(mpl, code->arg.arg.x, tuple); |
|
4547 int in2 = is_member(mpl, code->arg.arg.y, tuple); |
|
4548 value = (in1 && !in2) || (!in1 && in2); |
|
4549 } |
|
4550 break; |
|
4551 case O_INTER: |
|
4552 value = is_member(mpl, code->arg.arg.x, tuple) && |
|
4553 is_member(mpl, code->arg.arg.y, tuple); |
|
4554 break; |
|
4555 case O_CROSS: |
|
4556 { int j; |
|
4557 value = is_member(mpl, code->arg.arg.x, tuple); |
|
4558 if (value) |
|
4559 { for (j = 1; j <= code->arg.arg.x->dim; j++) |
|
4560 { xassert(tuple != NULL); |
|
4561 tuple = tuple->next; |
|
4562 } |
|
4563 value = is_member(mpl, code->arg.arg.y, tuple); |
|
4564 } |
|
4565 } |
|
4566 break; |
|
4567 case O_DOTS: |
|
4568 /* check if given 1-tuple is member of "arithmetic" set */ |
|
4569 { int j; |
|
4570 double x, t0, tf, dt; |
|
4571 xassert(code->dim == 1); |
|
4572 /* compute "parameters" of the "arithmetic" set */ |
|
4573 t0 = eval_numeric(mpl, code->arg.arg.x); |
|
4574 tf = eval_numeric(mpl, code->arg.arg.y); |
|
4575 if (code->arg.arg.z == NULL) |
|
4576 dt = 1.0; |
|
4577 else |
|
4578 dt = eval_numeric(mpl, code->arg.arg.z); |
|
4579 /* make sure the parameters are correct */ |
|
4580 arelset_size(mpl, t0, tf, dt); |
|
4581 /* if component of 1-tuple is symbolic, not numeric, the |
|
4582 1-tuple cannot be member of "arithmetic" set */ |
|
4583 xassert(tuple->sym != NULL); |
|
4584 if (tuple->sym->str != NULL) |
|
4585 { value = 0; |
|
4586 break; |
|
4587 } |
|
4588 /* determine numeric value of the component */ |
|
4589 x = tuple->sym->num; |
|
4590 /* if the component value is out of the set range, the |
|
4591 1-tuple is not in the set */ |
|
4592 if (dt > 0.0 && !(t0 <= x && x <= tf) || |
|
4593 dt < 0.0 && !(tf <= x && x <= t0)) |
|
4594 { value = 0; |
|
4595 break; |
|
4596 } |
|
4597 /* estimate ordinal number of the 1-tuple in the set */ |
|
4598 j = (int)(((x - t0) / dt) + 0.5) + 1; |
|
4599 /* perform the main check */ |
|
4600 value = (arelset_member(mpl, t0, tf, dt, j) == x); |
|
4601 } |
|
4602 break; |
|
4603 case O_FORK: |
|
4604 /* check if given n-tuple is member of conditional set */ |
|
4605 if (eval_logical(mpl, code->arg.arg.x)) |
|
4606 value = is_member(mpl, code->arg.arg.y, tuple); |
|
4607 else |
|
4608 value = is_member(mpl, code->arg.arg.z, tuple); |
|
4609 break; |
|
4610 case O_SETOF: |
|
4611 /* check if given n-tuple is member of computed set */ |
|
4612 /* it is not clear how to efficiently perform the check not |
|
4613 computing the entire elemental set :+( */ |
|
4614 error(mpl, "implementation restriction; in/within setof{} n" |
|
4615 "ot allowed"); |
|
4616 break; |
|
4617 case O_BUILD: |
|
4618 /* check if given n-tuple is member of domain set */ |
|
4619 { TUPLE *temp; |
|
4620 temp = build_subtuple(mpl, tuple, code->dim); |
|
4621 /* try to enter the domain scope; if it is successful, |
|
4622 the n-tuple is in the domain set */ |
|
4623 value = (eval_within_domain(mpl, code->arg.loop.domain, |
|
4624 temp, NULL, null_func) == 0); |
|
4625 delete_tuple(mpl, temp); |
|
4626 } |
|
4627 break; |
|
4628 default: |
|
4629 xassert(code != code); |
|
4630 } |
|
4631 return value; |
|
4632 } |
|
4633 |
|
4634 /*---------------------------------------------------------------------- |
|
4635 -- eval_formula - evaluate pseudo-code to construct linear form. |
|
4636 -- |
|
4637 -- This routine evaluates specified pseudo-code to construct resultant |
|
4638 -- linear form, which is returned on exit. */ |
|
4639 |
|
4640 struct iter_form_info |
|
4641 { /* working info used by the routine iter_form_func */ |
|
4642 CODE *code; |
|
4643 /* pseudo-code for iterated operation to be performed */ |
|
4644 FORMULA *value; |
|
4645 /* resultant value */ |
|
4646 FORMULA *tail; |
|
4647 /* pointer to the last term */ |
|
4648 }; |
|
4649 |
|
4650 static int iter_form_func(MPL *mpl, void *_info) |
|
4651 { /* this is auxiliary routine used to perform iterated operation |
|
4652 on linear form "integrand" within domain scope */ |
|
4653 struct iter_form_info *info = _info; |
|
4654 switch (info->code->op) |
|
4655 { case O_SUM: |
|
4656 /* summation over domain */ |
|
4657 #if 0 |
|
4658 info->value = |
|
4659 linear_comb(mpl, |
|
4660 +1.0, info->value, |
|
4661 +1.0, eval_formula(mpl, info->code->arg.loop.x)); |
|
4662 #else |
|
4663 /* the routine linear_comb needs to look through all terms |
|
4664 of both linear forms to reduce identical terms, so using |
|
4665 it here is not a good idea (for example, evaluation of |
|
4666 sum{i in 1..n} x[i] required quadratic time); the better |
|
4667 idea is to gather all terms of the integrand in one list |
|
4668 and reduce identical terms only once after all terms of |
|
4669 the resultant linear form have been evaluated */ |
|
4670 { FORMULA *form, *term; |
|
4671 form = eval_formula(mpl, info->code->arg.loop.x); |
|
4672 if (info->value == NULL) |
|
4673 { xassert(info->tail == NULL); |
|
4674 info->value = form; |
|
4675 } |
|
4676 else |
|
4677 { xassert(info->tail != NULL); |
|
4678 info->tail->next = form; |
|
4679 } |
|
4680 for (term = form; term != NULL; term = term->next) |
|
4681 info->tail = term; |
|
4682 } |
|
4683 #endif |
|
4684 break; |
|
4685 default: |
|
4686 xassert(info != info); |
|
4687 } |
|
4688 return 0; |
|
4689 } |
|
4690 |
|
4691 FORMULA *eval_formula(MPL *mpl, CODE *code) |
|
4692 { FORMULA *value; |
|
4693 xassert(code != NULL); |
|
4694 xassert(code->type == A_FORMULA); |
|
4695 xassert(code->dim == 0); |
|
4696 /* if the operation has a side effect, invalidate and delete the |
|
4697 resultant value */ |
|
4698 if (code->vflag && code->valid) |
|
4699 { code->valid = 0; |
|
4700 delete_value(mpl, code->type, &code->value); |
|
4701 } |
|
4702 /* if resultant value is valid, no evaluation is needed */ |
|
4703 if (code->valid) |
|
4704 { value = copy_formula(mpl, code->value.form); |
|
4705 goto done; |
|
4706 } |
|
4707 /* evaluate pseudo-code recursively */ |
|
4708 switch (code->op) |
|
4709 { case O_MEMVAR: |
|
4710 /* take member of variable */ |
|
4711 { TUPLE *tuple; |
|
4712 ARG_LIST *e; |
|
4713 tuple = create_tuple(mpl); |
|
4714 for (e = code->arg.var.list; e != NULL; e = e->next) |
|
4715 tuple = expand_tuple(mpl, tuple, eval_symbolic(mpl, |
|
4716 e->x)); |
|
4717 #if 1 /* 15/V-2010 */ |
|
4718 xassert(code->arg.var.suff == DOT_NONE); |
|
4719 #endif |
|
4720 value = single_variable(mpl, |
|
4721 eval_member_var(mpl, code->arg.var.var, tuple)); |
|
4722 delete_tuple(mpl, tuple); |
|
4723 } |
|
4724 break; |
|
4725 case O_CVTLFM: |
|
4726 /* convert to linear form */ |
|
4727 value = constant_term(mpl, eval_numeric(mpl, |
|
4728 code->arg.arg.x)); |
|
4729 break; |
|
4730 case O_PLUS: |
|
4731 /* unary plus */ |
|
4732 value = linear_comb(mpl, |
|
4733 0.0, constant_term(mpl, 0.0), |
|
4734 +1.0, eval_formula(mpl, code->arg.arg.x)); |
|
4735 break; |
|
4736 case O_MINUS: |
|
4737 /* unary minus */ |
|
4738 value = linear_comb(mpl, |
|
4739 0.0, constant_term(mpl, 0.0), |
|
4740 -1.0, eval_formula(mpl, code->arg.arg.x)); |
|
4741 break; |
|
4742 case O_ADD: |
|
4743 /* addition */ |
|
4744 value = linear_comb(mpl, |
|
4745 +1.0, eval_formula(mpl, code->arg.arg.x), |
|
4746 +1.0, eval_formula(mpl, code->arg.arg.y)); |
|
4747 break; |
|
4748 case O_SUB: |
|
4749 /* subtraction */ |
|
4750 value = linear_comb(mpl, |
|
4751 +1.0, eval_formula(mpl, code->arg.arg.x), |
|
4752 -1.0, eval_formula(mpl, code->arg.arg.y)); |
|
4753 break; |
|
4754 case O_MUL: |
|
4755 /* multiplication */ |
|
4756 xassert(code->arg.arg.x != NULL); |
|
4757 xassert(code->arg.arg.y != NULL); |
|
4758 if (code->arg.arg.x->type == A_NUMERIC) |
|
4759 { xassert(code->arg.arg.y->type == A_FORMULA); |
|
4760 value = linear_comb(mpl, |
|
4761 eval_numeric(mpl, code->arg.arg.x), |
|
4762 eval_formula(mpl, code->arg.arg.y), |
|
4763 0.0, constant_term(mpl, 0.0)); |
|
4764 } |
|
4765 else |
|
4766 { xassert(code->arg.arg.x->type == A_FORMULA); |
|
4767 xassert(code->arg.arg.y->type == A_NUMERIC); |
|
4768 value = linear_comb(mpl, |
|
4769 eval_numeric(mpl, code->arg.arg.y), |
|
4770 eval_formula(mpl, code->arg.arg.x), |
|
4771 0.0, constant_term(mpl, 0.0)); |
|
4772 } |
|
4773 break; |
|
4774 case O_DIV: |
|
4775 /* division */ |
|
4776 value = linear_comb(mpl, |
|
4777 fp_div(mpl, 1.0, eval_numeric(mpl, code->arg.arg.y)), |
|
4778 eval_formula(mpl, code->arg.arg.x), |
|
4779 0.0, constant_term(mpl, 0.0)); |
|
4780 break; |
|
4781 case O_FORK: |
|
4782 /* if-then-else */ |
|
4783 if (eval_logical(mpl, code->arg.arg.x)) |
|
4784 value = eval_formula(mpl, code->arg.arg.y); |
|
4785 else if (code->arg.arg.z == NULL) |
|
4786 value = constant_term(mpl, 0.0); |
|
4787 else |
|
4788 value = eval_formula(mpl, code->arg.arg.z); |
|
4789 break; |
|
4790 case O_SUM: |
|
4791 /* summation over domain */ |
|
4792 { struct iter_form_info _info, *info = &_info; |
|
4793 info->code = code; |
|
4794 info->value = constant_term(mpl, 0.0); |
|
4795 info->tail = NULL; |
|
4796 loop_within_domain(mpl, code->arg.loop.domain, info, |
|
4797 iter_form_func); |
|
4798 value = reduce_terms(mpl, info->value); |
|
4799 } |
|
4800 break; |
|
4801 default: |
|
4802 xassert(code != code); |
|
4803 } |
|
4804 /* save resultant value */ |
|
4805 xassert(!code->valid); |
|
4806 code->valid = 1; |
|
4807 code->value.form = copy_formula(mpl, value); |
|
4808 done: return value; |
|
4809 } |
|
4810 |
|
4811 /*---------------------------------------------------------------------- |
|
4812 -- clean_code - clean pseudo-code. |
|
4813 -- |
|
4814 -- This routine recursively cleans specified pseudo-code that assumes |
|
4815 -- deleting all temporary resultant values. */ |
|
4816 |
|
4817 void clean_code(MPL *mpl, CODE *code) |
|
4818 { ARG_LIST *e; |
|
4819 /* if no pseudo-code is specified, do nothing */ |
|
4820 if (code == NULL) goto done; |
|
4821 /* if resultant value is valid (exists), delete it */ |
|
4822 if (code->valid) |
|
4823 { code->valid = 0; |
|
4824 delete_value(mpl, code->type, &code->value); |
|
4825 } |
|
4826 /* recursively clean pseudo-code for operands */ |
|
4827 switch (code->op) |
|
4828 { case O_NUMBER: |
|
4829 case O_STRING: |
|
4830 case O_INDEX: |
|
4831 break; |
|
4832 case O_MEMNUM: |
|
4833 case O_MEMSYM: |
|
4834 for (e = code->arg.par.list; e != NULL; e = e->next) |
|
4835 clean_code(mpl, e->x); |
|
4836 break; |
|
4837 case O_MEMSET: |
|
4838 for (e = code->arg.set.list; e != NULL; e = e->next) |
|
4839 clean_code(mpl, e->x); |
|
4840 break; |
|
4841 case O_MEMVAR: |
|
4842 for (e = code->arg.var.list; e != NULL; e = e->next) |
|
4843 clean_code(mpl, e->x); |
|
4844 break; |
|
4845 #if 1 /* 15/V-2010 */ |
|
4846 case O_MEMCON: |
|
4847 for (e = code->arg.con.list; e != NULL; e = e->next) |
|
4848 clean_code(mpl, e->x); |
|
4849 break; |
|
4850 #endif |
|
4851 case O_TUPLE: |
|
4852 case O_MAKE: |
|
4853 for (e = code->arg.list; e != NULL; e = e->next) |
|
4854 clean_code(mpl, e->x); |
|
4855 break; |
|
4856 case O_SLICE: |
|
4857 xassert(code != code); |
|
4858 case O_IRAND224: |
|
4859 case O_UNIFORM01: |
|
4860 case O_NORMAL01: |
|
4861 case O_GMTIME: |
|
4862 break; |
|
4863 case O_CVTNUM: |
|
4864 case O_CVTSYM: |
|
4865 case O_CVTLOG: |
|
4866 case O_CVTTUP: |
|
4867 case O_CVTLFM: |
|
4868 case O_PLUS: |
|
4869 case O_MINUS: |
|
4870 case O_NOT: |
|
4871 case O_ABS: |
|
4872 case O_CEIL: |
|
4873 case O_FLOOR: |
|
4874 case O_EXP: |
|
4875 case O_LOG: |
|
4876 case O_LOG10: |
|
4877 case O_SQRT: |
|
4878 case O_SIN: |
|
4879 case O_COS: |
|
4880 case O_ATAN: |
|
4881 case O_ROUND: |
|
4882 case O_TRUNC: |
|
4883 case O_CARD: |
|
4884 case O_LENGTH: |
|
4885 /* unary operation */ |
|
4886 clean_code(mpl, code->arg.arg.x); |
|
4887 break; |
|
4888 case O_ADD: |
|
4889 case O_SUB: |
|
4890 case O_LESS: |
|
4891 case O_MUL: |
|
4892 case O_DIV: |
|
4893 case O_IDIV: |
|
4894 case O_MOD: |
|
4895 case O_POWER: |
|
4896 case O_ATAN2: |
|
4897 case O_ROUND2: |
|
4898 case O_TRUNC2: |
|
4899 case O_UNIFORM: |
|
4900 case O_NORMAL: |
|
4901 case O_CONCAT: |
|
4902 case O_LT: |
|
4903 case O_LE: |
|
4904 case O_EQ: |
|
4905 case O_GE: |
|
4906 case O_GT: |
|
4907 case O_NE: |
|
4908 case O_AND: |
|
4909 case O_OR: |
|
4910 case O_UNION: |
|
4911 case O_DIFF: |
|
4912 case O_SYMDIFF: |
|
4913 case O_INTER: |
|
4914 case O_CROSS: |
|
4915 case O_IN: |
|
4916 case O_NOTIN: |
|
4917 case O_WITHIN: |
|
4918 case O_NOTWITHIN: |
|
4919 case O_SUBSTR: |
|
4920 case O_STR2TIME: |
|
4921 case O_TIME2STR: |
|
4922 /* binary operation */ |
|
4923 clean_code(mpl, code->arg.arg.x); |
|
4924 clean_code(mpl, code->arg.arg.y); |
|
4925 break; |
|
4926 case O_DOTS: |
|
4927 case O_FORK: |
|
4928 case O_SUBSTR3: |
|
4929 /* ternary operation */ |
|
4930 clean_code(mpl, code->arg.arg.x); |
|
4931 clean_code(mpl, code->arg.arg.y); |
|
4932 clean_code(mpl, code->arg.arg.z); |
|
4933 break; |
|
4934 case O_MIN: |
|
4935 case O_MAX: |
|
4936 /* n-ary operation */ |
|
4937 for (e = code->arg.list; e != NULL; e = e->next) |
|
4938 clean_code(mpl, e->x); |
|
4939 break; |
|
4940 case O_SUM: |
|
4941 case O_PROD: |
|
4942 case O_MINIMUM: |
|
4943 case O_MAXIMUM: |
|
4944 case O_FORALL: |
|
4945 case O_EXISTS: |
|
4946 case O_SETOF: |
|
4947 case O_BUILD: |
|
4948 /* iterated operation */ |
|
4949 clean_domain(mpl, code->arg.loop.domain); |
|
4950 clean_code(mpl, code->arg.loop.x); |
|
4951 break; |
|
4952 default: |
|
4953 xassert(code->op != code->op); |
|
4954 } |
|
4955 done: return; |
|
4956 } |
|
4957 |
|
4958 #if 1 /* 11/II-2008 */ |
|
4959 /**********************************************************************/ |
|
4960 /* * * DATA TABLES * * */ |
|
4961 /**********************************************************************/ |
|
4962 |
|
4963 int mpl_tab_num_args(TABDCA *dca) |
|
4964 { /* returns the number of arguments */ |
|
4965 return dca->na; |
|
4966 } |
|
4967 |
|
4968 const char *mpl_tab_get_arg(TABDCA *dca, int k) |
|
4969 { /* returns pointer to k-th argument */ |
|
4970 xassert(1 <= k && k <= dca->na); |
|
4971 return dca->arg[k]; |
|
4972 } |
|
4973 |
|
4974 int mpl_tab_num_flds(TABDCA *dca) |
|
4975 { /* returns the number of fields */ |
|
4976 return dca->nf; |
|
4977 } |
|
4978 |
|
4979 const char *mpl_tab_get_name(TABDCA *dca, int k) |
|
4980 { /* returns pointer to name of k-th field */ |
|
4981 xassert(1 <= k && k <= dca->nf); |
|
4982 return dca->name[k]; |
|
4983 } |
|
4984 |
|
4985 int mpl_tab_get_type(TABDCA *dca, int k) |
|
4986 { /* returns type of k-th field */ |
|
4987 xassert(1 <= k && k <= dca->nf); |
|
4988 return dca->type[k]; |
|
4989 } |
|
4990 |
|
4991 double mpl_tab_get_num(TABDCA *dca, int k) |
|
4992 { /* returns numeric value of k-th field */ |
|
4993 xassert(1 <= k && k <= dca->nf); |
|
4994 xassert(dca->type[k] == 'N'); |
|
4995 return dca->num[k]; |
|
4996 } |
|
4997 |
|
4998 const char *mpl_tab_get_str(TABDCA *dca, int k) |
|
4999 { /* returns pointer to string value of k-th field */ |
|
5000 xassert(1 <= k && k <= dca->nf); |
|
5001 xassert(dca->type[k] == 'S'); |
|
5002 xassert(dca->str[k] != NULL); |
|
5003 return dca->str[k]; |
|
5004 } |
|
5005 |
|
5006 void mpl_tab_set_num(TABDCA *dca, int k, double num) |
|
5007 { /* assign numeric value to k-th field */ |
|
5008 xassert(1 <= k && k <= dca->nf); |
|
5009 xassert(dca->type[k] == '?'); |
|
5010 dca->type[k] = 'N'; |
|
5011 dca->num[k] = num; |
|
5012 return; |
|
5013 } |
|
5014 |
|
5015 void mpl_tab_set_str(TABDCA *dca, int k, const char *str) |
|
5016 { /* assign string value to k-th field */ |
|
5017 xassert(1 <= k && k <= dca->nf); |
|
5018 xassert(dca->type[k] == '?'); |
|
5019 xassert(strlen(str) <= MAX_LENGTH); |
|
5020 xassert(dca->str[k] != NULL); |
|
5021 dca->type[k] = 'S'; |
|
5022 strcpy(dca->str[k], str); |
|
5023 return; |
|
5024 } |
|
5025 |
|
5026 static int write_func(MPL *mpl, void *info) |
|
5027 { /* this is auxiliary routine to work within domain scope */ |
|
5028 TABLE *tab = info; |
|
5029 TABDCA *dca = mpl->dca; |
|
5030 TABOUT *out; |
|
5031 SYMBOL *sym; |
|
5032 int k; |
|
5033 char buf[MAX_LENGTH+1]; |
|
5034 /* evaluate field values */ |
|
5035 k = 0; |
|
5036 for (out = tab->u.out.list; out != NULL; out = out->next) |
|
5037 { k++; |
|
5038 switch (out->code->type) |
|
5039 { case A_NUMERIC: |
|
5040 dca->type[k] = 'N'; |
|
5041 dca->num[k] = eval_numeric(mpl, out->code); |
|
5042 dca->str[k][0] = '\0'; |
|
5043 break; |
|
5044 case A_SYMBOLIC: |
|
5045 sym = eval_symbolic(mpl, out->code); |
|
5046 if (sym->str == NULL) |
|
5047 { dca->type[k] = 'N'; |
|
5048 dca->num[k] = sym->num; |
|
5049 dca->str[k][0] = '\0'; |
|
5050 } |
|
5051 else |
|
5052 { dca->type[k] = 'S'; |
|
5053 dca->num[k] = 0.0; |
|
5054 fetch_string(mpl, sym->str, buf); |
|
5055 strcpy(dca->str[k], buf); |
|
5056 } |
|
5057 delete_symbol(mpl, sym); |
|
5058 break; |
|
5059 default: |
|
5060 xassert(out != out); |
|
5061 } |
|
5062 } |
|
5063 /* write record to output table */ |
|
5064 mpl_tab_drv_write(mpl); |
|
5065 return 0; |
|
5066 } |
|
5067 |
|
5068 void execute_table(MPL *mpl, TABLE *tab) |
|
5069 { /* execute table statement */ |
|
5070 TABARG *arg; |
|
5071 TABFLD *fld; |
|
5072 TABIN *in; |
|
5073 TABOUT *out; |
|
5074 TABDCA *dca; |
|
5075 SET *set; |
|
5076 int k; |
|
5077 char buf[MAX_LENGTH+1]; |
|
5078 /* allocate table driver communication area */ |
|
5079 xassert(mpl->dca == NULL); |
|
5080 mpl->dca = dca = xmalloc(sizeof(TABDCA)); |
|
5081 dca->id = 0; |
|
5082 dca->link = NULL; |
|
5083 dca->na = 0; |
|
5084 dca->arg = NULL; |
|
5085 dca->nf = 0; |
|
5086 dca->name = NULL; |
|
5087 dca->type = NULL; |
|
5088 dca->num = NULL; |
|
5089 dca->str = NULL; |
|
5090 /* allocate arguments */ |
|
5091 xassert(dca->na == 0); |
|
5092 for (arg = tab->arg; arg != NULL; arg = arg->next) |
|
5093 dca->na++; |
|
5094 dca->arg = xcalloc(1+dca->na, sizeof(char *)); |
|
5095 #if 1 /* 28/IX-2008 */ |
|
5096 for (k = 1; k <= dca->na; k++) dca->arg[k] = NULL; |
|
5097 #endif |
|
5098 /* evaluate argument values */ |
|
5099 k = 0; |
|
5100 for (arg = tab->arg; arg != NULL; arg = arg->next) |
|
5101 { SYMBOL *sym; |
|
5102 k++; |
|
5103 xassert(arg->code->type == A_SYMBOLIC); |
|
5104 sym = eval_symbolic(mpl, arg->code); |
|
5105 if (sym->str == NULL) |
|
5106 sprintf(buf, "%.*g", DBL_DIG, sym->num); |
|
5107 else |
|
5108 fetch_string(mpl, sym->str, buf); |
|
5109 delete_symbol(mpl, sym); |
|
5110 dca->arg[k] = xmalloc(strlen(buf)+1); |
|
5111 strcpy(dca->arg[k], buf); |
|
5112 } |
|
5113 /* perform table input/output */ |
|
5114 switch (tab->type) |
|
5115 { case A_INPUT: goto read_table; |
|
5116 case A_OUTPUT: goto write_table; |
|
5117 default: xassert(tab != tab); |
|
5118 } |
|
5119 read_table: |
|
5120 /* read data from input table */ |
|
5121 /* add the only member to the control set and assign it empty |
|
5122 elemental set */ |
|
5123 set = tab->u.in.set; |
|
5124 if (set != NULL) |
|
5125 { if (set->data) |
|
5126 error(mpl, "%s already provided with data", set->name); |
|
5127 xassert(set->array->head == NULL); |
|
5128 add_member(mpl, set->array, NULL)->value.set = |
|
5129 create_elemset(mpl, set->dimen); |
|
5130 set->data = 1; |
|
5131 } |
|
5132 /* check parameters specified in the input list */ |
|
5133 for (in = tab->u.in.list; in != NULL; in = in->next) |
|
5134 { if (in->par->data) |
|
5135 error(mpl, "%s already provided with data", in->par->name); |
|
5136 in->par->data = 1; |
|
5137 } |
|
5138 /* allocate and initialize fields */ |
|
5139 xassert(dca->nf == 0); |
|
5140 for (fld = tab->u.in.fld; fld != NULL; fld = fld->next) |
|
5141 dca->nf++; |
|
5142 for (in = tab->u.in.list; in != NULL; in = in->next) |
|
5143 dca->nf++; |
|
5144 dca->name = xcalloc(1+dca->nf, sizeof(char *)); |
|
5145 dca->type = xcalloc(1+dca->nf, sizeof(int)); |
|
5146 dca->num = xcalloc(1+dca->nf, sizeof(double)); |
|
5147 dca->str = xcalloc(1+dca->nf, sizeof(char *)); |
|
5148 k = 0; |
|
5149 for (fld = tab->u.in.fld; fld != NULL; fld = fld->next) |
|
5150 { k++; |
|
5151 dca->name[k] = fld->name; |
|
5152 dca->type[k] = '?'; |
|
5153 dca->num[k] = 0.0; |
|
5154 dca->str[k] = xmalloc(MAX_LENGTH+1); |
|
5155 dca->str[k][0] = '\0'; |
|
5156 } |
|
5157 for (in = tab->u.in.list; in != NULL; in = in->next) |
|
5158 { k++; |
|
5159 dca->name[k] = in->name; |
|
5160 dca->type[k] = '?'; |
|
5161 dca->num[k] = 0.0; |
|
5162 dca->str[k] = xmalloc(MAX_LENGTH+1); |
|
5163 dca->str[k][0] = '\0'; |
|
5164 } |
|
5165 /* open input table */ |
|
5166 mpl_tab_drv_open(mpl, 'R'); |
|
5167 /* read and process records */ |
|
5168 for (;;) |
|
5169 { TUPLE *tup; |
|
5170 /* reset field types */ |
|
5171 for (k = 1; k <= dca->nf; k++) |
|
5172 dca->type[k] = '?'; |
|
5173 /* read next record */ |
|
5174 if (mpl_tab_drv_read(mpl)) break; |
|
5175 /* all fields must be set by the driver */ |
|
5176 for (k = 1; k <= dca->nf; k++) |
|
5177 { if (dca->type[k] == '?') |
|
5178 error(mpl, "field %s missing in input table", |
|
5179 dca->name[k]); |
|
5180 } |
|
5181 /* construct n-tuple */ |
|
5182 tup = create_tuple(mpl); |
|
5183 k = 0; |
|
5184 for (fld = tab->u.in.fld; fld != NULL; fld = fld->next) |
|
5185 { k++; |
|
5186 xassert(k <= dca->nf); |
|
5187 switch (dca->type[k]) |
|
5188 { case 'N': |
|
5189 tup = expand_tuple(mpl, tup, create_symbol_num(mpl, |
|
5190 dca->num[k])); |
|
5191 break; |
|
5192 case 'S': |
|
5193 xassert(strlen(dca->str[k]) <= MAX_LENGTH); |
|
5194 tup = expand_tuple(mpl, tup, create_symbol_str(mpl, |
|
5195 create_string(mpl, dca->str[k]))); |
|
5196 break; |
|
5197 default: |
|
5198 xassert(dca != dca); |
|
5199 } |
|
5200 } |
|
5201 /* add n-tuple just read to the control set */ |
|
5202 if (tab->u.in.set != NULL) |
|
5203 check_then_add(mpl, tab->u.in.set->array->head->value.set, |
|
5204 copy_tuple(mpl, tup)); |
|
5205 /* assign values to the parameters in the input list */ |
|
5206 for (in = tab->u.in.list; in != NULL; in = in->next) |
|
5207 { MEMBER *memb; |
|
5208 k++; |
|
5209 xassert(k <= dca->nf); |
|
5210 /* there must be no member with the same n-tuple */ |
|
5211 if (find_member(mpl, in->par->array, tup) != NULL) |
|
5212 error(mpl, "%s%s already defined", in->par->name, |
|
5213 format_tuple(mpl, '[', tup)); |
|
5214 /* create new parameter member with given n-tuple */ |
|
5215 memb = add_member(mpl, in->par->array, copy_tuple(mpl, tup)) |
|
5216 ; |
|
5217 /* assign value to the parameter member */ |
|
5218 switch (in->par->type) |
|
5219 { case A_NUMERIC: |
|
5220 case A_INTEGER: |
|
5221 case A_BINARY: |
|
5222 if (dca->type[k] != 'N') |
|
5223 error(mpl, "%s requires numeric data", |
|
5224 in->par->name); |
|
5225 memb->value.num = dca->num[k]; |
|
5226 break; |
|
5227 case A_SYMBOLIC: |
|
5228 switch (dca->type[k]) |
|
5229 { case 'N': |
|
5230 memb->value.sym = create_symbol_num(mpl, |
|
5231 dca->num[k]); |
|
5232 break; |
|
5233 case 'S': |
|
5234 xassert(strlen(dca->str[k]) <= MAX_LENGTH); |
|
5235 memb->value.sym = create_symbol_str(mpl, |
|
5236 create_string(mpl,dca->str[k])); |
|
5237 break; |
|
5238 default: |
|
5239 xassert(dca != dca); |
|
5240 } |
|
5241 break; |
|
5242 default: |
|
5243 xassert(in != in); |
|
5244 } |
|
5245 } |
|
5246 /* n-tuple is no more needed */ |
|
5247 delete_tuple(mpl, tup); |
|
5248 } |
|
5249 /* close input table */ |
|
5250 mpl_tab_drv_close(mpl); |
|
5251 goto done; |
|
5252 write_table: |
|
5253 /* write data to output table */ |
|
5254 /* allocate and initialize fields */ |
|
5255 xassert(dca->nf == 0); |
|
5256 for (out = tab->u.out.list; out != NULL; out = out->next) |
|
5257 dca->nf++; |
|
5258 dca->name = xcalloc(1+dca->nf, sizeof(char *)); |
|
5259 dca->type = xcalloc(1+dca->nf, sizeof(int)); |
|
5260 dca->num = xcalloc(1+dca->nf, sizeof(double)); |
|
5261 dca->str = xcalloc(1+dca->nf, sizeof(char *)); |
|
5262 k = 0; |
|
5263 for (out = tab->u.out.list; out != NULL; out = out->next) |
|
5264 { k++; |
|
5265 dca->name[k] = out->name; |
|
5266 dca->type[k] = '?'; |
|
5267 dca->num[k] = 0.0; |
|
5268 dca->str[k] = xmalloc(MAX_LENGTH+1); |
|
5269 dca->str[k][0] = '\0'; |
|
5270 } |
|
5271 /* open output table */ |
|
5272 mpl_tab_drv_open(mpl, 'W'); |
|
5273 /* evaluate fields and write records */ |
|
5274 loop_within_domain(mpl, tab->u.out.domain, tab, write_func); |
|
5275 /* close output table */ |
|
5276 mpl_tab_drv_close(mpl); |
|
5277 done: /* free table driver communication area */ |
|
5278 free_dca(mpl); |
|
5279 return; |
|
5280 } |
|
5281 |
|
5282 void free_dca(MPL *mpl) |
|
5283 { /* free table driver communucation area */ |
|
5284 TABDCA *dca = mpl->dca; |
|
5285 int k; |
|
5286 if (dca != NULL) |
|
5287 { if (dca->link != NULL) |
|
5288 mpl_tab_drv_close(mpl); |
|
5289 if (dca->arg != NULL) |
|
5290 { for (k = 1; k <= dca->na; k++) |
|
5291 #if 1 /* 28/IX-2008 */ |
|
5292 if (dca->arg[k] != NULL) |
|
5293 #endif |
|
5294 xfree(dca->arg[k]); |
|
5295 xfree(dca->arg); |
|
5296 } |
|
5297 if (dca->name != NULL) xfree(dca->name); |
|
5298 if (dca->type != NULL) xfree(dca->type); |
|
5299 if (dca->num != NULL) xfree(dca->num); |
|
5300 if (dca->str != NULL) |
|
5301 { for (k = 1; k <= dca->nf; k++) |
|
5302 xfree(dca->str[k]); |
|
5303 xfree(dca->str); |
|
5304 } |
|
5305 xfree(dca), mpl->dca = NULL; |
|
5306 } |
|
5307 return; |
|
5308 } |
|
5309 |
|
5310 void clean_table(MPL *mpl, TABLE *tab) |
|
5311 { /* clean table statement */ |
|
5312 TABARG *arg; |
|
5313 TABOUT *out; |
|
5314 /* clean string list */ |
|
5315 for (arg = tab->arg; arg != NULL; arg = arg->next) |
|
5316 clean_code(mpl, arg->code); |
|
5317 switch (tab->type) |
|
5318 { case A_INPUT: |
|
5319 break; |
|
5320 case A_OUTPUT: |
|
5321 /* clean subscript domain */ |
|
5322 clean_domain(mpl, tab->u.out.domain); |
|
5323 /* clean output list */ |
|
5324 for (out = tab->u.out.list; out != NULL; out = out->next) |
|
5325 clean_code(mpl, out->code); |
|
5326 break; |
|
5327 default: |
|
5328 xassert(tab != tab); |
|
5329 } |
|
5330 return; |
|
5331 } |
|
5332 #endif |
|
5333 |
|
5334 /**********************************************************************/ |
|
5335 /* * * MODEL STATEMENTS * * */ |
|
5336 /**********************************************************************/ |
|
5337 |
|
5338 /*---------------------------------------------------------------------- |
|
5339 -- execute_check - execute check statement. |
|
5340 -- |
|
5341 -- This routine executes specified check statement. */ |
|
5342 |
|
5343 static int check_func(MPL *mpl, void *info) |
|
5344 { /* this is auxiliary routine to work within domain scope */ |
|
5345 CHECK *chk = (CHECK *)info; |
|
5346 if (!eval_logical(mpl, chk->code)) |
|
5347 error(mpl, "check%s failed", format_tuple(mpl, '[', |
|
5348 get_domain_tuple(mpl, chk->domain))); |
|
5349 return 0; |
|
5350 } |
|
5351 |
|
5352 void execute_check(MPL *mpl, CHECK *chk) |
|
5353 { loop_within_domain(mpl, chk->domain, chk, check_func); |
|
5354 return; |
|
5355 } |
|
5356 |
|
5357 /*---------------------------------------------------------------------- |
|
5358 -- clean_check - clean check statement. |
|
5359 -- |
|
5360 -- This routine cleans specified check statement that assumes deleting |
|
5361 -- all stuff dynamically allocated on generating/postsolving phase. */ |
|
5362 |
|
5363 void clean_check(MPL *mpl, CHECK *chk) |
|
5364 { /* clean subscript domain */ |
|
5365 clean_domain(mpl, chk->domain); |
|
5366 /* clean pseudo-code for computing predicate */ |
|
5367 clean_code(mpl, chk->code); |
|
5368 return; |
|
5369 } |
|
5370 |
|
5371 /*---------------------------------------------------------------------- |
|
5372 -- execute_display - execute display statement. |
|
5373 -- |
|
5374 -- This routine executes specified display statement. */ |
|
5375 |
|
5376 static void display_set(MPL *mpl, SET *set, MEMBER *memb) |
|
5377 { /* display member of model set */ |
|
5378 ELEMSET *s = memb->value.set; |
|
5379 MEMBER *m; |
|
5380 write_text(mpl, "%s%s%s\n", set->name, |
|
5381 format_tuple(mpl, '[', memb->tuple), |
|
5382 s->head == NULL ? " is empty" : ":"); |
|
5383 for (m = s->head; m != NULL; m = m->next) |
|
5384 write_text(mpl, " %s\n", format_tuple(mpl, '(', m->tuple)); |
|
5385 return; |
|
5386 } |
|
5387 |
|
5388 static void display_par(MPL *mpl, PARAMETER *par, MEMBER *memb) |
|
5389 { /* display member of model parameter */ |
|
5390 switch (par->type) |
|
5391 { case A_NUMERIC: |
|
5392 case A_INTEGER: |
|
5393 case A_BINARY: |
|
5394 write_text(mpl, "%s%s = %.*g\n", par->name, |
|
5395 format_tuple(mpl, '[', memb->tuple), |
|
5396 DBL_DIG, memb->value.num); |
|
5397 break; |
|
5398 case A_SYMBOLIC: |
|
5399 write_text(mpl, "%s%s = %s\n", par->name, |
|
5400 format_tuple(mpl, '[', memb->tuple), |
|
5401 format_symbol(mpl, memb->value.sym)); |
|
5402 break; |
|
5403 default: |
|
5404 xassert(par != par); |
|
5405 } |
|
5406 return; |
|
5407 } |
|
5408 |
|
5409 #if 1 /* 15/V-2010 */ |
|
5410 static void display_var(MPL *mpl, VARIABLE *var, MEMBER *memb, |
|
5411 int suff) |
|
5412 { /* display member of model variable */ |
|
5413 if (suff == DOT_NONE || suff == DOT_VAL) |
|
5414 write_text(mpl, "%s%s.val = %.*g\n", var->name, |
|
5415 format_tuple(mpl, '[', memb->tuple), DBL_DIG, |
|
5416 memb->value.var->prim); |
|
5417 else if (suff == DOT_LB) |
|
5418 write_text(mpl, "%s%s.lb = %.*g\n", var->name, |
|
5419 format_tuple(mpl, '[', memb->tuple), DBL_DIG, |
|
5420 memb->value.var->var->lbnd == NULL ? -DBL_MAX : |
|
5421 memb->value.var->lbnd); |
|
5422 else if (suff == DOT_UB) |
|
5423 write_text(mpl, "%s%s.ub = %.*g\n", var->name, |
|
5424 format_tuple(mpl, '[', memb->tuple), DBL_DIG, |
|
5425 memb->value.var->var->ubnd == NULL ? +DBL_MAX : |
|
5426 memb->value.var->ubnd); |
|
5427 else if (suff == DOT_STATUS) |
|
5428 write_text(mpl, "%s%s.status = %d\n", var->name, format_tuple |
|
5429 (mpl, '[', memb->tuple), memb->value.var->stat); |
|
5430 else if (suff == DOT_DUAL) |
|
5431 write_text(mpl, "%s%s.dual = %.*g\n", var->name, |
|
5432 format_tuple(mpl, '[', memb->tuple), DBL_DIG, |
|
5433 memb->value.var->dual); |
|
5434 else |
|
5435 xassert(suff != suff); |
|
5436 return; |
|
5437 } |
|
5438 #endif |
|
5439 |
|
5440 #if 1 /* 15/V-2010 */ |
|
5441 static void display_con(MPL *mpl, CONSTRAINT *con, MEMBER *memb, |
|
5442 int suff) |
|
5443 { /* display member of model constraint */ |
|
5444 if (suff == DOT_NONE || suff == DOT_VAL) |
|
5445 write_text(mpl, "%s%s.val = %.*g\n", con->name, |
|
5446 format_tuple(mpl, '[', memb->tuple), DBL_DIG, |
|
5447 memb->value.con->prim); |
|
5448 else if (suff == DOT_LB) |
|
5449 write_text(mpl, "%s%s.lb = %.*g\n", con->name, |
|
5450 format_tuple(mpl, '[', memb->tuple), DBL_DIG, |
|
5451 memb->value.con->con->lbnd == NULL ? -DBL_MAX : |
|
5452 memb->value.con->lbnd); |
|
5453 else if (suff == DOT_UB) |
|
5454 write_text(mpl, "%s%s.ub = %.*g\n", con->name, |
|
5455 format_tuple(mpl, '[', memb->tuple), DBL_DIG, |
|
5456 memb->value.con->con->ubnd == NULL ? +DBL_MAX : |
|
5457 memb->value.con->ubnd); |
|
5458 else if (suff == DOT_STATUS) |
|
5459 write_text(mpl, "%s%s.status = %d\n", con->name, format_tuple |
|
5460 (mpl, '[', memb->tuple), memb->value.con->stat); |
|
5461 else if (suff == DOT_DUAL) |
|
5462 write_text(mpl, "%s%s.dual = %.*g\n", con->name, |
|
5463 format_tuple(mpl, '[', memb->tuple), DBL_DIG, |
|
5464 memb->value.con->dual); |
|
5465 else |
|
5466 xassert(suff != suff); |
|
5467 return; |
|
5468 } |
|
5469 #endif |
|
5470 |
|
5471 static void display_memb(MPL *mpl, CODE *code) |
|
5472 { /* display member specified by pseudo-code */ |
|
5473 MEMBER memb; |
|
5474 ARG_LIST *e; |
|
5475 xassert(code->op == O_MEMNUM || code->op == O_MEMSYM |
|
5476 || code->op == O_MEMSET || code->op == O_MEMVAR |
|
5477 || code->op == O_MEMCON); |
|
5478 memb.tuple = create_tuple(mpl); |
|
5479 for (e = code->arg.par.list; e != NULL; e = e->next) |
|
5480 memb.tuple = expand_tuple(mpl, memb.tuple, eval_symbolic(mpl, |
|
5481 e->x)); |
|
5482 switch (code->op) |
|
5483 { case O_MEMNUM: |
|
5484 memb.value.num = eval_member_num(mpl, code->arg.par.par, |
|
5485 memb.tuple); |
|
5486 display_par(mpl, code->arg.par.par, &memb); |
|
5487 break; |
|
5488 case O_MEMSYM: |
|
5489 memb.value.sym = eval_member_sym(mpl, code->arg.par.par, |
|
5490 memb.tuple); |
|
5491 display_par(mpl, code->arg.par.par, &memb); |
|
5492 delete_symbol(mpl, memb.value.sym); |
|
5493 break; |
|
5494 case O_MEMSET: |
|
5495 memb.value.set = eval_member_set(mpl, code->arg.set.set, |
|
5496 memb.tuple); |
|
5497 display_set(mpl, code->arg.set.set, &memb); |
|
5498 break; |
|
5499 case O_MEMVAR: |
|
5500 memb.value.var = eval_member_var(mpl, code->arg.var.var, |
|
5501 memb.tuple); |
|
5502 display_var |
|
5503 (mpl, code->arg.var.var, &memb, code->arg.var.suff); |
|
5504 break; |
|
5505 case O_MEMCON: |
|
5506 memb.value.con = eval_member_con(mpl, code->arg.con.con, |
|
5507 memb.tuple); |
|
5508 display_con |
|
5509 (mpl, code->arg.con.con, &memb, code->arg.con.suff); |
|
5510 break; |
|
5511 default: |
|
5512 xassert(code != code); |
|
5513 } |
|
5514 delete_tuple(mpl, memb.tuple); |
|
5515 return; |
|
5516 } |
|
5517 |
|
5518 static void display_code(MPL *mpl, CODE *code) |
|
5519 { /* display value of expression */ |
|
5520 switch (code->type) |
|
5521 { case A_NUMERIC: |
|
5522 /* numeric value */ |
|
5523 { double num; |
|
5524 num = eval_numeric(mpl, code); |
|
5525 write_text(mpl, "%.*g\n", DBL_DIG, num); |
|
5526 } |
|
5527 break; |
|
5528 case A_SYMBOLIC: |
|
5529 /* symbolic value */ |
|
5530 { SYMBOL *sym; |
|
5531 sym = eval_symbolic(mpl, code); |
|
5532 write_text(mpl, "%s\n", format_symbol(mpl, sym)); |
|
5533 delete_symbol(mpl, sym); |
|
5534 } |
|
5535 break; |
|
5536 case A_LOGICAL: |
|
5537 /* logical value */ |
|
5538 { int bit; |
|
5539 bit = eval_logical(mpl, code); |
|
5540 write_text(mpl, "%s\n", bit ? "true" : "false"); |
|
5541 } |
|
5542 break; |
|
5543 case A_TUPLE: |
|
5544 /* n-tuple */ |
|
5545 { TUPLE *tuple; |
|
5546 tuple = eval_tuple(mpl, code); |
|
5547 write_text(mpl, "%s\n", format_tuple(mpl, '(', tuple)); |
|
5548 delete_tuple(mpl, tuple); |
|
5549 } |
|
5550 break; |
|
5551 case A_ELEMSET: |
|
5552 /* elemental set */ |
|
5553 { ELEMSET *set; |
|
5554 MEMBER *memb; |
|
5555 set = eval_elemset(mpl, code); |
|
5556 if (set->head == 0) |
|
5557 write_text(mpl, "set is empty\n"); |
|
5558 for (memb = set->head; memb != NULL; memb = memb->next) |
|
5559 write_text(mpl, " %s\n", format_tuple(mpl, '(', |
|
5560 memb->tuple)); |
|
5561 delete_elemset(mpl, set); |
|
5562 } |
|
5563 break; |
|
5564 case A_FORMULA: |
|
5565 /* linear form */ |
|
5566 { FORMULA *form, *term; |
|
5567 form = eval_formula(mpl, code); |
|
5568 if (form == NULL) |
|
5569 write_text(mpl, "linear form is empty\n"); |
|
5570 for (term = form; term != NULL; term = term->next) |
|
5571 { if (term->var == NULL) |
|
5572 write_text(mpl, " %.*g\n", term->coef); |
|
5573 else |
|
5574 write_text(mpl, " %.*g %s%s\n", DBL_DIG, |
|
5575 term->coef, term->var->var->name, |
|
5576 format_tuple(mpl, '[', term->var->memb->tuple)); |
|
5577 } |
|
5578 delete_formula(mpl, form); |
|
5579 } |
|
5580 break; |
|
5581 default: |
|
5582 xassert(code != code); |
|
5583 } |
|
5584 return; |
|
5585 } |
|
5586 |
|
5587 static int display_func(MPL *mpl, void *info) |
|
5588 { /* this is auxiliary routine to work within domain scope */ |
|
5589 DISPLAY *dpy = (DISPLAY *)info; |
|
5590 DISPLAY1 *entry; |
|
5591 for (entry = dpy->list; entry != NULL; entry = entry->next) |
|
5592 { if (entry->type == A_INDEX) |
|
5593 { /* dummy index */ |
|
5594 DOMAIN_SLOT *slot = entry->u.slot; |
|
5595 write_text(mpl, "%s = %s\n", slot->name, |
|
5596 format_symbol(mpl, slot->value)); |
|
5597 } |
|
5598 else if (entry->type == A_SET) |
|
5599 { /* model set */ |
|
5600 SET *set = entry->u.set; |
|
5601 MEMBER *memb; |
|
5602 if (set->assign != NULL) |
|
5603 { /* the set has assignment expression; evaluate all its |
|
5604 members over entire domain */ |
|
5605 eval_whole_set(mpl, set); |
|
5606 } |
|
5607 else |
|
5608 { /* the set has no assignment expression; refer to its |
|
5609 any existing member ignoring resultant value to check |
|
5610 the data provided the data section */ |
|
5611 #if 1 /* 12/XII-2008 */ |
|
5612 if (set->gadget != NULL && set->data == 0) |
|
5613 { /* initialize the set with data from a plain set */ |
|
5614 saturate_set(mpl, set); |
|
5615 } |
|
5616 #endif |
|
5617 if (set->array->head != NULL) |
|
5618 eval_member_set(mpl, set, set->array->head->tuple); |
|
5619 } |
|
5620 /* display all members of the set array */ |
|
5621 if (set->array->head == NULL) |
|
5622 write_text(mpl, "%s has empty content\n", set->name); |
|
5623 for (memb = set->array->head; memb != NULL; memb = |
|
5624 memb->next) display_set(mpl, set, memb); |
|
5625 } |
|
5626 else if (entry->type == A_PARAMETER) |
|
5627 { /* model parameter */ |
|
5628 PARAMETER *par = entry->u.par; |
|
5629 MEMBER *memb; |
|
5630 if (par->assign != NULL) |
|
5631 { /* the parameter has an assignment expression; evaluate |
|
5632 all its member over entire domain */ |
|
5633 eval_whole_par(mpl, par); |
|
5634 } |
|
5635 else |
|
5636 { /* the parameter has no assignment expression; refer to |
|
5637 its any existing member ignoring resultant value to |
|
5638 check the data provided in the data section */ |
|
5639 if (par->array->head != NULL) |
|
5640 { if (par->type != A_SYMBOLIC) |
|
5641 eval_member_num(mpl, par, par->array->head->tuple); |
|
5642 else |
|
5643 delete_symbol(mpl, eval_member_sym(mpl, par, |
|
5644 par->array->head->tuple)); |
|
5645 } |
|
5646 } |
|
5647 /* display all members of the parameter array */ |
|
5648 if (par->array->head == NULL) |
|
5649 write_text(mpl, "%s has empty content\n", par->name); |
|
5650 for (memb = par->array->head; memb != NULL; memb = |
|
5651 memb->next) display_par(mpl, par, memb); |
|
5652 } |
|
5653 else if (entry->type == A_VARIABLE) |
|
5654 { /* model variable */ |
|
5655 VARIABLE *var = entry->u.var; |
|
5656 MEMBER *memb; |
|
5657 xassert(mpl->flag_p); |
|
5658 /* display all members of the variable array */ |
|
5659 if (var->array->head == NULL) |
|
5660 write_text(mpl, "%s has empty content\n", var->name); |
|
5661 for (memb = var->array->head; memb != NULL; memb = |
|
5662 memb->next) display_var(mpl, var, memb, DOT_NONE); |
|
5663 } |
|
5664 else if (entry->type == A_CONSTRAINT) |
|
5665 { /* model constraint */ |
|
5666 CONSTRAINT *con = entry->u.con; |
|
5667 MEMBER *memb; |
|
5668 xassert(mpl->flag_p); |
|
5669 /* display all members of the constraint array */ |
|
5670 if (con->array->head == NULL) |
|
5671 write_text(mpl, "%s has empty content\n", con->name); |
|
5672 for (memb = con->array->head; memb != NULL; memb = |
|
5673 memb->next) display_con(mpl, con, memb, DOT_NONE); |
|
5674 } |
|
5675 else if (entry->type == A_EXPRESSION) |
|
5676 { /* expression */ |
|
5677 CODE *code = entry->u.code; |
|
5678 if (code->op == O_MEMNUM || code->op == O_MEMSYM || |
|
5679 code->op == O_MEMSET || code->op == O_MEMVAR || |
|
5680 code->op == O_MEMCON) |
|
5681 display_memb(mpl, code); |
|
5682 else |
|
5683 display_code(mpl, code); |
|
5684 } |
|
5685 else |
|
5686 xassert(entry != entry); |
|
5687 } |
|
5688 return 0; |
|
5689 } |
|
5690 |
|
5691 void execute_display(MPL *mpl, DISPLAY *dpy) |
|
5692 { loop_within_domain(mpl, dpy->domain, dpy, display_func); |
|
5693 return; |
|
5694 } |
|
5695 |
|
5696 /*---------------------------------------------------------------------- |
|
5697 -- clean_display - clean display statement. |
|
5698 -- |
|
5699 -- This routine cleans specified display statement that assumes deleting |
|
5700 -- all stuff dynamically allocated on generating/postsolving phase. */ |
|
5701 |
|
5702 void clean_display(MPL *mpl, DISPLAY *dpy) |
|
5703 { DISPLAY1 *d; |
|
5704 #if 0 /* 15/V-2010 */ |
|
5705 ARG_LIST *e; |
|
5706 #endif |
|
5707 /* clean subscript domain */ |
|
5708 clean_domain(mpl, dpy->domain); |
|
5709 /* clean display list */ |
|
5710 for (d = dpy->list; d != NULL; d = d->next) |
|
5711 { /* clean pseudo-code for computing expression */ |
|
5712 if (d->type == A_EXPRESSION) |
|
5713 clean_code(mpl, d->u.code); |
|
5714 #if 0 /* 15/V-2010 */ |
|
5715 /* clean pseudo-code for computing subscripts */ |
|
5716 for (e = d->list; e != NULL; e = e->next) |
|
5717 clean_code(mpl, e->x); |
|
5718 #endif |
|
5719 } |
|
5720 return; |
|
5721 } |
|
5722 |
|
5723 /*---------------------------------------------------------------------- |
|
5724 -- execute_printf - execute printf statement. |
|
5725 -- |
|
5726 -- This routine executes specified printf statement. */ |
|
5727 |
|
5728 #if 1 /* 14/VII-2006 */ |
|
5729 static void print_char(MPL *mpl, int c) |
|
5730 { if (mpl->prt_fp == NULL) |
|
5731 write_char(mpl, c); |
|
5732 else |
|
5733 xfputc(c, mpl->prt_fp); |
|
5734 return; |
|
5735 } |
|
5736 |
|
5737 static void print_text(MPL *mpl, char *fmt, ...) |
|
5738 { va_list arg; |
|
5739 char buf[OUTBUF_SIZE], *c; |
|
5740 va_start(arg, fmt); |
|
5741 vsprintf(buf, fmt, arg); |
|
5742 xassert(strlen(buf) < sizeof(buf)); |
|
5743 va_end(arg); |
|
5744 for (c = buf; *c != '\0'; c++) print_char(mpl, *c); |
|
5745 return; |
|
5746 } |
|
5747 #endif |
|
5748 |
|
5749 static int printf_func(MPL *mpl, void *info) |
|
5750 { /* this is auxiliary routine to work within domain scope */ |
|
5751 PRINTF *prt = (PRINTF *)info; |
|
5752 PRINTF1 *entry; |
|
5753 SYMBOL *sym; |
|
5754 char fmt[MAX_LENGTH+1], *c, *from, save; |
|
5755 /* evaluate format control string */ |
|
5756 sym = eval_symbolic(mpl, prt->fmt); |
|
5757 if (sym->str == NULL) |
|
5758 sprintf(fmt, "%.*g", DBL_DIG, sym->num); |
|
5759 else |
|
5760 fetch_string(mpl, sym->str, fmt); |
|
5761 delete_symbol(mpl, sym); |
|
5762 /* scan format control string and perform formatting output */ |
|
5763 entry = prt->list; |
|
5764 for (c = fmt; *c != '\0'; c++) |
|
5765 { if (*c == '%') |
|
5766 { /* scan format specifier */ |
|
5767 from = c++; |
|
5768 if (*c == '%') |
|
5769 { print_char(mpl, '%'); |
|
5770 continue; |
|
5771 } |
|
5772 if (entry == NULL) break; |
|
5773 /* scan optional flags */ |
|
5774 while (*c == '-' || *c == '+' || *c == ' ' || *c == '#' || |
|
5775 *c == '0') c++; |
|
5776 /* scan optional minimum field width */ |
|
5777 while (isdigit((unsigned char)*c)) c++; |
|
5778 /* scan optional precision */ |
|
5779 if (*c == '.') |
|
5780 { c++; |
|
5781 while (isdigit((unsigned char)*c)) c++; |
|
5782 } |
|
5783 /* scan conversion specifier and perform formatting */ |
|
5784 save = *(c+1), *(c+1) = '\0'; |
|
5785 if (*c == 'd' || *c == 'i' || *c == 'e' || *c == 'E' || |
|
5786 *c == 'f' || *c == 'F' || *c == 'g' || *c == 'G') |
|
5787 { /* the specifier requires numeric value */ |
|
5788 double value; |
|
5789 xassert(entry != NULL); |
|
5790 switch (entry->code->type) |
|
5791 { case A_NUMERIC: |
|
5792 value = eval_numeric(mpl, entry->code); |
|
5793 break; |
|
5794 case A_SYMBOLIC: |
|
5795 sym = eval_symbolic(mpl, entry->code); |
|
5796 if (sym->str != NULL) |
|
5797 error(mpl, "cannot convert %s to floating-point" |
|
5798 " number", format_symbol(mpl, sym)); |
|
5799 value = sym->num; |
|
5800 delete_symbol(mpl, sym); |
|
5801 break; |
|
5802 case A_LOGICAL: |
|
5803 if (eval_logical(mpl, entry->code)) |
|
5804 value = 1.0; |
|
5805 else |
|
5806 value = 0.0; |
|
5807 break; |
|
5808 default: |
|
5809 xassert(entry != entry); |
|
5810 } |
|
5811 if (*c == 'd' || *c == 'i') |
|
5812 { double int_max = (double)INT_MAX; |
|
5813 if (!(-int_max <= value && value <= +int_max)) |
|
5814 error(mpl, "cannot convert %.*g to integer", |
|
5815 DBL_DIG, value); |
|
5816 print_text(mpl, from, (int)floor(value + 0.5)); |
|
5817 } |
|
5818 else |
|
5819 print_text(mpl, from, value); |
|
5820 } |
|
5821 else if (*c == 's') |
|
5822 { /* the specifier requires symbolic value */ |
|
5823 char value[MAX_LENGTH+1]; |
|
5824 switch (entry->code->type) |
|
5825 { case A_NUMERIC: |
|
5826 sprintf(value, "%.*g", DBL_DIG, eval_numeric(mpl, |
|
5827 entry->code)); |
|
5828 break; |
|
5829 case A_LOGICAL: |
|
5830 if (eval_logical(mpl, entry->code)) |
|
5831 strcpy(value, "T"); |
|
5832 else |
|
5833 strcpy(value, "F"); |
|
5834 break; |
|
5835 case A_SYMBOLIC: |
|
5836 sym = eval_symbolic(mpl, entry->code); |
|
5837 if (sym->str == NULL) |
|
5838 sprintf(value, "%.*g", DBL_DIG, sym->num); |
|
5839 else |
|
5840 fetch_string(mpl, sym->str, value); |
|
5841 delete_symbol(mpl, sym); |
|
5842 break; |
|
5843 default: |
|
5844 xassert(entry != entry); |
|
5845 } |
|
5846 print_text(mpl, from, value); |
|
5847 } |
|
5848 else |
|
5849 error(mpl, "format specifier missing or invalid"); |
|
5850 *(c+1) = save; |
|
5851 entry = entry->next; |
|
5852 } |
|
5853 else if (*c == '\\') |
|
5854 { /* write some control character */ |
|
5855 c++; |
|
5856 if (*c == 't') |
|
5857 print_char(mpl, '\t'); |
|
5858 else if (*c == 'n') |
|
5859 print_char(mpl, '\n'); |
|
5860 #if 1 /* 28/X-2010 */ |
|
5861 else if (*c == '\0') |
|
5862 { /* format string ends with backslash */ |
|
5863 error(mpl, "invalid use of escape character \\ in format" |
|
5864 " control string"); |
|
5865 } |
|
5866 #endif |
|
5867 else |
|
5868 print_char(mpl, *c); |
|
5869 } |
|
5870 else |
|
5871 { /* write character without formatting */ |
|
5872 print_char(mpl, *c); |
|
5873 } |
|
5874 } |
|
5875 return 0; |
|
5876 } |
|
5877 |
|
5878 #if 0 /* 14/VII-2006 */ |
|
5879 void execute_printf(MPL *mpl, PRINTF *prt) |
|
5880 { loop_within_domain(mpl, prt->domain, prt, printf_func); |
|
5881 return; |
|
5882 } |
|
5883 #else |
|
5884 void execute_printf(MPL *mpl, PRINTF *prt) |
|
5885 { if (prt->fname == NULL) |
|
5886 { /* switch to the standard output */ |
|
5887 if (mpl->prt_fp != NULL) |
|
5888 { xfclose(mpl->prt_fp), mpl->prt_fp = NULL; |
|
5889 xfree(mpl->prt_file), mpl->prt_file = NULL; |
|
5890 } |
|
5891 } |
|
5892 else |
|
5893 { /* evaluate file name string */ |
|
5894 SYMBOL *sym; |
|
5895 char fname[MAX_LENGTH+1]; |
|
5896 sym = eval_symbolic(mpl, prt->fname); |
|
5897 if (sym->str == NULL) |
|
5898 sprintf(fname, "%.*g", DBL_DIG, sym->num); |
|
5899 else |
|
5900 fetch_string(mpl, sym->str, fname); |
|
5901 delete_symbol(mpl, sym); |
|
5902 /* close the current print file, if necessary */ |
|
5903 if (mpl->prt_fp != NULL && |
|
5904 (!prt->app || strcmp(mpl->prt_file, fname) != 0)) |
|
5905 { xfclose(mpl->prt_fp), mpl->prt_fp = NULL; |
|
5906 xfree(mpl->prt_file), mpl->prt_file = NULL; |
|
5907 } |
|
5908 /* open the specified print file, if necessary */ |
|
5909 if (mpl->prt_fp == NULL) |
|
5910 { mpl->prt_fp = xfopen(fname, prt->app ? "a" : "w"); |
|
5911 if (mpl->prt_fp == NULL) |
|
5912 error(mpl, "unable to open `%s' for writing - %s", |
|
5913 fname, xerrmsg()); |
|
5914 mpl->prt_file = xmalloc(strlen(fname)+1); |
|
5915 strcpy(mpl->prt_file, fname); |
|
5916 } |
|
5917 } |
|
5918 loop_within_domain(mpl, prt->domain, prt, printf_func); |
|
5919 if (mpl->prt_fp != NULL) |
|
5920 { xfflush(mpl->prt_fp); |
|
5921 if (xferror(mpl->prt_fp)) |
|
5922 error(mpl, "writing error to `%s' - %s", mpl->prt_file, |
|
5923 xerrmsg()); |
|
5924 } |
|
5925 return; |
|
5926 } |
|
5927 #endif |
|
5928 |
|
5929 /*---------------------------------------------------------------------- |
|
5930 -- clean_printf - clean printf statement. |
|
5931 -- |
|
5932 -- This routine cleans specified printf statement that assumes deleting |
|
5933 -- all stuff dynamically allocated on generating/postsolving phase. */ |
|
5934 |
|
5935 void clean_printf(MPL *mpl, PRINTF *prt) |
|
5936 { PRINTF1 *p; |
|
5937 /* clean subscript domain */ |
|
5938 clean_domain(mpl, prt->domain); |
|
5939 /* clean pseudo-code for computing format string */ |
|
5940 clean_code(mpl, prt->fmt); |
|
5941 /* clean printf list */ |
|
5942 for (p = prt->list; p != NULL; p = p->next) |
|
5943 { /* clean pseudo-code for computing value to be printed */ |
|
5944 clean_code(mpl, p->code); |
|
5945 } |
|
5946 #if 1 /* 14/VII-2006 */ |
|
5947 /* clean pseudo-code for computing file name string */ |
|
5948 clean_code(mpl, prt->fname); |
|
5949 #endif |
|
5950 return; |
|
5951 } |
|
5952 |
|
5953 /*---------------------------------------------------------------------- |
|
5954 -- execute_for - execute for statement. |
|
5955 -- |
|
5956 -- This routine executes specified for statement. */ |
|
5957 |
|
5958 static int for_func(MPL *mpl, void *info) |
|
5959 { /* this is auxiliary routine to work within domain scope */ |
|
5960 FOR *fur = (FOR *)info; |
|
5961 STATEMENT *stmt, *save; |
|
5962 save = mpl->stmt; |
|
5963 for (stmt = fur->list; stmt != NULL; stmt = stmt->next) |
|
5964 execute_statement(mpl, stmt); |
|
5965 mpl->stmt = save; |
|
5966 return 0; |
|
5967 } |
|
5968 |
|
5969 void execute_for(MPL *mpl, FOR *fur) |
|
5970 { loop_within_domain(mpl, fur->domain, fur, for_func); |
|
5971 return; |
|
5972 } |
|
5973 |
|
5974 /*---------------------------------------------------------------------- |
|
5975 -- clean_for - clean for statement. |
|
5976 -- |
|
5977 -- This routine cleans specified for statement that assumes deleting all |
|
5978 -- stuff dynamically allocated on generating/postsolving phase. */ |
|
5979 |
|
5980 void clean_for(MPL *mpl, FOR *fur) |
|
5981 { STATEMENT *stmt; |
|
5982 /* clean subscript domain */ |
|
5983 clean_domain(mpl, fur->domain); |
|
5984 /* clean all sub-statements */ |
|
5985 for (stmt = fur->list; stmt != NULL; stmt = stmt->next) |
|
5986 clean_statement(mpl, stmt); |
|
5987 return; |
|
5988 } |
|
5989 |
|
5990 /*---------------------------------------------------------------------- |
|
5991 -- execute_statement - execute specified model statement. |
|
5992 -- |
|
5993 -- This routine executes specified model statement. */ |
|
5994 |
|
5995 void execute_statement(MPL *mpl, STATEMENT *stmt) |
|
5996 { mpl->stmt = stmt; |
|
5997 switch (stmt->type) |
|
5998 { case A_SET: |
|
5999 case A_PARAMETER: |
|
6000 case A_VARIABLE: |
|
6001 break; |
|
6002 case A_CONSTRAINT: |
|
6003 xprintf("Generating %s...\n", stmt->u.con->name); |
|
6004 eval_whole_con(mpl, stmt->u.con); |
|
6005 break; |
|
6006 case A_TABLE: |
|
6007 switch (stmt->u.tab->type) |
|
6008 { case A_INPUT: |
|
6009 xprintf("Reading %s...\n", stmt->u.tab->name); |
|
6010 break; |
|
6011 case A_OUTPUT: |
|
6012 xprintf("Writing %s...\n", stmt->u.tab->name); |
|
6013 break; |
|
6014 default: |
|
6015 xassert(stmt != stmt); |
|
6016 } |
|
6017 execute_table(mpl, stmt->u.tab); |
|
6018 break; |
|
6019 case A_SOLVE: |
|
6020 break; |
|
6021 case A_CHECK: |
|
6022 xprintf("Checking (line %d)...\n", stmt->line); |
|
6023 execute_check(mpl, stmt->u.chk); |
|
6024 break; |
|
6025 case A_DISPLAY: |
|
6026 write_text(mpl, "Display statement at line %d\n", |
|
6027 stmt->line); |
|
6028 execute_display(mpl, stmt->u.dpy); |
|
6029 break; |
|
6030 case A_PRINTF: |
|
6031 execute_printf(mpl, stmt->u.prt); |
|
6032 break; |
|
6033 case A_FOR: |
|
6034 execute_for(mpl, stmt->u.fur); |
|
6035 break; |
|
6036 default: |
|
6037 xassert(stmt != stmt); |
|
6038 } |
|
6039 return; |
|
6040 } |
|
6041 |
|
6042 /*---------------------------------------------------------------------- |
|
6043 -- clean_statement - clean specified model statement. |
|
6044 -- |
|
6045 -- This routine cleans specified model statement that assumes deleting |
|
6046 -- all stuff dynamically allocated on generating/postsolving phase. */ |
|
6047 |
|
6048 void clean_statement(MPL *mpl, STATEMENT *stmt) |
|
6049 { switch(stmt->type) |
|
6050 { case A_SET: |
|
6051 clean_set(mpl, stmt->u.set); break; |
|
6052 case A_PARAMETER: |
|
6053 clean_parameter(mpl, stmt->u.par); break; |
|
6054 case A_VARIABLE: |
|
6055 clean_variable(mpl, stmt->u.var); break; |
|
6056 case A_CONSTRAINT: |
|
6057 clean_constraint(mpl, stmt->u.con); break; |
|
6058 #if 1 /* 11/II-2008 */ |
|
6059 case A_TABLE: |
|
6060 clean_table(mpl, stmt->u.tab); break; |
|
6061 #endif |
|
6062 case A_SOLVE: |
|
6063 break; |
|
6064 case A_CHECK: |
|
6065 clean_check(mpl, stmt->u.chk); break; |
|
6066 case A_DISPLAY: |
|
6067 clean_display(mpl, stmt->u.dpy); break; |
|
6068 case A_PRINTF: |
|
6069 clean_printf(mpl, stmt->u.prt); break; |
|
6070 case A_FOR: |
|
6071 clean_for(mpl, stmt->u.fur); break; |
|
6072 default: |
|
6073 xassert(stmt != stmt); |
|
6074 } |
|
6075 return; |
|
6076 } |
|
6077 |
|
6078 /* eof */ |